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Abstract—Embedded systems are often composed from com-
ponents of very different natures, e.g., mechanical and elec-
tronic. Composition of heterogeneous components is generally
not well-defined, making design and verification difficult. Deno-
tational mathematical frameworks for reasoning effectively on
heterogeneous composition have recently been made available.
In this work, we propose an operational version of this
formalism, based on tag machines, that can represent hetero-
geneous composition, and we provide conditions under which
the heterogeneous composition can be captured soundly and
completely. We have implemented our operational framework
in a prototype tool which we use for experimental evaluation.
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I. INTRODUCTION

Heterogeneity is a typical characteristic of embedded
systems, which are composed from parts of different natures,
such as mechanical, electronic and software components,
interacting in feedback to optimize the system performance.
To deal with such heterogeneity, several modeling frame-
works have been proposed, which are geared towards the
representation and simulation of heterogeneous systems,
e.g., Ptolemy II [1] or Metropolis [2]. Recently, Benveniste
et al. [3] have proposed a generic denotational framework
based on tagged events where different notions of time and
interaction paradigm, including physical time, logical time
(synchronous and asynchronous), precedence relations, etc.,
can be captured and related by mapping tagged events over
a common tag structure. The operational concept of Tag
Machine [4] (TM), introduced earlier by the same authors,
can be used to represent tag systems in a homogeneous
context.

In this paper, we extend tag machines to the heterogeneous
context. In particular, we study the relation between compo-
sition of denotational tag systems with that of tag machines.
Our first contribution is to review and correct certain aspects
of tag machines, and to provide conditions under which
the operational model can fully and compositionally capture
the denotational representation. Our second contribution is a
simulation engine that supports heterogeneous tag machines,
with which we experimentally evaluate our results on a
significant case study.

The rest of the paper is organized as follows. In Section II,
we recall notions of denotational tag systems and their
composition. In Section III, we describe how tag machines
are extended to represent heterogeneous tag systems. We

discuss soundness and completeness of the TM composition
in Section IV and V. Finally, we show the application of
our prototype tool to an automotive use case in Section VI.
Related Work. The theory of heterogeneous systems has
been evolving actively in the last decade to assist embedded
systems designers in dealing with composition of compo-
nents with various Models of Computation and Commu-
nication (MoCC). Handling heterogeneous MoCC can be
done strictly hierarchically in the pioneering framework of
Ptolemy II [1], meaning that each level of the hierarchy
is homogeneous while different interaction mechanisms are
allowed to be specified at different levels in the hierarchy.
This and other similar frameworks [2], [5] are oriented
towards the representation and simulation of heterogeneous
systems but lack formal semantics.

Another framework based on tags [3] is instead ori-
ented towards the formal verification and analysis of those
systems. This framework was inspired by the Lee and
Sangiovanni-Vincentelli formalism of tagged signal mod-
els [6], which has been long advocated as a unified modeling
framework capable of capturing heterogeneous MoCC. In
both models, tags play the important role of capturing vari-
ous notions of time, where each tag system has its own tag
structure that can be used to express an MoCC. By applying
mappings between different tag structures, the authors define
how to compose heterogeneous systems. Tag machines [4]
are subsequently introduced as finite representations of tag
systems, yet only their homogeneous composition has been
defined. Tag machines are quite expressive. For instance,
they have been applied to model a job-shop specification [7]
where any trace of the composite tag machine from the
start to the final state results in a valid job-shop schedule.
Alternatively, tag systems can be represented by functional
actors forming a Kleene algebra [8]. The approach is similar
to that of Liu et al. [1] in that both use actors to represent
basic components.

II. DENOTATIONAL TAG SYSTEMS

We use denotational tag systems as our semantic do-
main [3], [6]. In intuitive terms, a tag system is a represen-
tation of the behaviors of a component in terms of sets of
events that take place at its interface, intended as a collection
of visible ports. Tags, which are associated to every event,
characterize the temporal evolution of the behaviors.



By changing the structure of tags, one can choose among
different notions of time. Formally, a tag structure T is a pair
(T,≤) where T is a set of tags and ≤ is a partial order on the
tags. The ordering among tags is used to resolve the ordering
among events at the system interface. For instance, by using
the set of real numbers as tags, with their usual ordering,
one can place events anywhere in real time. Conversely, a
set of partially ordered symbolic tags can be used to express
precedence between events in a branching-time setting.

Events occur at the interface of a component. A compo-
nent exposes a set V of variables (or ports) which can take
values from a set D. An event is a snapshot of a variable
state, capturing the variable value at some point in time.
Formally, an event e on a variable v ∈ V is a pair (τ, d) of
a tag τ ∈ T and a value d ∈ D.

The simplest way of characterizing a behavior is as a
collection of events for each variable. In this work, we are
interested in constructing behaviors incrementally, using an
executable model. For this reason, we index the events of a
variable into a sequence, with the understanding that events
later in the sequence have larger tags [3]. A behavior for a
variable v is thus a function N 7→ (T×D). A behavior σ for
a component assigns a sequence of events to every variable
in V , and is then a function σ ∈ V 7→ (N 7→ (T ×D)).

A component P with tag structure T , or tag system, is
then a tuple P = (V, T ,Σ), where Σ is a set of behaviors
over the set of variables V . Individual events of a behavior
σ ∈ Σ are identified by the tuple (v, n, τ, d), capturing the
n-th occurrence of variable v as a pair of a tag τ and a value
d. In the following, we denote with Σ(V, T ) the universe of
all behaviors over a set of variables V and tag structure T .
Homogeneous Composition. Combining tag systems over
the same tag structure amounts to considering only those
behaviors which are consistent with every component. When
the sets of variables coincide, this operation corresponds to
taking the intersection of the behaviors of all components.
When the sets of variables are not the same, instead, two
behaviors are considered consistent if they agree on the
shared variables. In this case, we say that the behaviors are
unifiable. Composition consists in retaining all and only the
unifiable behaviors.

Formally, let P1 = (V1, T ,Σ1) and P2 = (V2, T ,Σ2)
be two tag systems over the same tag structure T . Two
behaviors σ1 ∈ Σ1 and σ2 ∈ Σ2 are unifiable, written
σ1 ./ σ2, whenever σ1|V1∩V2

= σ2|V1∩V2
, where σ|W

denotes the restriction of behavior σ to the variables in
set W . When unifiable, we may construct a new behavior
σ = σ1tσ2 on the set of variables V1∪V2 as the combination
of the two behaviors:

σ(v) = (σ1 t σ2)(v)
def
=

{
σ1(v) for v ∈ V1,
σ2(v) for v ∈ V2.

Composition for homogeneous tag systems, i.e., tag systems
over the same tag structure, is therefore defined as follows.

Definition 1 (Composition [3]). The composition P of two
tag systems P1 = (V1, T ,Σ1) and P2 = (V2, T ,Σ2), written
P = P1 ‖ P2, is the tag system P = (V1 ∪ V2, T ,Σ1 ∧Σ2),
where

Σ1 ∧ Σ2
def
= {σ1 t σ2 : σ1 ∈ Σ1 ∧ σ2 ∈ Σ2 ∧ σ1 ./ σ2}.

An alternative definition uses the inverse of the restriction
operator σ|W , or inverse projection, to equalize the variables
of the behaviors. If σ1 is a behavior on variables V1, its
inverse projection to the set V = V1 ∪ V2 is the set of
behaviors σ ∈ Σ(V ) whose restriction is σ1:

proj−1V (σ1) = {σ ∈ Σ(V, T ) : σ|V1
= σ1}.

Inverse projection is naturally extended to sets of behaviors.
Hence, Σ1 ∧ Σ2 can also be written as

Σ1 ∧ Σ2
def
= proj−1V1∪V2

(Σ1) ∩ proj−1V1∪V2
(Σ2),

which makes the intersection operator involved with com-
position explicit.
Heterogeneous Composition. When the tag systems have
different tag structures, we must equalize also the set of tags.
This is done by mapping the tag structures onto a third tag
structure that functions as a common domain. The mappings
are called tag morphisms and must preserve the order.

Definition 2 (Tag morphism [3]). Let T and T ′ be two
tag structures. A tag morphism from T to T ′ is a total map
ρ:T 7→ T ′ such that ∀τ1, τ2 ∈ T , τ1 ≤ τ2 ⇒ ρ(τ1) ≤ ρ(τ2).

Here, the tag orders must be taken on the respective
domains. Using tag morphisms, we can turn a T -behavior
σ ∈ V 7→ (N 7→ (T × D)) into a T ′-behavior σρ ∈ V 7→
(N 7→ (T ′ × D)) by simply replacing all tags τ in σ with
the image ρ(τ). Abusing the function composition operator
◦, we may alternatively refer to σρ as σ ◦ ρ.

Unification of heterogeneous behaviors can be done on
the common tag structure. Let P1 = (V1, T1,Σ1) and P2 =
(V2, T2,Σ2) be two tag systems, and let ρ1 : T1 7→ T and
ρ2 :T2 7→ T be two tag morphisms into a tag structure T . We
say that two behaviors σ1 ∈ Σ1 and σ2 ∈ Σ2 are unifiable in
the heterogeneous sense, written σ1 ./ρ1 ρ2 σ2, if and only
if (σ1 ◦ ρ1) ./ (σ2 ◦ ρ2). When σ1 and σ2 are unifiable, we
may construct the unified behavior σ over T as usual, by
considering the corresponding behaviors in T

σ = (σ1 ◦ ρ1) t (σ2 ◦ ρ2),

and hence build the composed tag system P = (V, T ,Σ)
over the common tag structure T , where

Σ
def
= {(σ1 ◦ ρ1) t (σ2 ◦ ρ2) : σ1 ∈ Σ1 ∧ σ2 ∈ Σ2 ∧

σ1 ./ρ1 ρ2 σ2}.

It is convenient, however, to retain some information of
the original tag structures in the composition, since they
are often referred to in the heterogeneous composition, as



we will see in the sequel. To do so, we construct the
composition over the fibered product [3] T1 ×ρ1 ρ2 T2 =
(T1 ×ρ1 ρ2 T2,≤) of the original tag structures, extending
the order component-wise:

(τ1, τ2) ≤ (τ ′1, τ
′
2) ⇐⇒ τ1 ≤ τ ′1 ∧ τ2 ≤ τ ′2.

where T1 ×ρ1 ρ2T2 = {(τ1, τ2) ∈ T1×T2 : ρ1(τ1) = ρ2(τ2)}.
We denote by σ|V1,T1 the restriction of σ to the variables in
V1 and to the element T1 of the fibered product.1 With this
notion, we can define the heterogeneous composition.

Definition 3 (Heterogeneous composition [3]). Let P1 =
(V1, T1,Σ1) and P2 = (V2, T2,Σ2) be tag systems and let
ρ1 : T1 7→ T and ρ2 : T2 7→ T be tag morphisms. The
heterogeneous composition P = P1 ‖ρ1 ρ2 P2 is the tag
system P = (V1 ∪ V2, T1 ×ρ1 ρ2 T2,Σ1 ∧ρ1 ρ2 Σ2), where

Σ1 ∧ρ1 ρ2 Σ2
def
= {σ ∈ Σ(V, T1 ×ρ1 ρ2 T2) : σ|V1,T1 ∈ Σ1∧

σ|V2,T2 ∈ Σ2}.

III. TAG MACHINES

Tag machines [4] (TM) have been introduced to represent
tag systems in a homogeneous context. Since our aim is
to provide an operational representation for heterogeneous
systems, we extend the TM formalism to encompass the
heterogeneous context.

In order to construct behaviors, the transitions of a tag
machine must be able to increment time, i.e., to update the
tags of the events. An operation of tag concatenation on a
tag structure is used to accomplish this.

Definition 4 (Algebraic tag structure [4]). An algebraic tag
structure is a tag structure T = (T,≤, ·) where · is a binary
operation on T called concatenation, such that:

i) (T, ·) is a monoid with identity element ı̂
ii) ∀τ1, τ ′1, τ2, τ ′2 ∈ T : τ1 ≤ τ ′1, τ2 ≤ τ ′2 ⇒ τ1 · τ2 ≤ τ ′1 · τ ′2

iii) ∃ε ∈ T : ∀τ ∈ T : ε ≤ τ ∧ ε · τ = τ · ε = ε.

We will organize tags in tag vectors ~τ = (τv1 , . . . , τvn),
where n is the number of variables in V . During transitions,
tag vectors evolve according to a matrix µ : V × V 7→ T
called a tag piece [4]. Given a tag vector ~τ and a tag piece
µ, the new tag vector is ~τµ = ~τ · µ given by

τvµ
def
= max

u∈V
(τu · µ(u, v)),

where the maximum is taken with respect to the tag ordering.
In practice, one concatenates each element of the tag

vector with the tags on a column of µ, and then takes the
largest value; thus the new value of any tag may depend on
the tag increments on the events of the other variables. As
the order is partial, the maximum may not exist, in which
case the operation is not defined.

1The restriction to T1 can be accomplished using a tag morphism π :
T1 ×ρ1 ρ2

T2 7→ T1 with π((τ1, τ2)) = τ1.

Intuitively, a tag piece µ represents increments in all
variable tags over a transition and provides a way to
operationally renew them. To represent also changes in
variable values, µ can be labeled with a partial assignment
ν : V → D, which assigns new values to the variables. We
say that a labeled tag piece µ has an event for all variables
for which ν is defined, and denote by dom(ν) the domain
of ν. In the following, we assume that tag pieces are always
labeled and implicitly associate a labeling function ν to a
tag piece µ.

Example 1. The algebraic tag structure (N∪ {−∞},≤,+)
can be used to capture logical time by structuring tag pieces
µ so that they represent an integer increment of 1 as follows:

µ(u, v) =

 0 if u = v and ν is not defined on v
−∞ if u 6= v and ν is not defined on v
1 if ν is defined on v

.

The least element ε = −∞ is used to cancel the contribution
of an entry in the tag vector. With these definitions, every
time a new value must be assigned to a variable (i.e., when
ν(v) is defined), the tag is also incremented by 1. Otherwise,
the tag is left unchanged and no new event is generated. For
instance, [ 1 3 ]·

[
0 1
ε 1

]
= [ 1 4 ]. The tag of the second variable

is increased by 1 since the tag piece has an event for it.

Likewise, (R+∪{−∞},≤,+) can capture physical time.
A tag machine M is a finite automaton where transitions

are marked by labeled tag pieces, or simply labels. Our
definition below differs from that proposed by Benveniste
et al. [4] for certain simplifications and for the addition of
a set of accepting states.

Definition 5. A tag machine M is a tuple
(V, T , S, s0, F, L,E), where:
• V is a set of variables,
• T is an algebraic tag structure,
• S is a finite set of states and s0 ∈ S is the initial state,
• F ⊆ S is a set of accepting states,
• L is a set of labeled tag pieces defined on V and T ,
• E ⊆ S × L× S is the transition relation.

A run r of the tag machine is a sequence of states and
transitions r : s0

µ0−→ s1
µ1−→ s2 . . . sm−1

µm−1−−−−→ sm such
that sm ∈ F and for all i, 1 ≤ i ≤ m, (si−1, µi−1, si) ∈ E.
Intuitively, a tag machine is used to construct a behavior
by following its labeled transitions over a run, and applying
the tag pieces sequentially to an initial vector of tags. A
new event is added to the behavior whenever a new value is
assigned by the label function νi. In order to formalize the
language of a tag machine, we must keep track of both the
tags and the number of events that have occurred for each
variable. Thus, for every state si along run r, we define a
tag vector ~τi computed by accumulating the tag pieces:

~τi+1 = ~τi · µi,



and an index vector ~ki computed by updating the event index
at every new event:

~ki+1(v) =

{
~ki(v) if v 6∈ dom(νi)
~ki(v) + 1 if v ∈ dom(νi)

.

For state s0, the tag vector is initialized to the identity
element ı̂, while the index vector is initialized to 0. The
behavior σ(r)2 of a run r is constructed incrementally by
starting from an empty behavior σ0 and computing:

σi+1(v, k) =


σi(v, k) if v 6∈ dom(νi)

σi(v, k) if v ∈ dom(νi) ∧ k < ~ki(v)

(~τi+1(v), νi(v)) if v ∈ dom(νi) ∧ k = ~ki(v)

A run r of M is valid if the concatenation is always defined
along the run, and if sm ∈ F . The language L(M) of M is
given by the behaviors of all its valid runs.

A. Composition of Tag Machines

Tag machines are composed in parallel by taking a form
of product between their structures. Synchronization occurs
by sharing variables. In particular, over every transition, the
tag machines involved in the composition must agree on the
tag increment and on the value of the shared variables.

We first examine the composition of homogeneous tag
machines, by adapting the original definition [4]. Consider
two tag machines M1 = (V1, T , S1, s01, F1, L1, E1) and
M2 = (V2, T , S2, s02, F2, L2, E2) defined over the same tag
structure T . Two labeled tag pieces µ1 ∈ L1 and µ2 ∈ L2

are unifiable, written µ1 ./ µ2, if and only if they are the
same on the shared variables. That is, if we denote the set
of shared variables with W = V1 ∩ V2, then for all pairs
(w, v) ∈W ×W ,

µ1(w, v) = µ2(w, v),

ν1(v) = ν2(v).

When unifiable, their unification µ = µ1 t µ2 is given by

µ(w, v) =

 µ1(w, v) if (w, v) ∈ V1 × V1
µ2(w, v) if (w, v) ∈ V2 × V2
ε otherwise

,

ν(v) =

{
ν1(v) if v ∈ V1
ν2(v) if v ∈ V2

.

Homogeneous composition can then be defined as follows:

Definition 6 (Homogeneous composition). The parallel
composition of homogeneous machines M1 and M2 is the
machine M = M1 ‖M2 = (V, T , S, s0, F, L,E) such that
• V = V1 ∪ V2,
• S = S1 × S2, s0 = (s01, s02), F = F1 × F2,
• L = {µ1 t µ2 : µ1 ∈ L1 ∧ µ2 ∈ L2 ∧ µ1 ./ µ2},
• E = {((s1, s2), µ1 t µ2, (s

′
1, s
′
2)) : (s1, µ1, s

′
1) ∈ E1 ∧

(s2, µ2, s
′
2) ∈ E2 ∧ µ1 ./ µ2}.

2We sometimes refer to σ(r) as σ(ω) where ω = µ0µ1 . . . µm−1

Heterogeneous tag machines can be composed if there
exists a pair of morphisms which map the tag structures
T1 and T2 to a common tag structure T , preserving the
concatenation operator. We refer to such morphisms as
algebraic morphisms.

Definition 7. A tag morphism ρ : T 7→ T ′ is algebraic if
ρ(̂ıT ) = ı̂T ′ , ρ(εT ) = εT ′ , and ρ(τ1 · τ2) = ρ(τ1) · ρ(τ2) for
all τ1, τ2 ∈ T .

The newly-composed TM will be defined on a unified tag
structure and a unified label set. Referring to the previous
notation, two tag pieces µ1 and µ2 are unifiable under
morphisms ρ1 and ρ2, written µ1 ./ρ1 ρ2 µ2, whenever for
all pairs (w, v) ∈W ×W ,

ρ1(µ1(w, v)) = ρ2(µ2(w, v)),

ν1(v) = ν2(v).

When unifiable, their unification µ = µ1 tρ1 ρ2 µ2 defined
over the tag structure T1 ×ρ1 ρ2T2 is a set of pieces given by

µ(w, v) =



(µ1(w, v), µ2(w, v)) if (w, v) ∈W ×W
(µ1(w, v), τ2) if w ∈ V1, v ∈ V1 \ V2
(µ1(w, v), τ2) if w ∈ V1 \ V2, v ∈ V1
(τ1, µ2(w, v)) if w ∈ V2 \ V1, v ∈ V2
(τ1, µ2(w, v)) if w ∈ V2, v ∈ V2 \ V1
(εT1 , εT2) otherwise

where τ2 ∈ T2 is such that ρ2(τ2) = ρ1(µ1(w, v)), and
similarly τ1 ∈ T1 is such that ρ1(τ1) = ρ2(µ2(w, v)). The
labeling function is the same as in the homogeneous case:

ν(v) =

{
ν1(v) if v ∈ V1
ν2(v) if v ∈ V2

.

The composition M = M1 ‖ρ1 ρ2 M2 of heterogeneous
tag machines can then be defined exactly as in Definition 6,
having replaced the operators for the unification of the tag
pieces on the transition with the heterogeneous ones.

Definition 8 (Heterogeneous composition). The parallel
composition of heterogeneous machines M1 and M2 under
morphisms ρ1 and ρ2 is the machine M = M1 ‖ρ1 ρ2 M2 =
(V, T1 ×ρ1 ρ2 T2, S, s0, F, L,E) such that
• V = V1 ∪ V2,
• S = S1 × S2, s0 = (s01, s02), F = F1 × F2,
• L = {µ1 tρ1 ρ2µ2 : µ1 ∈ L1∧µ2 ∈ L2∧µ1 ./ρ1 ρ2 µ2},
• E = {((s1, s2), µ1 tρ1 ρ2 µ2, (s

′
1, s
′
2)) : (s1, µ1, s1) ∈

E1 ∧ (s2, µ2, s2) ∈ E2 ∧ µ1 ./ρ1 ρ2 µ2}

IV. INTEROPERABLE TAG MACHINES AND
COMPOSITION SOUNDNESS

Ideally, we would like there to be a direct correspondence
between tag systems and tag machines. So, if Σi is the
language of machine Mi, and if Σ is the language of the
composition M = M1 ‖ρ1 ρ2 M2, we expect that every
behavior of Σ be obtained by composing some pair of



(a)

(b)
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Figure 1. Tag machines accepting (a) Σ1 (b) Σ2 (c)Σ1 ∧ Σ2

behaviors from Σi. When this is the case, we say that
composition is sound. Example 2 shows that this property
generally does not hold even for homogeneous systems.

Example 2. We consider two sets of behaviors Σ1 and
Σ2 defined on two sets, V1 = {x, y} and V2 = {x, z}
respectively, of variables with values in D = {true}. Since
D is a singleton set, we shall omit mentioning the variable
value in the rest of the example. These behavioral sets are
expressed formally as follows. Let σi ∈ Σi and enumσi(vi)
be the total number of events on variable vi ∈ Vi in behavior
σi where i ∈ {1, 2} and let k ≥ 1:

Σ1 :

 σ1(x, k) = 2 ∗ k − 1
σ1(y, k) = k
enumσ1(y) = 2 ∗ enumσ1(x)− 1

Σ2 :

 σ2(x, k) = 2 ∗ k
σ2(z, k) = k
enumσ1

(z) = 2 ∗ enumσ1
(x)

Let reaction be a maximal set of events with identical tags
in a behavior, c.f. [4], these behavioral sets can then be
organized in terms of successive reactions as follows:

Σ1 :
x : 1 3 5 7 9 . . .
y : 1 2 3 4 5 6 7 8 9 10 . . .

Σ2 :
x : 2 4 6 8 10 . . .
z : 1 2 3 4 5 6 7 8 9 10 . . .

We use the algebraic tag structure (N ∪ {ε},6,+) and the
tag piece structure described in Example 1 to model the
behaviors in Σi as TMs, shown in Fig. 1, where ε def

= −∞,
the row and column designation orders are (x, y) in Fig. 1(a),
(x, z) in Fig. 1(b) and (x, y, z) in Fig. 1(c). The initial states
are double-circled and the accepting states are shaded.

Tagging the shared variable x can depend on tagging
non-shared variables y or z even though there is no real
dependence between their tags. Going from s10 to s11, the
TM 1(a) tags x and y simultaneously and equally. It then
can go back to s10, tagging only y and subsequently repeating
the tagging cycle at this state. The TM 1(b) instead tags
only z initially and goes to s22. It then tags both x and z
at the same time and goes to s21 where it again tags only
z before returning to s22. It is easy to verify that TM 1(a)
and 1(b) accept the behavioral sets Σ1 and Σ2 respectively.
When composing them, the composed TM is expected not
to accept any behavior since Σ1∧Σ2 = ∅. Its set of accepted
behavior is, however, not empty as shown in Fig. 1(c). This
is because TM 1(a) can stay silent while TM 1(b) is tagging
z. The two TMs then synchronize and tag all variables
simultaneously, after which they can go on tagging their
own internal variable.

We remark that the fact that TM composition is not sound
has not been observed in Benveniste et.al. [4]; clearly it also
holds for heterogeneous composition. The consequence is
that the operational model overestimates the behaviors of
composition, therefore building an abstraction. This may or
may not be a problem, depending on what is done with
the models. For instance, verification of safety properties
would be correct, albeit less precise. On the other hand, the
emergence of unexpected behaviors may adversely affect the
design process, where a refinement rather than an abstraction
would instead be more appropriate. It is therefore useful to
look for conditions that guarantee soundness. In our exam-
ple, the dependency effects of tagging non-shared variables
on others, especially shared ones, are shown to be the critical
factor. The cause lies in the fact that in the applications of tag
pieces, the max tag evaluations for a shared variable can be
different even though the pieces are unifiable. It is therefore
desirable to eliminate such effects to make the composition
sound. To this end, we propose an interoperability condition
to prevent TMs from producing such effects.

The intuition behind TM interoperability is that tagging
shared variables should not depend on tagging non-shared
variables. A set V ⊆ V is locally independent in M =
(V, T , S, s0, F, L,E), written lind(M,V ), if tagging v ∈ V
depends only on tagging other variables also in V . If we
define the predicate lind(µ, V )

def
= (∀w ∈ V \ V , ∀v ∈

V : µ(w, v) = ε), then lind(M,V )
def
= (∀(s, µ, s′) ∈ E :

lind(µ, V )). The interoperability between M1 and M2 is
formally defined as follows.

Definition 9. Two TMs Mi = (Vi, Ti, Si, s0i, Fi, Li, Ei),



for i ∈ {1, 2}, are said to be interoperable, written M1 ./
M2, if their shared variables are locally independent in Mi:

M1 ./ M2
def
= lind(M1, V1 ∩ V2) ∧ lind(M2, V1 ∩ V2)

Interoperability behaves well under multiple composition.

Lemma 1. Let M1,M2, . . .Mn be n pair-wise interop-
erable TMs, where n ≥ 2. If M is the composition of
M1,M2, . . .Mn−1, then M ./ Mn.

Proof: We prove the theorem by induction. The base
case n = 2 is trivial, so assume now the statement holds
for k = n − 1, we prove that it also holds for k = n. Let
Vi, µi be the variable set and label of Mi, µ the unification
of µ1, µ2 . . . , µn−1, and V = V1 ∪ V2 . . . ∪ Vn−1, we see
that lind(µ, V ∩ Vn) holds. Indeed, if w ∈ V \ (V ∩ Vn),
then w ∈ Vj \ (V ∩ Vn) and hence w ∈ Vj \ Vn for some j.
Likewise, if v ∈ V ∩Vn, then v ∈ Vr∩Vn for some r. Thus,
if j = r then µ(w, v) = εT because Mr ./ Mn implies
µr(w, v) = εTr . If instead j 6= r, the result remains the
same because the composition on labels puts εT whenever
w and v are not in the same variable set. To prove that
lind(µn, V ∩ Vn) holds, we consider w ∈ Vn \ (V ∩ Vn)
and v ∈ Vn ∩ Vr for some r. The former implies w ∈ Vn
and w /∈ Vj for all j. This together with Mn ./ Mr implies
µn(w, v) = εT .

Example 3. We use the algebraic tag structure in Example 2
but restructure the tag pieces so that they can represent any
integer time increment n ∈ N.

µuv =

 0 if u = v and µ has no event for v
n if u = v and µ has an event for v
ε otherwise

Interoperable TMs representing Σi are depicted in Fig. 2(a)
and 2(b). Tagging the shared interface variable x is now
made locally independent in both machines, hence they can
be composed interoperably. The composed TM is shown
in Fig. 2(c) where no behavior can be accepted since the
accepting state is not reachable from the initial state. This is
because TM 2(a) has to stutter in s10 while TM 2(b) tags its
internal variable and moves to s22. The two TMs then have
to stutter there forever since only the stuttering labels

[
0 ε
ε 0

]
are unifiable.

Example 4. We consider a simplified version of the water
controlling system proposed by Benvenuti et al. [9]. It
consists of two components: a water tank and a water level
controller, connected in a closed-loop fashion, c.f. Fig. 3.
We assume that the water level x(t) is changed linearly as
follows:

x(t)
def
=

{
∆t ∗ (fi − fo) when command is Open
H−∆t ∗ fo when command is Close (1)

where fi and fo denote the constant inlet and outlet flow,
respectively, H denotes the height when the tank is full of

(a)

(b)

(c)

Figure 2. Interoperable TM accepting (a) Σ1 (b) Σ2 (c)Σ1 ∧ Σ2

(a)

Tank Controller

(b)

Figure 3. Water controlling system

water and ∆t denotes the time elapsed since t0 at which
the tank reaches the maximum/minimum water level H, i.e.
∆t = t − t0. Let P1 = (V1, T1,Σ1) and P2 = (V2, T2,Σ2)
be two tag systems representing the tank and the water
controller, respectively, where T1 = (R+ ∪ {ε1},+), T2 =
(N ∪ {ε2},+), ε1 = ε2 = −∞, and V1 = V2 = {cmd, x}.
Variable cmd denotes the command values, which can be
Open (op) or Close (cl), and variable x denotes the water
level, which is of positive real type, i.e. Dcmd = {op, cl} and
Dx = R+. Assume that fi = 2, fo = 1,H = 1, we model
in this example a linear water level evolution of a water
controlling system. The tank component shown in Fig. 4(a)
depicts the water level linear evolution as specified in 1.
Upon knowing of the tank emptiness/fullness, the controller
component in Fig. 4(b) will issue an Open/Close command.
Intuitively, the controller behaviors ensure that controlling
commands are always issued timely (i.e., Open when the
tank is empty and Close when it is full), no matter how
the water level evolves, while the tank behaviors accept
untimely controlling commands and allow water spillages
or shortages, given that the water level evolves linearly.

For the sake of simplicity, the events described by the
tank component are timestamped periodically every 0.5 time
unit. While the tank system uses physical time to stamp
its behaviours, the controller system instead timestamps its
events logically, described by the integer tag set N. For the



(a)

(b)

(c)

Figure 4. Interoperable TM representing (a) the tank’s behaviors (b)
controller’s behaviors (c) the tank-controller composition’s behaviors

sake of expressiveness, some of the labeled tag pieces can be
represented symbolically. For example, to capture any event
of variable x happening at a specific time point, we label
with the tag piece capturing that time point expressions such
as x ∈ Dx, meaning that in such an event x can take any
value in its domain. Since the tank and the controller capture
different behaviors, composing them is only possible under
the presence of morphisms such as ρ1 : T1 7→ T1 and ρ2 :
T2 7→ T1 given by ρ1(τ1) = τ1, ρ2(τ2) = 0.5 ∗ τ2. Fig. 4(c)
shows their composition, where accepted behaviors ensure
timely controlling commands and linear water evolution.

The following theorem shows that composition of inter-
operable TMs is sound.

Theorem 1. For any behavior σ accepted by M1 ‖ρ1 ρ2 M2

where M1 ./ M2, there exist behaviors σ1, σ2 accepted by
M1, M2 such that σ can be obtained by composing σ1 and
σ2, i.e. Σ ⊆ Σ1 ∧ρ1 ρ2 Σ2.

Proof: Let r : s0
µ1−→ s1 . . .

µn−−→ sn be a valid run in
M1 ρ1‖ρ2 M2 where sk = (sk1, sk2) for 0 ≤ k ≤ n. There
exists a valid run ri : s0i

µ1i−−→ s1i . . .
µni−−→ sin in Mi, for

i ∈ {1, 2}, where µk1 ./ρ1 ρ2 µk2 and µk = µk1 tρ1 ρ2 µk2.
Inductively for tag vectors ~τk/~τki obtained at states sk/ski in

(a)

(b)

Figure 5. Interoperable TMs accepting Σ1

run r/ri we prove that first, ρ1(τvk1) = ρ2(τvk2) and second,
τwk ∈ T1 ×ρ1 ρ2 T2 and ~τk|V1 = ~τk1 and ~τk|V2 = ~τk2 , where
v ∈ V1 ∩ V2 and w ∈ V1 ∪ V2.

Let v′ ∈ V1 ∩ V2, vi ∈ Vi \ (V1 ∩ V2) and µvw denote
µ(v, w). The base case k = 0 is trivial since τv0i = ı̂Ti by
definition. Assuming the statements hold for any 0 ≤ k ≤
n − 1, we prove that it also holds for k = n using the
following fact for the first:

ρi(τ
v
ni) = ρi(max(τv

′

(n−1)i · µ
v′v
ni , τ

vi
(n−1)i · µ

viv
ni ))

= max(ρi(τ
v′

(n−1)i) · ρi(µ
v′v
ni ), ρi(τ

vi
(n−1)i) · ρi(µ

viv
ni ))

and the interoperability condition and the inductive hypothe-
ses for the second, e.g.

τvn = max(τv
′

n−1 · µv
′v
n , τv1n−1 · µv1vn , τv2n−1 · µv2vn )

= max((τv
′

(n−1)1 · µ
v′v
n1 , τ

v′

(n−1)2 · µ
v′v
n2 ))

and ρ1(τv
′

(n−1)1 · µ
v′v
n1 ) = ρ2(τv

′

(n−1)2 · µ
v′v
n2 ).

V. SELF-SYNCHRONIZING TAG MACHINES AND
COMPOSITION COMPLETENESS

To establish the correspondence between tag systems
and TMs, TM compositions need to be not only sound
but also complete. Composition completeness requires two
unifiable behaviors to always be operationally composed,
and Example 5 below shows that this property generally
does not hold even for homogeneous systems. The reason of
this incompleteness is due to the TM non-unique behavioral
representations. Indeed, different TM runs can represent the
same behavior, which in turn causes the operational com-
position on two behaviors to sometimes become impossible
(while the denotational one may be possible) when their
representations contain non-unifiable labels.

Example 5. Fig. 5 shows two different TMs representing
the same set of behaviors as Σ1, yet their composition does
not accept Σ1. This is because the TMs cannot synchronize
on updating their variable tags.

As demonstrated in Example 5, the TM composition
represents incompletely the tag system composition when



Mi fails to include all representations of some behavior.
Therefore, it is a natural condition for completeness that Mi

be self-synchronizing. The notion of self-synchronization for
homogeneous composition [4] requires the language of M =
(V, T , S, s0, F, L,E) to be ∼-closed, where ∼ is a binary
relation s.t. ∀ω, ω′ ∈ Σ(V, T ) : ω ∼ ω′ ⇔ σ(ω) = σ(ω′).

In order to make machine Mi self-synchronize, all possi-
ble runs of any behavior of Mi must be added to the ma-
chine. In order for the TM semantics to remain unaffected,
any sub-run’s behavior should be excluded from the machine
language. This, however, is not guaranteed in [4] because
TMs there do not contain accepting states. Our TM definition
(Def. 5) cares for such a need and thus can preserve the TM
semantics under the self-synchronizing operation.

Self-synchronization is however not sufficient to guaran-
tee completeness of composition, as two unifiable behaviors
do not always have unifiable representations, which in turn
is caused by the choice of tag structures and morphisms. We
recall that events of a variable v are indexed into a sequence
of (v, 1, τ1, d1), (v, 2, τ2, d2) . . . , (v, n, τn, dn) where τ1 ≤
τ2 . . . ≤ τn. If the tag increments between two successive
events can always be mapped into the same increment under
morphisms ρi, then completeness of composition is ensured
by the following theorem.

Theorem 2. For behaviors σ1, σ2 accepted by M1, M2 such
that σ1 ./ρ1 ρ2 σ2 where:

i) M1 and M2 are self-synchronizing and M1 ./ M2,
ii) ∀i ∈ {1, 2},∀(v, j, τji, dji) ∈ σi :

∃δji ∈ Ti : τji = τ(j−1)i · δji where τ0i
def
= ı̂Ti ,

iii) ∀i ∈ {1, 2},∀δi ∈ Ti,∀(τ1, τ2), (τ ′1, τ
′
2) ∈ T1 ×ρ1 ρ2T2 :

τ ′i = τi·δi ⇒ ∃(δ1, δ2) ∈ T1 ×ρ1 ρ2T2 : τ ′3−i = τ3−i·δ3−i

if a behavior σ ∈ Σ(V1 ∪ V2, T1 ×ρ1 ρ2 T2) is such that
σ|V1,T1 = σ1 and σ|V2,T2 = σ2, then σ is also accepted
by M1 ‖ρ1 ρ2 M2, i.e. Σ1 ∧ρ1 ρ2 Σ2 ⊆ Σ.

Proof: Let ni be the greatest number of events of
all variables in σi, then there exists a sequence of labels
ωi = µ1iµ2i . . . µnii where the diagonal entries of µji are δji
specified in Theorem 2. ii and the entries outside the diago-
nal are all εTi . At the end, we pad ωi with max(n1, n2)−ni
stuttering labels. Since σ(ωi) = σi, self-synchronization
ensures the existence of a valid run ri in Mi over ωi. By con-
struction µj1 ./ρ1 ρ2 µj2, and this implies that there exists a
run r in M1 ‖ρ1 ρ2 M2 over the following sequence of labels
ω = (µ11 tρ1 ρ2 µ12) . . . (µmax(n1,n2)1 tρ1 ρ2 µmax(n1,n2)2)
where σ(r)|V1∩V2

= σ|V1∩V2
since σ(r)|V1,T1 = σ1 and

σ(r)|V2,T2 = σ2, σ(r)|V1\V2
= σ|V1\V2

and σ(r)|V2\V1
=

σ|V2\V1
because of condition iii, thus σ(r) = σ.

Being self-synchronizing is, however, not a trivial prop-
erty for TMs in general and efficient methods of checking
and providing this property is part of our on-going work.

(a)

(b)

Figure 6. High-level description of (a) a piston TM (b) its morphism

VI. IMPLEMENTATION AND EVALUATION

In this section, we demonstrate the application of TM
composition in dealing with the problem of heterogeneity in
a practical use case of an automotive system.

A. Tag Machine Simulator

We have implemented a prototype tool to simulate the
heterogeneous TM composition under morphisms. Our sim-
ulator, written in approximately 5000 lines of C++ code,
supports a high level script language to specify tag machines.
Each TM is described as a module consisting of a set of
constraints on the declared variables. In particular, a module
must contain declarations about the machine tag structure
(TAGSTRUCT), the state (MVAR) and label (MLABEL) vari-
able. Declarations about the machine variables (MVAR),
initial state (INIT) and transitions (EDGE) are optional.
A morphism associated with a machine can be declared
likewise. Fig. 6 shows an example of our script language.

The inputs to our simulator are pairs of TMs and mor-
phisms under which the TMs can be composed. At every
step, our simulator explores all composition possibilities and
provides the user with a set of simulation choices which can
be carried out randomly or interactively.

B. An Automotive Example

We consider a simplified version of the automotive engine
control model proposed by Balluchi et al. [10]. It consists
of a sub-model capturing the piston sequential behavior and
another capturing the power-train behavior under a cut-off
control policy. The goal of the control policy is to reduce
the unpleasant oscillations when the driver releases the gas
pedal and requests no torque to the engine. The piston model
is naturally expressed by a finite state machine while the
power-train model can be represented by a continuous time
equation. Thus, in order to understand the behavior of the
car, it is important for designers to be able to compose these
heterogeneous models.

A piston abstractly cycles through four phases: 1) the
intake (I) phase during which the piston loads the air-fuel
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Figure 7. The automotive engine control model consisting of (a) a general
view (b) pistons (c) a bang-bang controller, (d) the power-train

mix q ∈ R+; 2) the compression (C) phase in which the
loaded mix is compressed; 3) the expansion (E) phase in
which the compressed mix is combusted, producing the
spark ignition; 4) the exhaust (H) phase during which the
piston expels combustion exhaust gases. We assume the
torque evolution u(t) to be a piece-wise constant function
which is zero everywhere except in the E-phase when the
spark ignition is set, i.e., u(t) = G ∗ q and u(t) = 0
otherwise, where G is the mix-to-torque gain.

The continuous time power-train behavior is modeled by

the following linear system:
.

ζ = Apζ + bpu
.

φc = ωc

where ζ = [αe, ωc, ωp] represents the axle torsion angle, the
crankshaft revolution speed and the wheel revolution speed,
and φc represents the crankshaft angle.

In this paper we model the bang-bang control law [10]
where the fuel injection is cut when vTx ≥ 0. The reduced
state x = [x1, x2]T represents the system’s oscillation com-
ponent and is obtained by applying the state transformation
.
x(t) = Ax(t)+bu(t) where A =

[ λ −µ
µ λ

]
and λ±jµ are the

conjugate complex poles of Ap. The oscillation acceleration
can then be computed based on x as a(t) = cx(t). The
starting point of the cut-off control horizon is the time at
which all the loaded cylinders’ potential torques are at the
steady value M = G ∗ q0.

The piston model needs only information about the se-
quencing of events, while the power-train model requires the
exact timing of events. Thus we can use T1 = (N∪{ε1},+)
and T2 = (R+ ∪ {ε2},+) where ε1 = ε2 = −∞, to
model them. Fig. 7(b) shows the piston behavior where the
transitions of the automaton occur when a piston reaches
the bottom or top dead point, i.e. when the flag rot is set.
Fig. 7(c) and 7(d) describe the bang-bang control policy
and the evolution of the power-train, respectively. We have
approximated the power-train using the forward integration
Euler method with a step of δ. The state variables are fixed
as follows [10]:

Ap =

 0 1 −7.556
−448.1 −5.186 30.87
3.042 0.02773 −0.2105

 , bp =

 0
15.05

0

 ,
A =

[
−2.671 −21.54
21.54 −2.671

]
, b =

[
1.92339
−14.32309

]
, v =

[
0.01
−1

]
,

c =
[
0.0379945 −0.00257

]
,M = 12.41, δ = 0.001181.

C. Evaluation

We have described the cut-off problem using our pro-
totype TM-simulator and performed simulations of 2000
steps to evaluate the effect of the cut-off control on the
oscillation acceleration. We present here the results of two
such simulations on the above set of parameters and under
the presence of morphisms such as ρi : Ti 7→ T2 given by
ρ1(τ1) = δ ∗ τ1 and ρ2(τ2) = τ2.

Consistent with the previous result [10], Fig. 8 shows that
better acceleration peaks and driving comfort are obtained
when cut-off control is enforced. This consistent result can
assist automotive engineers and designers in estimating the
impact of the control implementation on the engine per-
formance, thereby justifying and selecting suitable system
parameter values to obtain a desirable performance.

Another important advantage offered by the heterogeneity
methodology is in terms of component modeling. While the
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Figure 8. The evolution of x(t) and a(t) without and with control

components in [10] had to be modeled in the same domain
in order to solve the cut-off control problem, they can
now be expressed in their natural domain. The component
interaction can then be precisely quantified and modeled by
means of morphisms. This advantage becomes much more
crucial when designers have to deal with large and complex
systems.

VII. CONCLUSION

We have developed an operational formalism for repre-
senting heterogeneous tag systems. To this end, we have
extended tag machines, which were introduced to repre-
sent only homogeneous tag systems, to the heterogeneous
context. Our heterogeneous TM formalism is able to opera-
tionally represent heterogeneous tag systems.

A natural concern is whether composition of TMs can
soundly and completely represent the that of tag systems.
The concern can be addressed under certain conditions such

as interoperability and self-synchronization. Checking for
self-synchronization in general, however, is a non-trivial
property for which effective checking procedures are an
important part of our future work.

Using an industrial case study and our prototype tool, we
have demonstrated that TM modeling is useful in practice.
This is especially important in systems consisting of com-
ponents with differing natural domains, as in our case study.
Contrary to previous work, our heterogeneous approach
allows components to be modeled in their natural domain.

In the future, we aim at several extensions to our simula-
tor. In particular, we plan to integrate it with a model checker
and SMT solver, in order to enable automated compositional
verification of heterogeneous systems and to support their
contract-based design. Since our simulator is based on a
formal representation, development and implementation of
formal verification techniques is a natural extension which
we will consider.
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