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Abstract

Balsa provides a rapid development flow, where asynchronous circuits are created from
high-level specifications, but the syntax-driven translation used by the Balsa compiler often
results in performance overhead. To reduce this performance penalty, various control resyn-
thesis and peephole optimization techniques are used; in this paper, STG-based resynthesis
is considered. For this, we have translated the control parts of almost all components used by
the Balsa compiler into STGs; in particular we separated the control path and the data path in
the data components. A Balsa specification corresponds to the parallel composition of such
STGs, but this composition must be reduced. We have developed new reduction operations
and, using real-life examples, studied various strategies how to apply them.

This research was supported by DFG-project ’Optacon’ VO 615/10-1 and WO 814/3-1.
This report is the full version of the extended abstract [1].

1 Introduction

Asynchronous circuits are an alternative to synchronous circuits. They have no global clock
signal, which results in lower power consumption and electromagnetic emission. The absence
of global timing constraints allows greater tolerance in voltage, temperature, and manufactur-
ing process variations [2].

Unfortunately, asynchronous circuits are more difficult to design due to their inherent com-
plexity. They can be specified with Signal Transition Graphs [3] (STGs), which are Petri nets
where the transitions are labelled with signal edges (changes of signal states); however, the rap-
idly growing state space of these models quickly overwhelms any designer (trying to design a
circuit) or even STG synthesis tool (trying to synthesize a circuit from an STG).

An alternative to direct STG synthesis is syntax-directed translation from some high-level
hardware specification language into an asynchronous circuit without analysis of the state
space. This transformation is provided by hardware compilers such as BALSA [4] and TAN-
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Figure 1.1: Resynthesis with DesiJ decomposition

GRAM [5]. The BALSA compiler converts the high-level Balsa programme into a network of hand-
shake (HS-)components (Figure 1.1 shows the standard Balsa design flow on the left); these basic
building blocks form the circuit and communicate via asynchronous handshakes, where each
handshake is a communication channel C utilising the request and the acknowledge signals rC and
aC to synchronize the components or to transfer some data. Unfortunately, this approach leads
to suboptimal performance due to excessive handshake overhead and signal over-encoding.

In more detail, BALSA synthesis relies on a limited number of HS-components, each having
an optimized implementation in the hardware description language Verilog. When translating
a BALSA programme, the HS-components are instantiated by providing the actual channel
names; the resulting Breeze components form a network where two of them are connected if
they share a channel. The Breeze components are listed in the so-called Breeze netlist.

The idea of STG-based resynthesis (see e.g. [6]) is to translate each Breeze component into
a Breeze-STG with the same behaviour. Corresponding to the network of Breeze components,
the Breeze-STGs are composed in parallel resulting in the initial Balsa-STG: if two Breeze-STGs
share a channel, they synchronize on (the edges of) the respective request and acknowledge
signals – equally labelled transitions are merged and their signals are regarded as internal (i.e.
as invisible for the environment of the circuit).

To solve the problem of over-encoding, we want to get rid of these internal signals. First,
we turn the labels of the merged transitions into (the empty word) λ – this is called lambdar-
ization and the transitions are then called dummy transitions. Second, reduction operations are
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applied as they are also used for STG-decomposition [7, 8]: dummy transitions are contracted,
unnecessary places are removed, and also other net transformations may be performed.

We call the final result Balsa-STG; its construction is the focus of this paper (cf. Figure 1.1).
The Balsa-STG is the input for some STG-specific synthesis methods like PETRIFY [9], PUNF and
MPSAT [10], ILP methods [11], or STG-decomposition with DESIJ [12] (ordered by increasing
size of STGs the method can deal with). Since size matters so much, it is important to make
the Balsa-STG really small; in particular for STG-decomposition, it is advantageous to get rid
of all dummy transitions one way or the other. We remark that, in STG-decomposition, copies of
the Balsa-STG are created, suitable transitions are turned into dummies, and then essentially
the same reduction operations are applied; the resulting components (the component STGs) can
then be synthesized by other methods.

To realize resynthesis, one needs in principle a behaviour-equivalent HS-STG for each HS-
component. These STGs can then be instantiated according to the Breeze netlist, yielding the
Breeze-STGs. But some HS-components deal with data, while STGs can only deal with the
control path of a design. Therefore, it has been suggested to create the Balsa-STG not from the
full Breeze netlist but from a cluster, a connected subgraph of the respective network, consisting
only of some types of pure control HS-components [13].

Potentially, this has some problems: since the Breeze netlist describes a speed-independent
circuit, the (full) initial Balsa-STG is deterministic and output-persistent, and the respective
parallel composition is free of computation interference, see e.g. [14]. The cluster-based approach
may miss some context-components, which usually restrict the behaviour. First, this might
lead to conflicts between internal signals such that a speed-independent circuit cannot be syn-
thesized. As a consequence, after lambdarization, the STG might violate output-determinacy
and, thus, lack a clear meaning as explained in [8]. We prove here that the full initial Balsa-STG
is output-determinate after lambdarization.

Second, the parallel composition for the cluster might have computation interference; thus,
one cannot apply the optimized parallel composition of [15] that produces fewer places and
makes transition contractions easier.

In the light of these observations, it is an important achievement that we have constructed
HS-STGs for almost all HS-components and base our approach on the full Breeze netlist:

• For HS-components that deal with data, we have introduced new signals for commu-
nication between the data- and control-path of the final circuitry (cf. Figure 1.1), isolated
the control-path of the components and translated them to STGs. This is similar to the
treatment of arbitration, which is also “factored out” from the STG.

• To understand the behaviour of the HS-components, our main sources are the high- and
low-level behaviour expressions provided by Bardsley [16, 17]. We have implemented a
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translator from the former to the latter and then to STGs. In our restricted setting, the
translation to STGs is not so difficult; cf. [18] for the treatment of a more general Petri net
algebra.

• Some HS-components are actually scalable, i.e. they are families of components. We have
added suitable operators for behaviour expressions such that each of these HS-components
has one closed expression plus a scale set. For instantiation, also a scale factor is provided;
replicating the signals in the scale set, the expression is expanded automatically, and then
turned into an STG.

• Unfortunately, the behaviour expressions in [16, 17] have their limitations. In some cases,
they describe inconsistent (physically impossible) behaviour as already noticed in [13]
or behaviour that is generally not expected for some components (e.g. DecisionWait).
Therefore, for each HS-component, we have considered the Verilog description produced
by the Balsa tools. Such a description does not specify the expected behaviour of the
component’s environment: e.g. the Call HS-component expects that it can deal with a
call before receiving the next one. Thus, these descriptions alone are also not sufficient.
But we have used them, on the one hand, to validate most of our expressions; on the
other hand, in the remaining cases, we modified the low-level expressions such that they
fit the Verilog description while making the environment assumptions indicated in the
expressions of [16, 17].

With our translation from a Breeze netlist to Breeze-STGs, we can apply the ideas of [15]: we use
an optimized parallel composition, and we can enforce injectivity for the STGs beforehand to avoid
complex structures in the initial Balsa-STG N. Additionally, we found that one can achieve
better reduction when one afterwards relaxes injectivity in N with shared-path splitting. Since
we can prove that N after lambdarization is output-determinate, we can apply all and even
more reduction operations than allowed for STG-decomposition (e.g. LOD-SecTC2 in [8]). An
important point is that to make our approach work we have constructed HS-STG that do not
have loops (sometimes also called read-arcs).

Deletion of redundant places is a standard reduction operation for STG-decomposition.
Since repeated redundancy checks are costly, DesiJ in its standard setting only checks for the
very simple shortcut places. Here, we introduce redundancy checks that are only performed
on suitably chosen subgraphs. The experiments have shown that considering small subgraphs
already helps to find most redundant places and is not very time consuming. We also introduce
merge-place splitting, which can also be helpful when a dummy transition cannot be contracted
due to structural reasons.

We have implemented all these ideas in our tool DESIJ and have found that the combina-
tion of all our ideas gives the best results, considerably reducing the number of dummy trans-
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itions while only using safeness preserving contractions [8]. Finally, in all our realistic Balsa
examples, dummies could be removed completely when applying a few more general contrac-
tions at the very end.

Basic notions are defined in Section 2; the succeeding section describes how we constructed
the HS-STGs, also explaining the behaviour expressions. Section 4 is concerned with the Balsa-
STG and our methods to construct it. The two sections after describe our strategy for using
these methods and give experimental data supporting our approach. We end with a short
conclusion.

The appendix contains a list of handshake components together with their high-level (if
possible) and low-level expressions (except for some simple cases). Often, we also show the
HS-STGs to clarify the behaviour of some complex expressions. In many cases, we provide the
gate-level models to clarify how the control path and the data paths are separated and how
the component scales. In some cases the gate-level implementations were also necessary to
figure out the adequate environment assumptions. This report presents improved HS-STGs
compared to the conference version [1].

2 Basic definitions

Definition 1. A Signal Transition Graph (STG) is a Petri net that models the desired behaviour
of an asynchronous circuit [3]. An STG is a tuple N = 〈P, T, W, l, MN , In, Out, Int〉 consisting
of disjoint sets of places P and transitions T, the weight function W : P× T ∪ T × P 7→ N0, the
labelling function l : T 7→ In{+,−} ∪Out{+,−} ∪ Int{+,−} ∪ {λ} associates each transition
t with one of the signal edges (of an input, output or internal signal) or with the empty word
λ. In the latter case, we call t a dummy transition; it does not correspond to any signal change.
The signals in Out ∪ Int are called local, since they are under the control of the STG (and the
related circuit). We write s± for a signal s, if we do not care about the direction of the signal
edge. A marking (like the initial marking MN) is a function M : P 7→ N0 giving for each place
the number of tokens on this place.

The preset of a node x ∈ P ∪ T is •x df
= {y ∈ P ∪ T |W(y, x) > 0}, the postset of x is

x• df
= {y ∈ P ∪ T|W(x, y) > 0}. A place p is a marked-graph (MG-)place if |•p| = 1 = |p•|; it is

a choice place if |p•| > 1 and a merge place if |•p| > 1. If W(x, y) > 0, we say there exists the arc
xy; a loop consists of arcs xy and yx. Arcs can form paths; we call such a path from p1 ∈ P to
p2 ∈ P simple, if all its nodes have single-element pre- and postsets except that there might be
several “entry” transitions in •p1 and several “exit” transition in p2

•.
The graphical representation of STGs is as usual; signal edges are blue for outputs and

red and underlined for inputs; internal signals never appear in figures. MG-places are often
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replaced by an arc from the transition in the preset to the one in the postset.
A transition t is enabled at marking M (M[t〉) if ∀p ∈ •t : M(p) ≥ W(p, t). Then it can fire

leading to the follower marking M′ with ∀p : M′(p) = M(p) + W(t, p) −W(p, t) (M[t〉M′).
This can be generalized to transition sequences w as usual (M[w〉, M[w〉M′). If MN [w〉M for
some w, we call M reachable and w a firing sequence. An STG is safe if ∀ reachable M, p ∈ P :
M(p) ≤ 1. Two transitions t1 6= t2 are in conflict under M if M[t1〉 and M[t2〉, but M(p) <

W(p, t1) + W(p, t2) for some p.
We can lift enabledness and firing to labels by writing M[l(t)〉〉M′ if M[t〉M′. Generalizing

this to sequences, λ’s are deleted automatically; if MN [v〉〉, we call v a trace. An STG is consistent
(which is usually required) if, for all signals s, in every trace of the STG the edges s+ and s−
alternate and there are no two traces where s+ comes first in the one and s− in the other.
Another important property is output determinacy. As argued in [8], an STG only makes sense
if it satisfies this property; here we also consider internal signals, which have to be treated
analogously to outputs.

Definition 2. An STG is output-determinate if MN [v〉〉M1 and MN [v〉〉M2 implies that, for every
s ∈ Out ∪ Int, M1[s±〉〉 iff M2[s±〉〉 [8].

The labelling of an STG is called injective if for each pair of non-dummy transitions t and
t′, l(t) 6= l(t′); see e.g. [15]. There, a construction is defined that transforms an STG into an
equivalent one with an injective labelling. Here, we just show an example in Figure 2.1.

In the following definition of parallel composition ‖, we will have to consider the distinc-
tion between input and output signals. The idea of parallel composition is that the composed
systems run in parallel synchronizing on common signals – corresponding to circuits that are
connected on signals with the same name. The definition below combines two applications:
In the first case, we see the STGs as representing circuits; this is needed when building the
initial Balsa-STG. Here, always an input of one component is synchronized with an output of
another component, and the merged signal is considered to be internal. If e.g. s is an output of
N1 and an input of N2, then an occurrence of an edge s± in N1 is ’seen’ by N2, i.e. it must be
accompanied by an occurrence of s± in N2. Since we do not know a priori which s±-labelled
transition of N2 will occur together with some s±-labelled transition of N1, we have to allow
for each possible pairing.

In the second case, we want to construct an HS-STG in a structural fashion; cf. Section 3.2.
In this case, we always merge an input with an input and an output with an output.

Definition 3. The parallel composition of STGs N1 and N2 is defined if Inti ∩ (Inj ∪Outj ∪ Intj) =

∅ for {i, j} = {1, 2}. Then, let A = (In1 ∪Out1) ∩ (In2 ∪Out2) be the set of common signals;
the parallel composition N = N1 ‖ N2 is obtained from the disjoint union of N1 and N2 by
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Figure 2.1: Enforcing injectivity (before and after)

combining each s±-labelled transition t1 of N1 with each s±-labelled transition t2 from N2

if s ∈ A. In the formal equations below, ? is used as a dummy element, which is formally
combined e.g. with those transitions that do not have their label in the synchronization set A.
(We assume that ? is not a transition or a place of any net.) Thus, N is defined by

P = P1 × {?} ∪ {?} × P2

T = {(t1, t2) | t1 ∈ T1, t2 ∈ T2, l1(t1) = l2(t2) ∈ A{+,−}}
∪{(t1, ?) | t1 ∈ T1, l1(t1) /∈ A{+,−}}
∪{(?, t2) | t2 ∈ T2, l2(t2) /∈ A{+,−}}
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W((p1, p2), (t1, t2)) =


W1(p1, t1) if p1 ∈ P1, t1 ∈ T1

W2(p2, t2) if p2 ∈ P2, t2 ∈ T2

0 otherwise

W((t1, t2), (p1, p2)) =


W1(t1, p1) if p1 ∈ P1, t1 ∈ T1

W2(t2, p2) if p2 ∈ P2, t2 ∈ T2

0 otherwise

l((t1, t2)) =

{
l1(t1) if t1 ∈ T1

l2(t2) if t2 ∈ T2

MN = MN1 ∪̇MN2 , i.e. MN((p1, p2)) =

{
MN1(p1) if p1 ∈ P1

MN2(p2) if p2 ∈ P2

In = (In1 ∪ In2)− (Out1 ∪Out2)

Out = (Out1 ∪Out2)− (In1 ∪ In2)

Int = Int1 ∪ Int2 ∪ (In1 ∩Out2) ∪ (Out1 ∩ In2)

Clearly, one can consider the place set of the composition as the disjoint union of the place
sets of the components. Therefore, we can consider markings of the composition (regarded as
multisets) as the disjoint union of markings of the components – as exemplified above for MN .

We call two STGs N1 and N2 free from computation interference if there is no reachable mark-
ing M1∪̇M2 in their parallel composition, where e.g. N1 can fire an output transition under M1,
while N2 does not enable any transition with the same label in A (as above) under M2, i.e. the
second STG is not able to receive the message sent by the first STG [14, 15].

Recall that, when building the initial Balsa-STG, we consider parallel compositions where
Out1 ∩Out2 = ∅ = In1 ∩ In2. When constructing HS-STGs as described in Section 3.2, we
always have In1 ∩Out2 = ∅ = Out1 ∩ In2. Then, there are no new internal signals, and the
inputs and outputs are just the union of the components’ inputs, outputs resp.

A most important operation for our approach is transition contraction; see Figure 2.2 for a
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type-2 secure contraction: t has no merge place in its postset but there is a choice place in its
preset. The intuition is that, whenever M[t〉M′, the transformation identifies M and M′.

Definition 4. Let N be an STG and t be a dummy transition such that t is not incident to any
arc with weight greater than 1 and t is not on a loop. We define N′ as the t-contraction of N as
follows:

T′ = T \ {t}

P′ = {(p, ?) | p 6∈ •t ∪ t•} ∪ •t× t•

W ′((p1, p2), t′) = W(p1, t′) + W(p2, t′)

W ′(t′, (p1, p2)) = W(t′, p1) + W(t′, p2)

M′((p1, p2)) = M(p1) + M(p2)

The sets of signals and the labelling for t′ ∈ T′ remain unchanged. In this definition ? 6∈ P ∪ T
is a dummy element used to make all places of N′ to be pairs; we assume M(?) = W(?, t′) =
W(t′, ?) = 0.

The contraction is called secure if (•t)• ⊆ {t} (type-1 secure) or •(t•) = {t} and MN(p) = 0
for some p ∈ t• (type-2 secure). It is called (structurally) safeness preserving [8] if |•t| = 1 or
t• = {p} with •p = {t} and MN(p) = 0.

3 From behaviour expressions to STGs

In this section and in the appendix, there are a few comments (e.g. referring to 4-phase bundled
data) where we assume that the reader has some acquaintance with asynchronous circuit design,
see e.g. [19]. The section and the appendix can also be read when ignoring these comments.

3.1 Breeze handshake components

Breeze handshake components have ports that are connected in a net through communication
channels. These channels provide the medium for exchanging handshakes and transmitting
data. Each channel connects exactly two ports: one active (initiating handshakes, filled circle)
and one passive (acknowledging handshakes, empty circle). When describing a component,
we list the channels that the component is active for; if the component is active for C, then rC
is an output and aC an input signal, and vice versa for the other, passive signals. In the scope
of this paper we only consider Breeze components with the 4-phase bundled data protocol [16].

Breeze handshake components are connected to form Breeze netlists; consider the simple
example in Figure 3.1. It demonstrates a simple handshake circuit of a single place buffer. The
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Figure 3.1: Single-place buffer

circuit is initiated by the request on the passive port of the Loop component. The initiating re-
quest is propagated to the Sequence component, which sequentially requests through its active
ports on the left and right sides. The request on the left activates the left Fetch component,
which in turn pulls data from the data input port i and pushes it to the variable1. Once new
data was assigned to the variable x and acknowledged by the component, the data line can
be safely released. Eventually, the sequence component receives an acknowledgement from
the Fetch component, and after releasing its left request, continues with requesting the second
Fetch component.

Note here that the variable is passive on both sides. It receives data from the left and makes
sure that the data is stored before it sends and acknowledgement to the writer. However,
it always acknowledges the read requests on its output port. Hence, its environment has to
guarantee that the variable is never assigned a value and read at the same time. In this example,
this is achieved by the sequence component, which does not begin requests on its second port
before the communication on the first port has been completely finished. Similarly, it will never
allow writing to the variable until the reading phase is complete.

The behaviour of each HS-component can be described using an STG. Building such an HS-
STG, however, is not a straightforward task because some components have several variations
depending on their parameters. In particular, many components have a variable number of
ports – for instance, a sequence component may have any number of outputs. To deal with
such components, we have generalized the high-level behaviour expressions of [16, 17], which
we describe next.

1A channel or port is called input or output to indicate the flow of data.
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3.2 Translation from expressions to STGs

In [16, 17], the behaviour of the 46 HS-components is described with high-level behaviour
expressions. These are formed from channel names C with some operators, and their meaning
is explained with a structural translation: each expression e is translated into two low-level
ones4e and5e, describing respectively the set and the reset phase of e. The phases are needed
for the inductive definition, the final meaning of e is the sequential composition4e;5e. Low-
level expressions are formed from signal edges rC+, rC−, aC+, aC− with some operators,
using signs already used for high-level expressions.

It was not always possible to find suitable high-level expressions; in such cases, we only
give a low-level one. To increase the expressivity of the former ones, we also allow signal
names rC or aC, we changed the translation for choice and we added the new operator follow.

We describe the syntax of high-level expressions together with their expansion into low-level
ones, giving in each case the name of the high-level operator.

channel: 4C = rC+; aC+
5C = rC−; aC−

signal: 4rC = rC+ 5rC = rC− and
4aC = aC+ 5aC = aC−

sequential composition: 4(e; f ) = 4e;5e;4 f
5(e; f ) = 5 f

parallel composition: 4(e|| f ) = (4e;5e)||(4 f ;5 f )
5(e|| f ) = λ

synchronized parallel composition: 4(e, f ) = 4e||4 f
5(e, f ) = 5e||5 f

enclosure: 4(C : e) = rC+;4e; aC+
5(C : e) = rC−;5e; aC−

choice: 4(e| f ) = (4e;5e)|(4 f ;5 f )
5(e| f ) = λ

follow: 4(e. f ) = 4e;4 f
5(e. f ) = 5e;5 f

loop: 4(#e) = #(4e;5e)
5(#e) = λ

11



Given these translation rules, any high-level expression can be converted into a low-level ex-
pression. These low-level expressions are not explained in [16, 17], but their meaning is fairly
intuitive. E.g., the meaning of channel C is a sequence of four signal edges, describing a 4-
phase-handshake on C; this type of handshake is fixed by the translation.

We understand these expressions by giving a natural translation to a class of STGs; such
translations have been studied in the literature, see e.g. [18] for a thorough treatment. Each
such STG has a set of initial and a set of final places. As a building block, such an STG has no
tokens; for the final translation, one puts a token on each initial place, and this is the HS-STG
sought after. When we consider this initial marking for an STG in our class and a reachable
marking where all final places are marked, then all other places are empty; intuitively, the STG
has reached the end of its behaviour.

A signal edge corresponds to an STG with one transition, which is labelled with the signal
edge and has the only initial place in its pre- and the only final place in its postset.

For sequential composition “;”, one replaces the final place set of the first and the initial
place set of the second STG by their Cartesian product; each pair is a new place which inherits
the adjacent transitions of each of its components. Thus, a behaviour of the first STG can be
followed by a behaviour of the second. The initial set of the first STG is initial for the result, the
final set of the second STG is final.

Parallel composition “||” is as defined above (for the case that common signals are com-
mon inputs or common outputs); the initial and the final set are formed as union of the initial
sets, the final set resp., of the component STGs. The expression λ corresponds to a skip, its
translation is a single place that is initial and final.

For choice “|”, one replaces the two sets of initial places by their Cartesian product and the
same for the final places; each pair is a new place which inherits the adjacent transitions of each
of its components; the first product is the new set of initial places, the second the new set of
final places. Thus, the first firing of a transition decides whether the behaviour of the first or
the second STG is exhibited.

Finally, when the loop construct “#” is applied to an STG, one replaces the final place set
and the initial place set by their Cartesian product; again, adjacent transitions are inherited; the
product is the new set of initial places and the new set of final places. Now, the behaviour of
the original STG can be repeated arbitrarily often.

It is well-known that the combination of the last two operators can lead to a problem (cf.
Section 4.4.13 in [18]): if one operand of a choice is a loop-STG, the loop can be performed a
number of times and then the other operand can be chosen; this is presumably unexpected.
Luckily, this never happens in our restricted context; almost always, a loop is the top operator
or just inside a parallel composition.

Another potential problem is the following. It is often desirable to work with safe STGs
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only, see e.g. [12]. All operators except loop generate a safe STG from safe operands. But if the
operand of a loop is a parallel composition, the result might violate safeness (cf. Section 4.4.9
in [18]). Again, this situation does not turn up here.

All the translations have been implemented in DesiJ; they offer a flexible and convenient
way to produce interesting STGs. All HS-STGs are safe, hence also each initial Balsa-STG is
safe.

3.3 Changes to the old expansion rules

Our expansion rules are mostly the same as in the original Balsa manual. Based on the im-
plementations of the HS-component in Verilog and the need to separate the control path from
the data path, some new operators were added to the list. The signal operator allows adding
individual signals. For instance, rA alone defines an isolated request signal; to indicate that rA
is an output we list A as active. We may also use aA to express the acknowledgement (which
is an input whenever A is listed as active); for treating data, we sometimes also have several
acknowledgement signals – e.g. aB, aB1, . . . – for single request signal rA.

The new follow operator was convenient on several occasions to describe the control logic
for various data-based HS-components. Originally, the expansion of the choice operator was
defined by: 4(e| f ) = 4e|4 f ,5(e| f ) = 5e|5 f
This definition always leads to inconsistency in the resulting STG – this problem was also
mentioned in [13] for the following example: consider the Call component with active channel
C. The behaviour is defined with the high-level expression

active C

Call = #(A : C|B : C)

which would expand into low-level expressions as follows:

4Call = #(4(A : C|B : C);5(A : C|B : C))

5Call = λ

4(A : C|B : C) = (rA+; rC+; aC+; aA+)

| (rB+; rC+; aC+; aB+)

5(A : C|B : C) = (rA−; rC−; aC−; aA−)

| (rB−; rC−; aC−; aB−)

This results in the STG shown in Figure 3.2. It has two choice places where choices between
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Figure 3.2: Inconsistent Call component

signals rA and rB can be made independently of each other, while in a real circuit the second
choice is decided by the first one; e.g. firing rB− after rA+ is impossible. Such an inconsistent
STG is not accepted by tools like Petrify. With our expansion rule we get:

Call = #((4(A : C);5(A : C)) | (4(B : C);5(B : C)))

and the resulting STG has just one choice place.
Unfortunately, there are cases where our expansion does not give the desired behaviour.

The control path of the Case component is defined in [16, 17] by:

Case = #(A : (B|C))

The new and the old expansion are:

Caseold = #(rA+;4(B|C); aA+; rA−;5(B|C); aA−)

Casenew = #(rA+;4(B|C);5(B|C); aA+; rA−; aA−)

The second expansion avoids inconsistency, but actually aA+; rA− should be in between
the set and the reset phase of B (or C resp.). To describe this, we resolved to just considering a
low-level expression for the correct behaviour:

#(rA+; ((4B; aA+; rA−;5B) | (4C; aA+; rA−;5C)); aA−)

Possibly, a suitable high-level expression could be found if a different expansion for enclos-
ure were used, maybe just for enclosure in combination with choice. The Case component is
discussed in more detail in the appendix, where we also present an interface to the data path.
This is an example where one request can be answered by one of several acknowledgements.
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3.4 Scalable HS-components

As mentioned in the introduction, some HS-components are scalable; the respective high-level
expression in [16] would contain an indexed term like (B0; C; D0)|| . . . ||(Bn−1; C; Dn−1). To
have compact (and closed) expressions for such cases, we introduce new operators, e.g. : an
expression #||e for the repeated parallel composition #|| is always accompanied by a scale set
scaled, containing some channel names appearing in e. For the translation into a low-level
expression, also a scale factor scale is given. Now, as a first step, #||e with scale = n is expanded
to a repeated parallel composition where the first operand is e and the others are replications
of e; in the i-th replication (i = 1, . . . , n − 1), each channel name appearing in the scale set is
indexed with i. Then, the expanded expression is translated to low level and to an STG.

For the example mentioned, we would write #||(B; C; D) with scale set {B, D}. For scale
factor 3, the expanded expression would then be (B; C; D)||(B1; C; D1)||(B2; C; D2). Similarly,
we have introduced repeated choice “#|”, synchronized parallel “#,” and sequence “#;”. The re-
peated operators are also defined for low-level expressions, which have to be scaled before
instantiation in the same way – see the treatment of DecisionWait below.

We can redefine the Call component as scalable (where we also give the scale factor for the
expansion presented):

scale 2

scaled A

active B

Call = #(#|(A : B))

4Call = #((rA+; rB+; aB+; aA +

; rA−; rB−; aB−; aA−)

| (rA1+; rB+; aB+; aA1 +

; rA1−; rB−; aB−; aA1−)))
5Call = λ

3.5 Some more HS-components

The full list of components is available in the Appendix. Here we present some examples to
demonstrate how the expressions are used.

An example for scaling and for communication with the data path is the Variable compon-
ent, which allows storing information in its local memory elements. For better understanding,
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its gate-level model with support for two readers B and B1 is presented in Figure 3.3. The com-
ponent uses the additional active channel D (the other channels are passive): rD is the output
signal controlling the memory latches when the data must be latched, whereas aD is the input
from the environment. The path from rD to aD includes the rising edge delay line, which en-
sures that the data is latched before the component acknowledges its writer port on signal aA.
The delay line cannot be synthesized, hence, it is factored out into the environment using D as
interface. The scale set is {B} and the high-level expression is #(A : D)|| #||(#B); with scale
factor 2, it translates to the following low-level expression and the STG in Figure 3.4:

#(rA+; rD+; aD+; aA+; rA−; rD−; aD−; aA−)

|| #(4B;5B)||#(4B1;5B1)

Reader requests are always acknowledged as the latest data is always visible to them for
reading; however, the environment of this component must ensure that reading and writing
does not occur at the same time.

The DecisionWait component is another interesting example where a low-level expression is
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required. The original specification was (phrased as one of our high-level expressions):

DecisionWait = #(A : #|(B : C))

This requires the behaviour to start with rA+, i.e. it does not allow channel B to initiate com-
munication before channel A, which is wrong. Based on the knowledge of the actual imple-
mentation, we have determined that the behaviour expression should be as follows:

scaled B, C

active C

scale 2

DecisionWait = 4#(#|(B : C))

|| #(rA+; #|(4C; aA+; rA−;5C); aA−)

4DecisionWait = #((rB+; rC+; aC+; aB +

; rB−; rC−; aC−; aB−)

|(rB1+; rC1+; aC1+; aB1 +

; rB1−; rC1−; aC1−; aB1−))

|| #(rA+; ((rC+; aC+; aA+; rA−; rC−; aC−)

|(rC1+; aC1+; aA+; rA−; rC1−; aC1−))

; aA−)
5DecisionWait = λ

In this example, the parallel composition has common signal C on both sides, which causes
synchronization over transitions labelled rC+, rC−, aC+, and aC−, see Figure 3.5.

In this section we have described how we modified and improved the high- and low-level
expressions of Bardsley [16]. The translator we have implemented proved to be very useful for
studying and discussing different STG models. For example, one can choose different options
in the BALSA approach resulting in different behaviours of the HS-components, which obvi-
ously would correspond to different behaviour expressions and STG models. More generally,
we believe that our languages and the translator can also be used for constructing STGs from
sources other than BALSA.
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4 Constructing the Balsa-STG

4.1 The initial Balsa-STG

For constructing an STG for the control part of a Balsa programme, we initialize HS-STGs
according to the Breeze netlist and determine the parallel composition of these Breeze-STGs.
As argued in the introduction, this composition is free of computation interference; hence, we can
apply the methods from [15]: first, we can enforce injectivity; we do not define this here, but it
is essentially the inverse of path-splitting defined below. Second, we can apply the optimized
parallel composition, which produces fewer places. Call the resulting initial Balsa-STG N′.

We will prove now that the STG N arising from lambdarizing the internal signals in N′ is
output-determinate (cf. p. 6), since this guarantees that N′ has a clear meaning as explained
in [8]; also, we know then a lot about behaviour-preserving reduction operations, see below.
For the purpose of our proof, we do not have to distinguish internal and output signals; so
all transitions in N′ are labelled with (edges of) local or input signals. We know that N′ is
deterministic since the Breeze-STGs are. Furthermore, no transition in conflict with another
one under a reachable marking is labelled with a local signal (output persistence) as argued in
the introduction. N is derived from N′ by lambdarizing all transitions with label in some set
of local signals, e.g. the set of internal signals.

Lemma 5. Whenever MN [w1〉M1 and MN [w2〉M2 with l(w1) = l(w2), there are v1, v2 and M with
M1[v1〉M ∧M2[v2〉M ∧ l(v1) = λ = l(v2).

Proof. If |w1|+ |w2| = 0, all markings equal MN and all sequences λ. So assume that the lemma
holds whenever |w1|+ |w2| = n, and that we are given w1 and w2 with |w1|+ |w2| = n + 1.

18



There are three cases:
a) Assume w1 = w′1t with l(t) = λ and MN [w′1〉M′1[t〉M1. For w′1, M′1, w2 and M2, choose

v′1, v′2 and M′ by induction.
If v′1 = vtv′ with t not in v: Since t was labelled with a local signal, t is not in conflict with

any transition in v, i.e. M′1[v〉 and M′1[t〉 implies M′1[tv〉 and thus M′1[tvv′〉M′. We can define
v1 = vv′, v2 = v′2 and M = M′.

Otherwise: As above, M′1[v
′
1〉 and M′1[t〉 implies M′1[tv

′
1〉M, where M′[t〉M; define v1 = v′1

and v2 = v′2t.
b) analogous for w2

c) Otherwise: w1 = w′1t1, w2 = w′2t2 and l(t1) = l(t2) 6= λ; we have MN [w′1〉M′1[t1〉M1and
MN [w′2〉M′2[t2〉M2. For w′1, M′1, w′2 and M′2 choose v′1, v′2 and M′ by induction.

Since all transitions in v′1 and v′2 had local signals, they are not in conflict with t1 or t2. By
M′1[t1〉M1 and M′1[v

′
1〉M′, we have M′1[v

′
1〉M′[t1〉M and M′1[t1v′1〉M. Similarly, M′2[v

′
2〉M′[t2〉.

Since t1 and t2 have the same label and N′ is deterministic, we conclude t1 = t2, M′[t2〉M and
M′2[t2v′2〉M. Thus, we can further define v1 = v′1 and v2 = v′2.

Theorem 6. Let N′ be an output persistent deterministic STG, and let N be derived from N′ by
lambdarizing all transitions with label in some set of local signals. Then N is output-determinate.

Proof. Consider MN [w1〉M1[t〉 and MN [w2〉M2 with l(w1) = l(w2) and l(t) ∈ Out±. Take v1,
v2 and M according to Lemma 5. As in the last subcase of the above proof, we have M1[v1〉M[t〉
due to M1[v1〉M and M1[t〉. Thus, M2[l(t)〉〉 due to M2[v2〉M[t〉.

4.2 Possible problems with clustering

Let us contrast the observations and the result of Section 4.1 with the problems that may arise
in the clustering approach, which considers only pure control components in resynthesis [20].
This approach localizes a number of “islands” of pure control logic, which are converted into
a cluster-STG each.

This approach may lead to a problem when such a cluster is to be synthesized. In Figure 4.1
a simple Breeze structure is shown, where the Case component on the left chooses between two
of its output ports. Both of these ports are connected to two parallelizers igniting the activity
on the DW component that follows.

If in this example one tries to make a cluster out of pure control components, the data-based
Case component would be separated from the rest, which forms a cluster. The Case compon-
ent guarantees the exclusiveness of its outputs; however, this is lost in the cluster. The parallel
composition of the three remaining handshake components produces an STG with computa-
tion interference, where the DecisionWait component is not ready to accept simultaneously
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both requests from channels B and B1 (Figures 4.1 and 3.5). Formally, in this STG, a marking
can be reached where both, rB+ and rB1+, are enabled. After rB+ is performed the lower
parallelizer has its output rB1+ enabled, but it is not enabled in DecisionWait (cf. Figure 3.5)
and hence not in the parallel composition. This is computation interference.

Additionally, when the communicating transitions on these channels are lambdarized and
contracted, the resulting STG has a free choice between its output transitions rC+ and rC1+,
where one transition disables the other. Hence, this STG is also not output-persistent.

An additional effort is needed to avoid these problems when using clustering. One may
enforce cluster borders on the channels that are expected to be mutually exclusive (like B and
B1); however, this approach may lead to a large number of small clusters. Bearing in mind
that Balsa handshake components are quite optimal on their own, this probably destroys all
benefits from resynthesis.

4.3 Reduction operations

To obtain the final Balsa-STG, we want to make the lambdarized initial Balsa-STG N smaller
– and in particular, we want to remove as many dummy transitions as possible. For this,
one applies reduction operations. Since N is output-determinate and according to [8], we can
apply any language-preserving operation that turns an output-determinate STG into another
one, which is then a so-called trace-correct implementation; this notion actually also allows some
more operations. Observe that N is also consistent, and this must be preserved – which is the
case for language-preserving operations.

The main operations are secure transition contraction and removal of redundant places.
For the former, we mainly use the safeness preserving version, since it does not introduce too
complicated structures that hinder further contractions. Contractions reduce the number of
dummies, place removal keeps this and reduces the number of places. So far, this guarantees
termination for the reduction phase.

We have found a new practical way to deal with redundant places, and we found two new
reduction operations. We will present these now.
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4.4 Removing redundant places based on a subgraph

Removing redundant places simplifies an STG and can enable additional secure contractions.

Definition 7. A place p ∈ P is structurally redundant place [21] if there is a reference set Q ⊆
P \ p, a valuation V : Q ∪ {p} → N and some number c ∈ N0 satisfying the system of
equations:

1. V(p)MN(p)−∑s∈Q V(s)MN(s) = c

2. ∀t ∈ T : V(p)(W(t, p)−W(p, t))
−∑s∈Q V(s)(W(t, s)−W(s, t)) ≥ 0

3. ∀t ∈ T : V(p)W(p, t)−∑s∈Q V(s)W(s, t) ≤ c

This property can be checked with a Linear Programming solver (LP-solver) where the values
of V and c are the unknowns to be found. If p is structurally redundant, it can be removed
without affecting the firing sequences of the STG. The main problem comes from checking
STGs with large number of places because the inequations have to be solved individually for
each of the places at least once.

Therefore, the standard of DesiJ was to only check for so-called shortcut and loop-only
places with graph-theoretic methods. The new idea is to use an LP-solver on a small sub-STG.
Checking a place p of N, the places of Q are most likely on paths from •p to p•. Hence, we
define the depth-n-STG as the induced sub-STG that has p and all places with distance at most
2 · n− 1 from some t1 ∈ •p and to some t2 ∈ p•, and as transitions the presets of all these places
plus p•. Places detected as redundant on such a sub-STG are indeed redundant:

Proposition 8. Consider an STG N, a place p and some induced sub-STG N′ containing p and •p∪ p•

and with each place also its preset. If p is redundant in N′, it is redundant in N as well.

Proof. Consider the reference set Q in N′, the respective valuation V : Q ∪ {p} →N and c ≥ 0
satisfying the conditions 1)–3) above in N′. Condition 1) clearly carries over to N. Conditions
2) and 3) have only to be checked for t ∈ T− T′ being adjacent to some s ∈ Q ∪ {p}. By choice
of N′ , t /∈ •p ∪ p• and ∀s ∈ Q : W(t, s) = 0. Hence, the first product in both conditions is 0 and
conditions 2) and 3) reduce to: ∑s∈Q V(s)W(s, t) ≥ 0 and−∑s∈Q V(s)W(s, t) ≤ c; these clearly
hold.

Figure 4.2 demonstrates a simple example where place p is checked for redundancy. At
depth 1, only place p1 is considered, it adds b+ to the equation and cannot prove p is redund-
ant; p3 is not added at this depth because its distance from a+ is 3, and similarly for p2. At
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Figure 4.2: Checking place p for redundancy

depth 2 places p1, p2, p3 are added to the equations; now p is seen to be redundant due to p2
and p3.

For completeness, we mention: p• = ∅ that means the place is not affecting any transitions,
hence it is redundant without any checks; if •p = ∅, building the subgraph we only consider
the distance from a place to p•.

Finally, a quick decision rule can be added with respect to the induced subgraph N′: if
∃t ∈ p• : |•t| = 1, then p is not redundant in this subgraph and we can avoid the time
consuming call of an LP-solver.

4.5 Splitting

When working with large STGs composed of Breeze-STGs, certain patterns occur quite often
that block contractions. We propose two structural operations that simplify the STG structure
and allow more dummy transitions to be contracted; both are based on the idea of splitting
some transitions and places.

4.5.1 Shared-path splitting

The first example demonstrates a fairly common structure: a single simple path from p1 to p2

without dummy transitions is shared among two or more firing sequences (Figure 4.3). Each
of the several entry transitions of p1 (like the dummy) is connected to its own exit transition
from p2; the connection is an MG-place; all places considered are unmarked. Since the dummy
cannot be contracted securely, we split the path as indicated and delete the marked-graph
places, since they are redundant now. Then, the dummy can be contracted, which is even
safeness preserving now if the dummy has only one postset place at this stage. If each splitting
is followed by a contraction, the whole transformation reduces the number of dummies and
termination for the Balsa-STG construction is guaranteed.

It may seem that this splitting may lose some firing sequences, for instance: . . . λ→ rC− →
aC− → aB+ → aB− is not possible after splitting. However: if a token is put onto the path, it
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Figure 4.3: Shared-path splitting

must be removed before another token is put onto p1; otherwise, we could have two tokens on
p1, violating the consistency of the STG.

The transformation can also be applied if, symmetrically, the dummy is an exit transition.
Also, instead of the marked-graph place mentioned, there could be a longer simple path in-
stead; if we keep this, the splitting is also correct.

Path splitting is more or less the inverse of enforcing injectivity; in fact, it is often applied to
paths that were introduced when enforcing injectivity before the parallel composition. Still, our
results show: path splitting improves the results in any case, but path splitting with enforcing
injectivity first is sometimes better than without.

4.5.2 Merge-place splitting

The second type of splitting directly addresses the case where a dummy transition t cannot be
contracted securely because it has a choice place p1 in its preset and some merge places like
p2 in its postset; cf. Figure 4.4. We can split off a new p′2 from p2 (and similarly for all merge
places) and replicate the transitions in p•2 as shown: the replicates form p′•2 , while •p′2 only
contains the dummy; p2 keeps all the other transitions of its preset and (in case) the tokens. We
only apply this splitting, if each t′ ∈ p•2 satisfies t• ∩ •t′ = {p2}, the resp. arc weight is 1, and
the label is not λ. Then, the splitting does not change the behaviour; if we contract the dummy
afterwards, the whole transformation again decreases the number of dummies, so termination
is guaranteed.

This method is more general than shared-path splitting; however, the resulting STG struc-
ture is not as good for contractions. For instance, if we apply it to the earlier example in Fig-
ure 4.3, the dummy transition would have several places in both, its preset and postset, and
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contracting it would not be safeness preserving. Hence, merge-place splitting is more suitable
as an “emergency plan” when other methods fail.

5 A strategy for STG-reduction with splitting

Based on experiments, we propose the strategy shown in Figure 5.1 for STG-reduction. We start
with some initial preparations, first removing redundant places that can quickly be detected
using graph-theoretic methods; this can enable more contractions later on. Next we perform
simple contractions, treating a dummy transition t only if •t = {p} for a non-choice place p and
t• = {p′} for a non-merge place p′. This operation shrinks the size of the STG without creating
any new redundant places, and it guarantees that there are no dummies on any shared paths.
Because it is so specific, it does not “spoil” the structure for the shared-path splitting.

Shared-path splitting is highly sensitive to the STG structure, so it is best to do it once before
any more general safeness preserving contraction; in our examples, the overwhelming majority
of path splits are carried out at this point.

Then, we repeatedly do the following: we apply safeness preserving contractions as often
as possible; this may introduce redundant places, so we try to remove these, also using an
LP-solver now. This in turn can enable new contractions.

If repeating these phases does not result in any progress, we try to split paths to enable
further contractions. If this fails, we try splitting merge-places. In our experiments, these splits
do not occur very often; if they also fail, the programme returns the resulting STG with its
reduced number of dummies. Depending on the method for synthesizing a circuit from this
STG, we can use general secure contractions (which may destroy safeness); this always worked
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in our examples2. Alternatively, we can backtrack as in STG-decomposition: the remaining
dummies originated from some internal signals; we can decide to keep these signals, i.e. we do
not lambdarize them in the initial Balsa-STG and restart reduction (subject for future research).

6 Experimental data

For testing our methods, we have chosen 5 reasonably large realistic Breeze file samples (Table 1).
These are the History Unit module HU from the Viterbi decoder, and some modules from the
Samips processor presented in the table with the size of their lambdarized initial Balsa-STGs
(number of arcs, places, transitions and λ-transitions). Note that, for the construction of these
STGs, injective labelling and optimized parallel composition were used. All tests were run on
a 32-bit Java platform, Intel I7-2600 CPU 3.40 GHz processor.

Since the initial preparations are quick, we also show the size of the STGs that enter the
iteration: the numbers of dummies decrease, while the numbers of non-dummy transitions
(difference between |T|- and |λ|-column) actually increase (due to shared-path splitting).

The first test concerns using an LP-solver for detecting further redundant places on sub-
graphs of varying depths (Figure 6.1a). We measured the overall time for the complete reduc-
tion and the number of redundant places found by the LP-solver, and we added these up for
our 5 examples. One sees that time increases with depth, and this is also true for each example
separately. The first contributing factor here is the simple check filter, which prevents launch-
ing the LP-solver when the place obviously is not redundant. Its effect is drastic on small
subgraphs; for instance for depth 1 of HU, the LP-solver is launched only once. For depth

2In the case of the History Unit example (see below), we also had to use a new structural operation, an admissible
operation in the sense of [22].
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Table 1: Balsa benchmarks, initial sizes

|arcs| |T| |P| |λ| |arcs| |T| |P| |λ|
initial after preparations

HU 6457 2913 2887 1881 3154 1436 1357 141
EX 9141 4021 4331 2970 4808 2098 2341 508

CP0 5207 2306 2381 1584 2724 1277 1279 160
RB 7335 3237 3286 2101 4312 2038 1986 134
D 4977 2057 2161 1473 3660 1697 1763 270

Table 2: Final results when all optimization options are on

|arcs| |T| |P| |λ| |P| |λ|
no init

HU 2875 1315 1212 15 1212 15
EX 3408 1576 1645 7 1581 44

CP0 2370 1119 1086 2 1086 2
RB 4126 2013 1926 7 1926 7
D 2577 1234 1220 5 1164 22

5, this number increases to 172, and to 353 for depth 15. The second factor is the size of the
inequations; on larger subgraphs the solver becomes slower.

Figure 6.1a indicates that with depth 10 we rather quickly get a reasonable coverage of the
redundant places that can be found at all with an LP-solver. Again, this is also true for each
example separately. So we fixed this value for our further experiments.

Having fixed this value, computation time is not an issue anymore. What we consider
now is the quality of the resulting STG, measured as the number of remaining dummies. Our
experiments have confirmed the overwhelming success of the optimized parallel composition
(PCOMP in [15]); so we always used this. Figures 6.1b-f show the results for each example
when we use each of enforcing injectivity, the LP-solver and our splitting methods (+) or not
(.). It is clear that splitting should be used (lighter bars); also, the solver is useful in all cases.
The case for enforcing injectivity is not so clear: it usually helps. Table 2 shows the sizes and
numbers of remaining dummies if we use all options. It also shows the number of places and
dummies when we skip the initial preparations; this shows that for a good quality result the
early splitting of shared paths is important.

6.1 Variations of HS-STGs

Sometimes, it is not completely clear what the HS-STG for an HS-Component of Balsa should
look like. As an example we discuss the FalseVariable component, which in the Appendix is
defined as follows (cf. Figure 6.2):
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Figure 6.1: a) Total time spent on different depths b)-f) Remaining dummies

scaled C

active B

f = #(A : (rB+; #||(#C); aB+;5B)))
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Figure 6.3: FalseVariable with SELEM and separated channels

This STG describes the requirements on the environment of FalseVariable: the readers (the
C channels) are only allowed to read the variable after the component signals (via channel B)
that the data is available. In the context of Balsa design, this requirement will be satisfied and,
as an alternative, one could separate channels C resulting in (cf. Figure 6.3):

scaled C

active B

f = #(A : (4B;5B))||(#||(#(C)))

Since this variation creates fewer arcs, one could expect that it helps to contract more trans-
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Figure 6.4: FalseVariable with TELEM and separated channels

itions when constructing the Balsa-STG. We have made some experiments showing that sep-
arating the channel C from the component has no visible effect (the same amount of arcs and
transitions). Presumably the main reason for such a result is that optimized parallel composi-
tion and LP-solver based redundant-place removal are efficient enough and can automatically
remove these arcs when possible. We also considered a third variation, which exchanges the
SELEM (cf. A.1) by a more concurrent so-called TELEM (cf. Figure 6.4):

scaled C

active B

f = #(rA+; rB+; aB+; aA+; ((rB−; aB−)||rA−); aA−)||(#||(#(C)))

The use of TELEM sometimes resulted in a few more arcs but no other differences other-
wise. Table 3 presents the results for the different variations of the FalseVariable component.
Here we have also looked at some additional smaller examples that confirm the general im-
pression.

7 Conclusions

This paper shows how a Breeze netlist can be converted into an equivalent STG. We addressed
the issues of converting the initial component specifications in the Balsa Manual by using high-
and low-level behaviour expressions. We took special care to separate control and data path,
inserting communication signals for putting them together again in the end.

We modified and improved the languages of these expressions and implemented a trans-
lator from high- to low-level expressions and to STGs. This proved to be very useful for study-
ing and discussing different STG models. We believe that our languages and the translator can
also be used for constructing STGs from sources other than BALSA.
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old SELEM TELEM
Example #arcs #transitions #arcs #transitions #arcs #transitions

GCD 504 233 504 233 504 233
BMU 1081 463 1081 463 1081 463

GlobalWinner 474 189 474 189 474 189
HistoryUnit 6457 2913 6457 2913 6465 2913

Arb1 318 135 318 135 322 135
Arb2 670 289 670 289 674 289
Shift 1902 810 1902 810 1914 810
AAU 2198 965 2198 965 2204 965
MEM 2423 1083 2423 1083 2427 1083
CP0 5207 2306 5207 2306 5221 2306

DeCode 4977 2057 4977 2057 4981 2057
RegBank 7335 3237 7335 3237 7341 3237

EX 9141 4021 9141 4021 9163 4021

Table 3: Effect of changing the definition of the FalseVariable component

In the parallel composition of the components, more than a half of the signals are synchron-
ized; they are lambdarized, and we have shown how to get rid of them completely; this can
reduce the over-encoding in Balsa significantly.

We have noticed that using an LP-solver on STG subgraphs can be very helpful for contract-
ing more dummies without sacrificing much time (as it would happen if the full-depth solver
were employed). Additionally, the restructuring techniques shared-path and merge-place split-
ting have proven to be extremely useful. When we added these ideas to some optimizations
from the literature, they reduced the number of dummies to 10% (cf. the fifth and the last bar
in Figure 6.1b-f). Hopefully, our findings will be confirmed by further experiments.

This approach allows to build large speed-independent STG-specifications; synthesizing
circuits from them is the next step. There are different approaches for this, and our results
should be interesting for all of them. In the future, we will look into STG-decomposition for
large realistic STGs using our tool DESIJ.

Acknowledgements. We thank Ralf Wollowski and Andrey Mokhov for inspiring discus-
sions about merge-place splitting and redundant places resp., and Will Toms for helpful com-
ments about BALSA as well as the examples provided.
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A List of HS-components

In this section we present a list of components and explain their functionality. For some com-
ponents we also show their gate-level implementation and clarify how their control path and
data path parts are separated. In these implementations we also use signals like dA, which are
only concerned with data path and do not appear in the STGs. Compared to the conference
version [1] we have changed some of the HS-STGs. One of the main reasons for this is that we
improved the communication between the control and the data path. Further experiments will
be needed to validate our implementations.

A.1 SELEM element

In BALSA the SELEM element [16] (the sequence element) is a widely used primitive. It is
used to completely enclose a handshake inside another handshake, and its behaviour can be
described with the following expression:

active B

SELEM = #(rA+;4B;5B; aA+; rA−; aA−)

A.1.1 TELEM element

The TELEM encloses handshakes according the to following rules:

active B

TELEM = #(rA+;4B; aA+; (rA− ||5B); aA−)

This component is an alternative to the SELEM element, it has an earlier acknowledgement
propagation, which allows more concurrent behaviour and does not require an additional in-
ternal signal for complete state coding. However, its use is not allowed when subsequent com-
ponents prohibit any overlapping of the incoming handshakes (such components, for instance,
are Call and DecisionWait).

Figure A.1 demonstrates the way SELEM is implemented in the gate-level model. Here the
output of the complex gate CG is an internal signal that resolves a CSC conflict. It is initialized
to 1 and behaves as a C-element with its output inverted.

33



CG

Figure A.1: SELEM element

SELEM
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Figure A.2: Sequence for three channels

A.2 Activation driven control components

A.2.1 Sequence

This component provides a sequential handshakes for each of its active ports B; cf. Figure A.2.

active B

scaled B

scale 2

f = #(A : (#; B))

4 f = #(rA+; rB+; aB+; rB−; aB−; rB1+; aB1+; aA+; rA−; rB1−; aB1−; aA−)
5 f = λ

The implementation can be constructed of SELEM and TELEM elements (currently DesiJ
supports SELEM components only). The Balsa compiler automatically chooses whether to use
SELEM or TELEM, which is shown in the instance parameters. Notably, it uses only n − 1
SELEM/TELEM components to support n channels, and this is the reason why the last chan-
nel is expanded differently in expressions with sequential composition (ie., 4(B; B1; B2) =

4B;5B;4B1;5B1;4B2, and5(B; B1; B2) = 5B2).

A.2.2 Concur

The component encloses its concurrent active ports B with its passive port A; cf. Figure A.3.
The basic definition is:
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Figure A.3: Concur, scale factor 2

active B

scaled B

scale 2

f = A : (#||B)

A.2.3 Fork

Fork has one input channel and two or more output channels. It propagates the requests in-
coming on the input port A to the output ports B, B1, ... Once the acknowledgement is received
from each of the output channels, it acknowledges its input channel request. The subsequent
reset phase is similar.

active B

scaled B

scale 2

f = #(A : #, (B))

The output for each request rB is implemented by a fork of wires from rA, while the ac-
knowledgement aA is gathered by a tree of C-elements receiving aB.
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Figure A.4: Fork

A.2.4 WireFork

WireFork receives a request signal and forks it to several outputs (as the name suggests, it
is simply a forking wire that broadcasts the incoming activation). This component is different
because it does not receive any acknowledgements and does not produce an acknowledgement
on its input channel’s acknowledgement wire. In circuits it is only used with Loop and other
components that do not acknowledge their activator.

active B

scaled B

scale 3

f = rA+; #||(rB+)

scaled : rA+; (rB+; rB1+; rB2+)

A.2.5 Loop

Once activated, this component constantly produces handshakes on its output channels (Fig-
ure A.5). Since this is an endless loop, the component never acknowledges its activator:
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Figure A.5: Loop

active B

f = A : #(B)

4 f = rA+; #(rB+; aB+; rB−; aB−)
5 f = λ

A.3 Channel termination components

A.3.1 Continue and ContinuePush

Continue and ContinuePush have one passive input port A producing acknowledgements.
The implementation is a simple wire connection from input signal rA to output signal aA. The
component simply acknowledges all of the requests and does nothing with the data received:

f = #(A)

A.3.2 Halt and HaltPush

Halt can receive a request, but does not acknowledge it, hence it blocks the component com-
municating with it:

f = rA+

The HaltPush does the same, but it also accepts some data bits from the connected channel.
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Figure A.7: While

A.4 Control to datapath components

A.4.1 While

The component, once activated on its passive port A, repeatedly starts handshakes on C as
long as some Boolean condition evaluates to true on port B (Figure A.7).

When the request on rR fires, the demultiplexer MUX interprets the input data dB and
provides a dual-rail input for the control path (aT and aF); cf. Figure A.7 l.h.s. If aT+ is fired,
the component produces a complete handshake on port C. If aF+ fires, the component finishes
the handshake on port A and awaits the next request to start a new loop iteration.

The component is described with the low-level expression:

active B, C, R, T, F

f = #(rA+;4B; rR+; #(aT+;5B; rR−; aT−; C;4B; rR+); aF+; aA+; rA−;5B; rR−; aF−; aA−)
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A.4.2 Fetch

The basic implementation of this component consists of three control wires and some data
wires passing from port B to port C. The initial request on the passive port A tells the com-
ponent to fetch data from the input port B and to propagate it to the output port C. Hence, the
behaviour can be described with the following expression:

active B, C

f = #(A : (B.C))

4 f = #(rA+; rB+; aB+; rC+; aC+; aA+; rA−; rB−; aB−; rC−; aC−; aA−)
5 f = λ

A.4.3 FalseVariable

This component consists of the data writer port A, the signal port B, and one or more reader
ports C. Here “False” means there is no implicit memory gate storing the data bits; this is
useful to preserve area. Instead, data is directly forked to each of the output ports C. Channel
B signals the readers, that the data is available, which allows the readers to use the data line
several times completely independently of each other. The port B is acknowledged after the
data has been read and is no longer required. The main difference from the Variable is that
the writer’s channel is not decoupled from the readers because the write port has to keep valid
data.

The component receives the “write” request rA+ providing the data bits for the readers.
Then the component signals the environment on its “signal” port B, stating to the readers that
the data is available now. During this time, some number of read requests may arrive on those
channels. Once B is acknowledged, no further reading is expected from the environment. The
channel B is reset and the acknowledgement aA+ follows. Finally, the trace rA- aA- finishes
the transaction.
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Figure A.8: FalseVariable

active B

scaled C

scale 2

f = #(A : (rB+;4(#||(#C)); aB+;5B))

4 f = #(rA+; rB +

; (#(rC+; aC+; rC−; aC−)||#(rC1+; aC1+; rC1−; aC1−))

; aB+; rB−; aB−; aA+; rA−; aA−)
5 f = λ

The implementation and the STG for this component are shown in Figure A.8. Note how the
behaviour of the input signals is constrained. The input rC is only allowed to request when rB
is high. Also, signal aB is only allowed to acknowledge when none of the readers is requesting
data.

It was particularly difficult to find a suitable f for this component. The f given is not really
allowed, since it is a high-level loop of a high-level enclosure where the second operand is a
low-level expression. We hope it gives a fairly clear compact notation for the expansion also
provided.
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A.4.4 ActiveEagerFalseVariable

The component expects an initial activation request on channel A. When this arrives, the data
is pulled from the writer port B. Afterwards, the port C signals to the readers D that the data is
available for reading. There may be several reads from ports D. Once all reading is complete,
the acknowledgement on channel C is ignited. Consequently, the reset phase follows: rC- aC-
rA- aB- (Figure A.9).

active B, C

scaled D

scale 2

f = 4#(A : (B.#||(#(aD))))

|| #(rA+; rC+;4(#||(#D)); aC+;5C; aA+;5A)

Observe that the first operand of || only considers aD, while the second also considers rD.
Here the term “Active” means that the component has a dedicated port A for igniting its

functionality. “Eager” means that, when the activation request arrives, it immediately sends
a signal to start reading on port C even before the data has been pulled from channel B. The
component itself acknowledges each of the readers D only when the data is ready. This func-
tionality is provided by the asymmetric C-elements AC and AC1 (Figure A.9).

During resynthesis we have noticed that this component may have a slightly simpler im-
plementation (than the one provided in the Balsa library). The asymmetric C-elements AC and
AC1 can be safely replaced by simple AND gates.

The STG in Figure A.9 has a rather nasty structure, which does not work well when redu-
cing dummies in the Balsa-STG. On the one hand, it utilizes the concurrent activation of aB+
and aC+; the usefulness of this optimization depends on the delay from rC+ to rD+. On the
other hand, it adds some performance penalty for each of the read requests rD+, as it has to
trigger the asymmetric C-element on each of the read transactions.

There is an alternative less concurrent implementation (Figure A.10). Since this gives better
results when we construct the Balsa-STG, we have used it in our experiments.

A.4.5 Case

The Case component decodes input data lines to activate one of the output requests, see Fig-
ure A.11. To preserve speed independence, the data channels must not change while the rA
signal is high, otherwise the data lines are free to change at any moment. In the gate-level
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Figure A.10: ActiveEagerFalseVariable (simplified)

implementation, this constraint is shown with the equations like dA =

↑ rA

↓ rA
. The decoder

consists of demultiplexers and C-elements and converts the input data into one of the output
requests. The implementation of the decoder may vary for each individual Case component.
In the example provided, dA = 0 results in a handshake on B, dA = 1 results in a handshake
on B1, etc.

To avoid modelling the decoder in the STG, we consider it being part of the data path. The
separation in the STG is implemented with signals rC and aD.

active B, C, D

scaled B, D

scale 4

f = #(rA+; rC+; #|(aD+;4B; aA+; rA−; rC−; aD−;5B); aA−)

A.4.6 NullAdapt

NullAdapt produces an output request on A for each incoming data push request on B.
The implementation uses a SELEM element connecting input and output ports. This de-

couples the reset phase of A from the handshakes on B. It is defined as follows:
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Figure A.11: Case component for 2-bit data converted into 4 output channels
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active A

f = #(B : (4A;5A)) (see comment in A.4.3)

4 f = #(rB+; rA+; aA+; rA−; aA−; aB+; rB−; aB−)
5 f = λ

A.4.7 Encode

This component converts each input request into the index of the respective A port. A request
on port B signals that the index can be found on the data lines. Essentially, this component
has the reverse functionality of Case. The implementation of the encoder may depend on each
particular instance, in the example in Figure A.12 the request rA+ is encoded as 0, the request
rA1+ as 1, etc. For correct operation, the component requires fully exclusive requests among
the A ports, meaning that an input channel cannot request while some other input channel is
in the middle of a handshake.

All push channels implement the broad bundled data protocol, so Encode has to hold valid
output data until the moment the receiving side resets with the transition aB−. This protocol
is enforced with the OR gates receiving inputs rE, ..., rE3 as shown in Figure A.12. There is no
acknowledgement of transitions rE, ..., rE3; however, each change of rE is eventually followed
by one of rC, and rC is always acknowledged by aD.

The expression for Encode can be specified quite easily with the “follow” operator:

active B, C, D, E

scaled A, C

scale 4

f = #(#|(A : (rC.aD.rB.aB.rE)))

A.5 Pull datapath components

A.5.1 Adapt and Slice

The Adapt component transfers data from A while adjusting the number of bits in the chan-
nel. It has a trivial control part: rB is connected to rA and aA is connected to aB, there is no
communication between the data and the control path:
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Figure A.12: Encode, the original specification
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active B

f = #(A : B)

4 f = #(rA+; rB+; aB+; aA+; rA−; rB−; aB−; aA−)
5 f = λ

Slice is used to extract particular bit wires from the incoming data bits. It has the same
control logic implementation as Adapt.

A.5.2 Constant

In this component all data signal values are fixed to either Vdd or Gnd (no transitions on data
lines). No computation takes place on the data lines, hence the acknowledgement signal aA is
directly connected with the request signal rA as in the component “ContinuePush”.

active A

f = #(A)

4 f = #(rA+; aA+; rA−; aA−)
5 f = λ

A.5.3 Combine

This is a simple composition of data signals. Two input ports n and m bits wide form one
output channel with width n + m. The control part contains a C-element, which is used to
propagate the request to the output port. There is no interaction between data lines and the
control signals.

active B, C

f = #(A : (B, C))

4 f = #(rA+; ((rB+; aB+)||(rC+; aC+)); aA+;

rA−; ((rB−; aB−)||(rC−; aC−)); aA−)
5 f = λ
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Figure A.13: Combine

A.5.4 CombineEqual

This component composes its output data line from multiple input data lines of equal width.
There may be n input ports with m data bits each, the output port is then n×m bits wide. The
expression is:

active B

scaled B

f = #(A : (#, (B)))

The control part simply broadcasts the initial request from the output port to each of the
input ports. Then, the acknowledgements of the input ports are combined using a tree of
C-elements. Hence, the output acknowledgement aA rises when each of the input acknow-
ledgements is raised, and similarly the falling edges of all the latter lowers the output acknow-
ledgement.
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A.5.5 CaseFetch

This component propagates data on request from one of the input channels C. When reques-
ted, it finds pulls index data from port B, decodes the index and then pulls data from C and
propagates it to the requester A. D to H form interface to the data path:

active B, C, D, E, F, G, H

scaled C, F, G

scale 4

f = #(rA+; ((D.B); rE+; #|(aF+;4(C.rG.aH); aA+; rA−; rE−; aF−;5(C.rG.aH)); aA−))

Once the component receives the initial request from the output port, it requests its index
channel B to figure out, which of the C channels should request the data (Figure A.14). The
SELEM component ensures that the communication with the index channel finishes completely
before propagating the request to rC. This decouples the data provider on the index channel B
and the data providers on the C channels.

Notice that this component has to have signal aD explicitly acknowledging work of the data
latches. This is required because the channel B might get completely lambdarized (for instance,
when it is connected to a read port of some Variable), resulting in a trace: rA+; rD+; rD−; rE+;
where rD resets immediately after if was set. Such a behaviour can be regarded as a glitch,
which may be completely ignored by the memory latches, therefore the explicit acknowledge-
ment wire aD must be present.

A.5.6 BinaryFunc, BinaryFuncConstR, and UnaryFunc

BinaryFunc receives a pull request from the output port A. It propagates the request to its input
ports B and C, pulls data from them and outputs the result of its combinational logic function
out to port A:

active B, C, D

f = #(A : ((B, C).D))

The BinaryFuncConstR does the same, however, one of its inputs is a constant, which needs
no dedicated handshake. Therefore, the control part is a simple enclosure. We still add a delay
element here:

active B, D

f = #(A : (B.D))
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Figure A.15: BinaryFunc

The UnaryFunc is similar to BinaryFuncConstR, however, it does not need any extra in-
formation about the constant (such as the number of bits or the sign bit presence). It has the
same control logic as BinaryFuncConstR.

A.6 Connection components

A.6.1 ForkPush

ForkPush is Fork with data wires attached. It broadcasts its input data on port A to each of
the output ports B. When each of the output ports is acknowledged, the acknowledgement
propagates to the input port:

active B

scaled B

scale 2

f = #(A : #, (B))

4 f = #(rA+; ((rB+; aB+)||(rB1+; aB1+)); aA+; rA−; ((rB−; aB−)||(rB1−; aB1−)); aA−)
5 f = λ

A.6.2 Call

This component has a number of passive input channels. As soon as one of these channels is
activated, the component propagates its request to the only input channel. The environment
guarantees that no more than one channel is active at a time. It has a straightforward specific-
ation:
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active B

scaled A

scale 2

f = #(#|(A : B))

4 f = #((rA+; rB+; aB+; aA+; rA−; rB−; aB−; aA−) | (rA1+; rB+; aB+; aA1+; rA1−; rB−; aB−; aA1−))
5 f = λ

3

A.6.3 CallMux and CallDemux

The CallMux has the functionality of Call, however, it also pushes the data incoming from
its input ports. The request signals rA, . . . , rA3 are propagated to the data channel through
rS, . . . , rS3 (Figure A.17) to configure the associated multiplexer. The responsibility of the data
path here is to acknowledge rS signal with aD when the output data has been settled to a stable
value.

active B, S, D

scaled A, S

scale 2

f = #(#|(A : (rS.aD.B)))

The CallDemux is the same as CallMux, with the exception that the data is propagated in
the opposite direction: from the input port B to one of the output ports A, its data broadcasting
is implemented as a simple wire fork, without interaction with the control path.

A.6.4 Passivator and PassivatorPush

The Passivator gathers requests from all passive ports and then acknowledges all the requesters.
Its implementation is a simple C-element tree, which acknowledges each input port A via wire
fork. To express this component, we use an custom output signal aB:

3The resynthesis of the circuit implementation has shown that the C-elements can be replaced with simpler latches
or the asymmetric two-input C-elements.

52



C

C

C1

C

OR

(a) Call component circuit

rA+ rA1+ rA3+ rA2+

rB+

aB+

aA2+

aB+

rB+

aA+

rA2-

rB-

rA-

rB-

aB-

aA2-

aB-

aA-

rB+ rB+

aB+

aA3+

aB+

aA1+

rA3-rA1-

rB- rB-

aB-

aA3-aA1-

aB-

(b) Call component STG

Figure A.16: Call
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scaled A

scale 4

f = #||(#(A : (aB)))

Theoretically, this component can be created without the additional signal aB; however,
this produces a large number of places. An experiment has shown that with scale factor 9 this
breaks PETRIFY.

The PassivatorPush accepts requests from all channels and acknowledges every one, while
the data is propagated from port B to the A-ports:

scaled A

scale 4

f = 4(#(B))||(#||(#(rA+; aB+; aA+; rA−; aB−; aA−)))

A.6.5 Synch and SynchPull

The synchronization component waits until each of the passive ports receives a request, then it
produces a request on its only output port. After the output port is acknowledged, it acknow-
ledges each of the requesters. The reset phase follows in a similar fashion. Its implementation
is trivial, using a tree of C-elements.

active B

scaled A

scale 2

f = #||(#(A : B))

4 f = #(rA+; rB+; aB+; aA+; rA−; rB−; aB−; aA−)

|| #(rA1+; rB+; aB+; aA1+; rA1−; rB−; aB−; aA1−)
5 f = λ

The SynchPull component has the same implementation; however, it additionally pulls data
along the channels. There is no communication between the data and the control paths.
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Figure A.18: Passivator components
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Figure A.19: Synch

A.6.6 SynchPush

This component has an additional active output port C. The data is actively provided on pass-
ive port A .

active C

scaled B

scale 2

f = #(A : C)||(#||(#(B : C)))

4 f = #(rA+; rC+; aC+; aA+; rA−; rC−; aC−; aA−)

|| #(rB+; rC+; aC+; aB+; rB−; rC−; aC−; aB−)

|| #(rB1+; rC+; aC+; aB1+; rB1−; rC−; aC−; aB1−)
5 f = λ
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A.6.7 DecisionWait

The DecisionWait component listens to its passive input ports B and the activator port A. Once
A and one of the B ports produce a request, the component activates the corresponding C port
(depending on which B the request arrived on). We can define the behaviour using parallel
composition:

active C

scaled B, C

f = #(#|(B : C))|| #(#|(A : C))

As it can be seen from the Verilog implementation of the component (Figure A.21a), the
arbitrary request order of channels A and B is supported. This circuit is speed-independent,
provided channels B and B1 are mutually exclusive. The corresponding STG is shown in Fig-
ure A.21.

A.6.8 Split

This component, according to given parameters, splits its input channel A into two output
channels B and C. The control logic is the same as in two output Fork component.

active B, C

f = #(A : (B, C))

A.6.9 Arbiter

Arbiter has two passive ports A, B and two active ports C, D. The port A encloses C and the
port B encloses D (Figure A.23). Because of the MUTEX element in the circuit, which cannot
be synthesized, two additional channels E and F were added to place MUTEX outside the
synthesized part of the STG:

active C, D, E, F

f = #(A : (E.C))||#(B : (F.D))||#(aE | aF)||#(C |D)
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Figure A.21: DecisionWait component, scale factor 2
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Figure A.22: Split

A.6.10 Variable, InitVariable

Variable supports a single write channel and several read channels. It uses transparent data
latches to store the data received from the write channel A. It has a delay line to make sure
the data is written to the latches before it acknowledges the write request on channel D. Inde-
pendently of each other, the readers can request and read the data stored. It is assumed that
the environment of the component ensures all read requests on port B are exclusive with all
write requests on the reader ports A:

scale 2

scaled B

f = #(A : D)||(#||(#B))

The InitVariable is only different because it has some initial value stored before the first write
request arrives on A.
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Figure A.23: Arbiter
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