
Resource-Constrained Optimal Scheduling of

Synchronous Dataflow Graphs via Timed Automata

Waheed Ahmad, Robert de Groote, Philip K.F. Hölzenspies, Mariëlle Stoelinga, Jaco van de Pol

University of Twente, The Netherlands

Email: {w.ahmad, e.deGroote, p.k.f.holzenspies, m.i.a.stoelinga, j.c.vandepol}@utwente.nl

Abstract—Synchronous dataflow (SDF) graphs are a widely used
formalism for modelling, analysing and realising streaming applica-
tions, both on a single processor and in a multiprocessing context.
Efficient schedules are essential to obtain maximal throughput
under the constraint of available resources. This paper presents
an approach to schedule SDF graphs using a proven formalism
of timed automata (TA). TA maintain a good balance between
expressiveness and tractability, and are supported by powerful ver-
ification tools, e.g. UPPAAL. We describe a compositional translation
of SDF graphs to TA, and perform analysis and verification in the
UPPAAL state-of-the-art tool. This approach does not require the
(exponential) transformation of SDF graphs to homogeneous SDF
graphs and helps to find schedules with a trade-off between the
number of processors required and the throughput. It also allows
quantitative model checking and verification of (preservation of)
user-defined properties such as the absence of deadlocks, safety,
liveness and throughput analysis. This translation also forms the
basis for future work to extend this analysis of SDF graphs with
new features such as stochastics, energy consumption and costs.

I. INTRODUCTION

Modern multimedia applications, such as multi-party video
conferencing and video-in-video, impose high demands on a
system’s throughput. At the same time, resource requirements
(buffer sizes, number of processors used) should be minimised.
Therefore, smart scheduling strategies are needed.

Synchronous Dataflow (SDF) graphs are well-known com-
putational models for analysing dataflow and digital signal
processing applications and are increasingly utilised for both
modelling and analysing multimedia applications on a multi-
processor Systems-on-Chip (MPSoC) [16]. In this paper, all
software tasks of an application are modelled as SDF actors.

Currently, resource-allocation strategies and scheduling of
tasks for SDF graphs are carried out using the max-plus al-
gebraic semantics and graph analysis by transforming SDF
graphs to equivalent Homogeneous SDF graphs (HSDF) [5] [12].
This approach leads to a larger graph; in the worst case, the
derived HSDF graph can be exponentially larger than the original
SDF graph [20]. Our approach does not avoid this exponential
complexity but rather we are solving the problem with resource
constraints in the same complexity.

Another state-of-the-art method [9] calculates the throughput
of SDF graphs by exploring the state-space until a periodic phase
is found. However, in this method, each actor is executed as soon
as it is enabled and it is assumed that sufficient resources are
available to accommodate all the enabled executions simulta-
neously. On the contrary, this may not be the case in real-life
applications, where there is always a constraint on the number
of resources.

We propose an alternative, novel approach to analyse sched-
ules of SDF graphs on a limited number of processors using
Timed Automata (TA) [3]. TA are a natural choice for modelling

time-critical systems to check whether the timing constraints are
met. By definition, TA are automata in which clock variables
measure the elapse of time. Clock guards on the edges indicate
conditions under which an edge can be taken and invariants
show the conditions under which a system can stay in a certain
location. TA are extensively used in the verification and model
checking of industrial applications [17].

In particular, our main contributions are: (1) Translating
SDF graphs into timed automata in a compositional manner;
(2) Exploiting UPPAAL’s [4] capabilities to search the state-
space and derive a schedule that fits on the given number of
processors while maximising throughput; (3) Handling hetero-
geneous processor models, in which only specific processors can
run a particular task. In this way, we can efficiently determine a
trade-off between the number of processors and the throughput
for a certain application. This will hugely aid in finding efficient
schedules in terms of energy and memory consumption. We also
demonstrate that our translation preserves deadlock freedom if
the number of processors varies.

Quantitative model checking and support for evaluating user-
defined properties is lacking in the existing contemporary SDF
graph analysis tools e.g. SDF3 [22]. In this context, UPPAAL

is exploited to address this lack and to evaluate user-defined
properties which further adds to the benefits of SDF graphs.
Future research directions are to carry on from the results
achieved in this paper and explore the possibilities of extending
the analysis of SDF graphs with the new features, i.e. stochastics
and energy costs and combine with new extensions of TA like
costs and timed games.

Paper organisation. Firstly, Section II reviews related work.
Section III explains SDF graphs and Section IV discusses the
throughput analysis of SDF graphs and our method of calculating
it. Section V covers TA and UPPAAL and Section VI covers the
translation of SDF graphs to TA. The methodology of analysing
SDF graphs using UPPAAL is explained in section VII. Section
VIII experimentally validates our approach via case studies.
Finally, Section IX draws conclusions and outlines possible
future research.

II. RELATED WORK

Various dataflow models exist, such as computational graphs
[12] and SDF graphs [16]. SDF graphs are the more expressive
of the two, and can analyse applications running on multiproces-
sors, such as MPEG-4 and MP3 decoder. Minimising the buffer
requirements of SDF graphs using model checking is analysed in
depth [8], [10]. Throughput analysis of HSDF graphs is studied
extensively in [5], [12], [25], [27]. An algorithm proposed by
Karp in [12] to calculate maximum cycle ratio (MCR) is another
efficient method of calculating the throughput. All these studies

2014 14th International Conference on Application of Concurrency to System Design

1550-4808/14 $31.00 © 2014 IEEE

DOI 10.1109/ACSD.2014.13

72

require a conversion of SDF graphs into HSDF graphs [16], [27]
which can be exponentially larger than the original SDF graphs
in the worst case. On the other side, the throughput calculation
method applicable directly to SDF graphs [9] is practical only if
we have sufficient processors. However, our strategy calculates
maximal throughput on a given finite number of processors.

Another novel technique for task binding and scheduling
of SDF graphs under given throughput constraints is presented
in [20]. But this approach uses an combination of static-order
and TDMA scheduling for actors within an application, unlike
in our strategy where the actors are mapped in such a way
that maximal throughput is achieved at run-time. A model-
checking based approach to guarantee timing bounds of multiple
SDF graphs running on a shared-bus multicore architectures is
analysed in [6]. However, this analysis also requires a static-
order scheduling.

Model-checking of a recently introduced extension of SDF
graphs known as Scenario-Aware Dataflow (SADF) [23] is done
in [24] utilising the CADP tool suite [7] by the application
of Interactive Markov Chains (IMC). Nevertheless, it does not
investigate the calculation of throughput nor does it consider
multiprocessor platforms.

To the best of our knowledge, there are no papers that present
a technique of finding a maximal throughput without translating
SDF graphs to equivalent HSDF graphs on a given number of
processors, both in homogeneous and heterogeneous systems.

III. SYNCHRONOUS DATAFLOW

In this section, the formal definitions and semantics of SDF
graphs are introduced.

A. SDF Graphs

In typical streaming applications, there is a set of tasks
to be executed in a certain order. An important part of these
applications is a set of periodically executing tasks which
consume and produce fixed amounts of data. An SDF graph is
a directed, connected graph in which these tasks are represented
by actors, data communicated is represented by tokens and the
edges transport tokens between actors. Each edge is connected
to precisely one producer and precisely one consumer. The
execution of an actor is known as an (actor) firing and the
number of tokens consumed or produced onto an edge as a result
of a firing is referred to as consumption and production rates
respectively. In the origial definition [16], each actor takes unit
time to complete its firing. However, there is a natural extension
by which a certain execution time is associated with each actor
[19].

Example 1. Figure 1 shows an SDF graph with three actors u,
v, w. Arrows between the actors depict the edges which hold
tokens (dots). The execution time of the actors is represented by
a number inside the actor nodes. The numbers near the source
and destination of each edge are the rates.

An SDF graph is defined in the following.

Definition 1. An SDF Graph is a tuple G = (A,D,Tok0, τ)
where:

• A is a finite set of actors,

• D is a finite set of dependency edges D ⊆ A2 × N2,

• Tok0 : D → N denotes initial tokens in each edge and

u, 2 v, 2 w, 31 2 3 2

1

1

1

Fig. 1: SDF Graph (taken from [5])

• τ : A → N≥1 assigns an execution time to each actor.

For an SDF graph G with actors A = {a, b}, a dependency edge
d = (a, b, p, q) denotes a data dependency of actor b on actor
a. The firing of actor a results in the production of p tokens on
edge d. If the number of tokens on edge d is greater than or
equal to q, actor b can execute, and as a result, it consumes q
tokens from edge d.

Definition 2. The sets of input edges In(a) and output edges
Out(a) of an actor a ∈ A are defined as

In(a) = {(a′, a, p, q) ∈ D|a′ ∈ A ∧ p, q ∈ N}

Out(a) = {(a, b, p, q) ∈ D|b ∈ A ∧ p, q ∈ N}

Informally, for all actors a ∈ A and dependency edges d ∈
D, if the number of tokens on every input edge (a′i, a, pi, qi) ∈
In(a) is greater than or equal to qi, actor a fires and removes qi
tokens from every In(a). The firing takes place for τ(a) time
units and it ends by producing pi tokens on all (a, bi, pi, qi) ∈
Out(a). For example, actor v in Figure 1 takes in 2 tokens from
the edge u-v and 1 token from the edge v-v, fires for 2 time units
and produces 3 tokens on the edge v-w and 1 token on the edge
v-v.

Definition 3. The consumption rate CR(a, b, p, q) and produc-
tion rate PR(a, b, p, q) of an edge (a, b, p, q) ∈ D are defined
as

CR(a, b, p, q) = q

PR(a, b, p, q) = p

B. Semantics

The dynamic behaviour of an SDF graph can be best under-
stood if we define it in terms of a labelled transition system. For
this purpose, we need to define the notions of state, transition
and execution [9] [21].

Definition 4. The state of an SDF graph (A,D,Tok0, τ) is a pair
(ρ, υ). Here, ρ : D → N associates with each edge the number
of tokens it currently holds and υ : A → NN records for each
firing of actor a ∈ A that occurred in the past, the remaining
execution time. Thus, υ(a)(k) denotes the number of firings of
a ∈ A that complete in exactly k time units. The initial state
of an SDF graph is defined as (Tok0, {(a, ∅)|a ∈ A}) where ∅
denotes an empty multiset.

By introducing the concept of multiset of numbers for actors,
it is possible to have multiple simultaneous firings of same actor
also known as auto-concurrency. An edge (a, b, p, q) ∈ D in
an SDF graph is called a self -loop if a=b. Auto-concurrency of
any actor can be trivially restrained by adding self-loops with
initial tokens equal to the desired degree of auto-concurrency.
Suppose that the state vector of the SDF graph in Figure 1 is
(ρ, υ) where ρ corresponds to edges u-v, v-w, v-v respectively and

73

υ represents the multisets for actor u, v and w respectively. The
initial state of the SDF graph in Figure 1 is ((0, 0, 1), (∅, ∅, ∅)).

The transitions are of three forms i.e. the start transition rep-
resenting the start of actor firing, the end transition representing
the end of actor firing and discrete clock ticks representing the
progress of time.

Definition 5. A transition of an SDF graph (A,D,Tok0, τ) from

state (ρ1, υ1) to (ρ2, υ2) is denoted as (ρ1, υ1)
κ
−→ (ρ2, υ2) and

label κ is defined as κ ∈ (A × {start, end}) ∪ {tick} and
corresponds to the type of transition.

• Label κ = (a, start) denotes the starting of a firing by
an actor a ∈ A. For all a ∈ A and d ∈ In(a), this
transition results in,

ρ2(d) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ρ1(d)− CR(d), if ρ1(d) ≥ CR(d)

∀a ∈ A and ∀d ∈ In(a)

ρ1(d), otherwise

∀a ∈ A and ∀d ∈ In(a)
(1)

υ2(a) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

υ1(a) ⊎ τ(a), if ρ1(d) ≥ CR(d)

∀a ∈ A and ∀d ∈ In(a)

υ1(a), otherwise.

∀a ∈ A and ∀d ∈ In(a)
(2)

where ⊎ represents multiset union; that is we remove
CR(d) tokens and attach a’s execution time τ(a) to υ2
for all a ∈ A and d ∈ In(a).

• Label κ = (a, end) denotes the ending of a firing by
an actor a ∈ A. For all a ∈ A and d ∈ Out(a), this
transition results in,

ρ2(d) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ρ1(d) + PR(d), if 0 ∈ υ1(a)

∀a ∈ A and ∀d ∈ Out(a)

ρ1(d), otherwise

∀a ∈ A and ∀d ∈ Out(a)
(3)

υ2(a) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

υ1(a)\{0}, if 0 ∈ υ1(a)

∀a ∈ A and ∀d ∈ Out(a)

υ1(a), otherwise.

∀a ∈ A and ∀d ∈ Out(a)
(4)

where \ represents multiset difference. This transition
produces the specified number of tokens on the outgoing
edge of a and removes from υ1 one occurrence of a
with remaining executing time 0 for all a ∈ A and
d ∈ Out(a).

• Label κ = tick denotes a clock tick transition. For
all a ∈ A and d ∈ D, this transition is enabled
if 0 /∈ υ1(a) and results in ρ2(d) = ρ1(d) and
υ2 = {(a, υ1(a) ⊖ 1)|a ∈ A} where υ1(a) ⊖ 1 denotes
a multiset of elements of υ1(a) decreased by one. This
transition decreases by 1 the remaining execution time
for all actor occurrences.

C. Scheduling

A schedule of an SDF graph is a firing sequence of actors to
meet certain design objectives. A key aspect in SDF graphs is to

find schedules with certain optimality properties, e.g. maximal
throughput or the minimum number of processors required.

Definition 6. An execution of an SDF graph (A,D,Tok0, τ) is

defined as an infinite sequence of states and transitions s0
κ0−→

s1
κ1−→ . . . starting from initial state of SDF graph such that

∀n ≥ 0, sn
κn−−→ sn+1.

SDF graphs may end up in a deadlock or with an unbounded
accumulation of tokens in a certain edge due to inappropriate
consumption and production rates in case of non-terminating
programs.

Definition 7. An SDF graph experiences a deadlock if and only
if its execution has a state (ρ, υ) in which ∀a ∈ A and ∃d ∈
In(a) such that ρ(d) � CR(d) and υ(a) = ∅.

Note that deadlocked executions are infinite, as time can
always progress. To avoid these effects, there is a property
termed consistency which must hold [14] (although it does
not guarantee deadlock freedom [9]). Consistency is defined as
follows:

Definition 8. A repetition vector of an SDF graph
(A,D,Tok0, τ) is a function γ : A → N0 such that for
every edge (a, b, p, q) ∈ D from a ∈ A to b ∈ A, the following
equality holds.

p.γ(a) = q.γ(b)

Repetition vector γ is termed non-trivial if and only if ∀a ∈
A, γ(a) > 0. An SDF graph is consistent if it has a non-trivial
repetition vector.

A repetition vector determines how often each actor must fire
with respect to the other actors without a change in the token
distribution. If each actor of an SDF graph is invoked according
to its repetition vector in a schedule, the number of tokens on
each edge is the same after the schedule is executed as before.
Such a schedule is termed a periodic schedule. The repetition
vector can be written in the form of matrix-vector [15] as:

Γγ = 0, (5)

where Γ is termed the topology matrix of an SDF graph and
0 is a null vector. The rows and columns of Γ are indexed by
the edges and actors in an SDF graph respectively. For every
edge (a, b, p, q) ∈ D from a ∈ A to b ∈ A, the entries of the
topology matrix are defined as:

Γ ((a, b, p, q), a′) =

⎧

⎨

⎩

p, if a′ = a

−q, if a′ = b

0, otherwise.

(6)

A self-loop rules out the possibility of a repetition vector if
p
= q as it contradicts equation 6; otherwise it does not have
any effect on the existence of a repetition vector and is therefore
not added to the topology matrix.

Lemma III.1. For γ in the equation 5 to be a vector containing
only positive integers, the rank of Γ must not be full.

Proof: If the rank of Γ is full, it implies that Γ is invertible.
Then we can write the equation 5 as,

Γ−1Γγ = Γ−10

Iγ = 0

74

where I is an identity matrix. The above equation is valid only
if γ is a vector with all entries equal to 0, which clearly is a
contradiction.

The rank of γ of an SDF graph is always equal to n or n − 1
where n is the number of actors [15]. Therefore, it is necessary
for Γ to have a rank n − 1 for a repetition vector to exist [15].

Theorem III.2. An SDF graph with n actors has a periodic
schedule if and only if its topology matrix Γ has a rank n − 1 .
Furthermore, if its topology matrix has a rank n − 1 , then there
exists a unique smallest integer solution γ to the equation Γγ =
0 and all entries in the vector γ are coprime.

If Γ has a rank n − 1 , we obtain the following facts by
applying linear algebra [15]:

Fact III.3. There exists a vector γ
= 0 such that Γγ = 0.

Fact III.4. If Γγ = 0 then Γ (Kγ) = 0 for any constant K .

Fact III.5. If Γγ1 = 0 and Γγ2 = 0 then there exists a scalar
constant K such that γ1 = Kγ2.

Clearly, an SDF graph is consistent only if its topology
matrix has a rank = n − 1 where n is the number of actors.
In the remaining paper, we always assume consistency.

Definition 9. Let us assume that an SDF graph (A,D,Tok0, τ)
has a repetition vector γ. An iteration is a set of actor firings
such that for each a ∈ A, the set contains γ(a) firings of a.

For the SDF graph in Figure 1, the topology matrix is given
by:

Γ =
(

1 −2 0
0 3 −2

)

As we can see that the topology matrix Γ is equal to
two linear independent rows, the positive integer solution i.e.
repetition vector γ exists and is equal to 〈4, 2, 3〉. This shows
that the graph is consistent and graph iteration consists of 4
firings of actor u, 2 firings of actor v and 3 firings of actor w.

D. Modelling Finite Resources

An SDF graph typically only models an application. When
mapping an application onto a hardware platform, the chosen
platform imposes an extra set of constraints, which we need
to take into account. Communication between actors in an
SDF graph requires buffer storage capacity. Minimising buffer
capacity is an important factor to improve energy costs [8].
We therefore define an edge capacity function, which yields the
maximum number of tokens that can be stored on an edge. The
edge capacity function also help to make an SDF graph strongly
connected.

Definition 10. The edge capacity of an SDF graph G is a
function σ : D → N0 that assigns to each edge d ∈ D the
maximum number of tokens it can hold.

The capacity of an edge (a, b, p, q) ∈ D is modelled
in an SDF graph by adding an edge (bσ, aσ, qσ, pσ) ∈ D
with CR(a, b, p, q) = PR(bσ, aσ, qσ, pσ) and PR(a, b, p, q) =
CR(bσ, aσ, qσ, pσ) [20]. The capacity of an edge (a, b, p, q) ∈
D is denoted by the number of initial tokens on the edge
(bσ, aσ, qσ, pσ) ∈ D. The SDF graph shown in Figure 1 after
adding the edge capacities is shown in Figure 2. The edge

u, 2 v, 2 w, 3
1 2

2

2

1

3 2

2

6

3

1

1

1

Fig. 2: SDF Graph shown in Figure 1 with edge capacities

• •

Firing Starts

Claim Processor

Firing Ends

Release Processor

Execution Time

Fig. 3: Firing of an actor (taken from [26])

capacities are σ(u, v, p, q) = 2 and σ(v, w, p, q) = 6.
To avoid deadlock, an SDF graph must have a topology

matrix with a rank equal to n − 1 and enough initial tokens
to execute all the firings in the repetition vector. Finding the
smallest edge capacities for which the graph can be executed
without the risk of a deadlock using model checking is described
in [8].

Furthermore, not all actors can be mapped onto every pro-
cessor, because of memory and bandwidth limitations, analogue
versus digital processing capabilities, instruction set limitations,
etc. as reflected in a processor application as follows:

Definition 11. A processor application model is a tuple (P, ζ)
consisting of a finite set P of processors and a function ζ : P →
2A indicating which actors can be mapped to which processor.

The edge capacity function and processor application model
allow us to reason about the behaviour of an application under
a specific mapping. The processor is claimed by an actor at the
beginning of its firing and after the execution time of the actor
elapses, it finishes firing and releases the processor as shown in
Figure 3.

In real-life applications, the execution time of an actor varies
with the type of processor onto which it is mapped. Since we
associate with each actor precisely one execution time, at the
moment our model covers instances where actors are mapped
onto only one type of processor in case of a heterogeneous
platform.

Definition 12. A processor availability function δ on a set of
processors P is given by δ : P → {0, 1}.

We define claiming of a processor p ∈ P by an actor a ∈ A
at the start of its firing by Clm : A → (P → {1}). Similarly,
releasing of a processor p ∈ P by an actor a ∈ A at the end of
its firing is defined by Rel : A → (P → {0}).

Definition 13. A state of an SDF graph (A,D,Tok0, τ) mapped
on a processor application model (P, ζ) is a triple (ρ, δ, υ)
[26]. Edge quantity ρ : D → N associates with each edge the
number of tokens present in that edge and δ associates with
each processor p ∈ P if it is available or occupied. To observe
the progress of time, υ : A → NN associates a multiset of
numbers representing the remaining execution times of active
actor firings.

Definition 14. A transition of an SDF graph (A,D,Tok0, τ)

75

mapped on a processor application model (P, ζ) from state

(ρ1, δ1, υ1) to (ρ2, δ2, υ2) is denoted as (ρ1, δ1, υ1)
κ
−→

(ρ2, δ2, υ2) and label κ is defined as κ ∈ (A× {start, end}) ∪
{tick} and corresponds to the type of transition.

• Label κ = (a, start) denotes starting of a firing by an
actor a ∈ A. For all a ∈ A, d ∈ In(a) and p ∈ P ,
this transition may occur if ρ1(d) ≥ CR(d), δ1(p) = 0
and a ∈ ζ(p) and results in ρ2(d) = ρ1(d) − CR(d),
υ2(a) = υ1(a)⊎ τ(a) and δ2(p) = Clm(a)(p). Here, ⊎
represents multiset union.

• Label κ = (a, end) denotes ending of a firing by
an actor a ∈ A. For all a ∈ A, d ∈ Out(a) and
p ∈ P , this transition can occur if 0 ∈ υ1(a) and
results in ρ2(d) = ρ1(d) + PR(d), υ2(a) = υ1(a)\{0}
and δ2(p) = Rel(a)(p). Here, \ represents multiset
difference.

• Label κ = tick denotes a clock tick transition. This
transition is enabled if 0 /∈ υ1(a) for all a ∈ A.
For all a ∈ A, d ∈ D and p ∈ P , this transition
results in ρ2(d) = ρ1(d), δ1(p) = δ2(p) and υ2 =
{(a, υ1(a) ⊖ 1)|a ∈ A} where υ1(a) ⊖ 1 denotes a
multiset of elements of υ1(a) decreased by one.

IV. THROUGHPUT ANALYSIS

A. Throughput Analysis by Self-Timed Execution

The maximal throughput of an SDF graph is determined from
a specific type of execution known as a self -timed execution
[9] in which every actor fires as soon as it is enabled.

Definition 15. An execution is self-timed if and only if clock
transitions occur when no start transitions are enabled.

Due to the deterministic behaviour of an SDF graph, the
states are repeated in an execution after a certain number of
firings.

Proposition IV.1. According to [9], for every consistent and
strongly connected SDF graph, the state-space of a self-timed
execution consists of a finite sequence of states (transient phase)
followed by a periodic sequence repeated infinitely (periodic
phase).

In a self-timed execution, a certain state that was visited
before is revisited implying the fact that execution is then in the
periodic phase. The periodic phase of an SDF graph consists
of a whole number of iterations. Moreover, each actor fires
according to the repetition vector in an iteration. For each actor
a ∈ A in the SDF graph, we define its corresponding entry in
the repetition vector γ as γ(a). We also define the number of
iterations per period as m.

Definition 16. The throughput of an SDF graph with a processor
application model is the average number of graph iterations that
are executed per unit time, measured over a sufficiently long
period.

The self-timed execution of the SDF graph shown in Figure
2 is explained in Figure 4. It is worth noting that after 2
simultaneous firings of actor u on processors p0 and p1, an
iteration is completed every 9 time units and hence throughput
is 1

9 . Similarly, self-timed execution in terms of the state vector

u

u

u

u

u

u

u

u

u

u

v v v v

w w w w

w w

time
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

p3

p2

p1

p0

u

u

u

u

v v

w w

w

graph iteration

processors

Fig. 4: Self-timed execution of SDF graph shown in Figure 2

• • • • • • • • • • • •

•••••••

((0, 0, 6, 2, 1), (∅, ∅, ∅))

((0, 0, 3, 0, 0), (∅, {2}, ∅))

((2, 0, 2, 0, 1), (∅, ∅, {∅, ∅}))

((0, 1, 3, 0, 1), ({∅, ∅}, ∅, 1))

(u,start)
(u,start) tick tick

(u,end)
(u,end)
(v,start) tick tick

(v,end)
(u,start)
(u,start)
(w,start) tick tick

(u,end)
(u,end)
(v,start) tick

(w,end)

tick(v,end)
(u,start)
(u,start)
(w,start)
(w,start)

ticktick(u,end)
(u,end)

tick

(w,end)
(w,end)
(v,start)

Fig. 5: Self-timed execution of our running example

(ρ, υ) of the same SDF graph is shown in Figure 5 where the
edges u-v, v-w, w-v, v-u and v-v are represented by ρ respectively.
Similarly, υ corresponds to the multisets for actor u, v and
w respectively. We can also see that the periodic phase has a
duration of 9 time units consisting of precisely one iteration. This
method is implemented in the SDF3 to calculate the throughput
of SDF graphs.

B. Throughput Analysis by Fastest Execution

Let (ρ0, υ0) and (ρr, υr) denote the initial and recurrent
states at the completion of the periodic phase respectively in
a self-timed execution. For each actor a ∈ A, let fat

and fap

represents the number of times actor a ∈ A fires in the transient
phase and periodic phase respectively.

Lemma IV.2. If a periodic phase in a self-timed execution is
repeated for n times, then fap

is equal to nmγ(a).

Proof: The proof follows from the definition of self-timed
execution, repetition vector and iteration.

The self-timed execution takes a minimum amount of time
to revisit (ρr, υr) and provides the maximum throughput of an
SDF graph. Therefore, we can consider it as a fastest execution
to reach (ρr, υr) again.

Lemma IV.3. As a result of the fastest execution, let us say
that the SDF graph has repeated the periodic phase n times
and is in the state (ρr, υr). From here, if the SDF graph is
executed in such a way that each actor a ∈ A fires equal to
f ′
at

= kγ(a)− fat
for some constant k, the SDF graph reaches

the initial state (ρ0, υ0).

Proof: Total number of firings for each actor a ∈ A in this
case are:

= fat
+ fap

+ f ′
at

= fat
+ nmγ(a) + kγ(a)− fat

= (nm+ k)γ(a)

76

From Fact III.4, Γ (nγ) = 0 for any constant n .

A necessary condition for previous lemma to hold is f ′
at

≥ 0.
To reach (ρ0, υ0) from (ρr, υr) in the least number of firings,
f ′
at

must be minimal. Let kmin denote the smallest k such that
f ′
at

≥ 0 and f ′
at

is minimal for all actors a ∈ A.
If we assume that the part of execution from (ρr, υr) to

(ρ0, υ0) is fastest also, then we can say the following.

Lemma IV.4. The fastest execution of every consistent and
strongly connected SDF graph repeats the periodic phase n times
if each actor a ∈ A fires equal to (nm + kmin)γ(a) for some
constants n and kmin.

Proof: Trivial for non-zero transient phase following lemma
IV.2 and IV.3. If a transient phase does not exist and the SDF
graph enters the periodic phase directly, then fat

= 0. In this
case, the minimum value of k satisfying f ′

at
≥ 0 is kmin = 0.

Furthermore, the total number of firings is equal to nmγ(a) for
each a ∈ A and the periodic phase is repeated n times.

In section VII, we propose UPPAAL as a tool to compute
the repetition vector and throughput. UPPAAL can automatically
verify a number of properties, including invariant and reachabil-
ity checking. An important feature in our approach is the option
of generating a trace with the shortest possible accumulated time
delay to reach the final state i.e. (nm+kmin)γ(a) for each actor
a ∈ A from the initial state (ρ0, υ0), termed Fastest Trace .
UPPAAL explores the whole state-space and finds the fastest
execution trace containing the periodic phase repeated n times.
From the periodic phase, we determine the maximal throughput
of the SDF graph.

Self-timed execution assumes there is an unbounded number
of processors to accommodate all enabled firings of all actors at
a certain time. Let Pmin denote the finite set containing the
minimum number of processors required to allow self-timed
execution. From lemmas IV.3 and IV.4, we can generalise the
following.

Lemma IV.5. For every consistent and strongly connected SDF
graph mapped on a processor application model (P, ζ) in such
a way that

⋃

∀p∈P

ζ(p) = A and ∅ ⊂ P ⊆ Pmin, the maximal

throughput of the SDF graph is determined from the periodic
phase of the fastest execution to the ith multiple of the repetition
vector for some constant i .

Proof: In a strongly connected and consistent SDF graph,
each actor depends on the other actors in order to have a
sufficient amount of tokens on its input edges to be enabled for
firing. This implies a bound on the difference in the number of
firings of each actor with respect to the corresponding entries in
the repetition vector. The state-space of reaching the ith multiple
of the repetition vector for some constant i if ∅ ⊂ P ⊆ Pmin

could contain multiple possible executions. If we search the
whole state-space and consider only the fastest execution out
of all executions, we notice that it contains a periodic phase
implying the maximal throughput.

The reason is that in a fastest execution, if insufficient
processors are available to map all simultaneous enabled firings,
some of the firings will be delayed. Delaying a certain firing does
not change any dependency. Instead, successors firings would
also be delayed. The constraint of having to reach the final
state in the least possible time ensures that delayed firings are
mapped in such a way that they cause the least delay for their

u

u

u

u

u

u

u

u

u

u

u

u

v v v v v v

w w w w w w

w w w

time
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

p3

p2

p1

p0

u

u

u

u

v v

w w

w

u

u

u

u

v v

w w

w

graph iteration graph iteration

processors

Initial Transient Phase First Periodic Phase Second Periodic Phase Final Transient Phase

Initial Token Distribution Initial Token Distribution

Fig. 6: Schedule using four processors

u

u

u

u

u

u

u

u

u

u

u

uv v v v v v

w w w w w w w w

w

time
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

p2

p1

p0

u

u

u

uv v

w w w

u

u

u

uv v

w w w

graph iteration graph iteration

processors

Initial Transient Phase First Periodic Phase Second Periodic Phase Final Transient Phase

Initial Token Distribution Initial Token Distribution

Fig. 7: Schedule using three processors

successor firings to be enabled. As the number of simultaneous
firings of the actors and number of tokens in any edge remains
bounded, the state-space is also finite. This ensures that a certain
state (ρr, υr) will be revisited eventually during the execution
representing the periodic phase. We explore the whole state-
space with UPPAAL and find the fastest execution trace from all
possible executions.

For each SDF graph, the value of kmin varies by altering
the given number of processors and depends on how many
times each actor a ∈ A has fired during the transient phase.
Therefore, the value of nm+ kmin given to UPPAAL as a final
state must be high enough to ensure that f ′

at
is greater than 0

and the SDF graph enters the periodic phase.

Example 2. The minimum number of processors to achieve
self-timed execution for the SDF graph in Figure 2 is Pmin =
4. If we map the same SDF graph on 4 processors, then the
fastest execution to the 3rd multiple of repetition vector i.e. 3γ =
〈12, 6, 9〉 is shown in Figure 6. In this example, the values of n,
m and kmin are 2, 1 and 1 respectively. Therefore, the periodic
phase is repeated twice. We could determine the throughput from
the periodic phase which is equal to 1

9 .
In the similar fashion, if we map the same SDF graph on 3

processors, the fastest execution to the 3rd multiple of repetition
vector is shown in Figure 7. Please note that the the value of
throughput still remains 1

9 . In the rest of the paper, we do not
analyse final transient phase as it does not affect the throughput.

V. TIMED AUTOMATA

This section recalls the basic definitions of timed automata
(TA) [2], [3]. We use B(C) to denote the set of clock constraints
for a finite set of clocks C. That is, B(C) contains all of
conjunctions over simple conditions of the form x ⋊⋉ c or
x− y ⋊⋉ c, where x, y ∈ C, c ∈ N and ⋊⋉∈ {<,≤,=,≥, >}.

Definition 17. A timed automaton A is a tuple
(L,Act , C,E, Inv , l0), where L is a set of locations; Act
is a finite set of actions, co-actions and internal λ-actions; C

77

is a finite set of clocks; E ⊆ L × Act × B(C) × 2C × L is
a set of edges; Inv : L → B(C) assigns an invariant to each
location; and l0 ∈ L is the initial location.

Edges are labelled with tuples (g, α,D). Here, g is a con-
straint on the clocks of the timed automaton expressing when the
transition can be taken; α is an action used for communication
between automata; and D ⊆ C is a set of clocks to be reset
on the edge. For example, the edge from InUse_w to Idle in
Figure 8b indicates that this edge can be taken when clock
x = 3, its action label is end[i][w]!, and it resets no clocks.
Invariants indicate when actions have to be taken, i.e. a timed
automaton can only be in a location if all its invariants are true.
For instance, the timed automaton in Figure 8b can only remain
in the location InUse_w if it fulfils x ≤ 3.

Complex TA are often built by putting together smaller
component TA, using the parallel composition operator ||. Two
components in a composition synchronise on joint actions, while
evolving independently on non-joint actions.

Definition 18. Let Ai = (Li,Act i, Ci, Ei, Inv i, l
0
i), i = 1, 2

with H ⊆ Act1 ∩Act2 and C1 ∩ C2 = ∅. The timed automata
A1||A2 is defined as,

(L1 × L2,Act1 ∪ Act2, C1 ∪ C2, E, Inv1 ∧ Inv2, l
0
1 × l02)

The edge set E is the smallest set that contains the following
transitions

• if α ∈ H , l1
g1:α,D1

−−−−−→1 l′1, l2
g2:α,D2

−−−−−→2 l′2, then

〈l1, l2〉
g1∧g2:α,D1∪D2

−−−−−−−−−−→ 〈l′1, l
′
2〉 ∈ E.

• If α /∈ H , l1
g:α,D
−−−−→1 l′1, 〈l1, l2〉

g:α,D
−−−−→ 〈l′1, l2〉 then

l2
g:α,D
−−−−→2 l′2, 〈l1, l2〉

g:α,D
−−−−→ 〈l1, l

′
2〉.

VI. TRANSLATION OF SDF GRAPHS TO TIMED AUTOMATA

Our framework of scheduling SDF graphs consists of sepa-
rate models of an SDF graph and the processors. This method
splits the scheduling problem of the SDF graphs in terms of the
tasks and resources. In this section, we explain the translation
of an SDF graph along with a processor application model to
timed-automata with the help of UPPAAL.

Given an SDF graph G = (A,D,Tok0, τ) together with
a processor application model (P, ζ), we generate a parallel
composition of TA:

AG‖Processor1‖ . . . ‖Processorn,

as shown in Figure 8. Here, the timed automaton AG

models the SDF graph as shown in Figure 8a. The TA
Processor1, . . . ,Processorn model the processors P =
{p1, . . . , pn}, as shown in Figure 8b. Note that the resulting
timed automaton is trivially extensible in the number of proces-
sors. Thus, the translation is, at least, composable with regards
to the processor application model.The underlying LTS of G is
given by (S,Lab,→G) where S = (ρ, η) denotes the states,
Lab = κ denotes the labels and →G⊆ S×Lab×S denotes the
edges. AG is defined as,

AG = (L,Act , C,E, Inv , Initial)

where L = l0 = {Initial} is the only location in our SDF graph
model. The action set Act = {fire!, end?} contains two param-
eterised actions i.e. fire! (exclamation mark signifies a sending

operation) and end? (question mark signifies a receiving oper-
ation) to synchronise with the TA Processor1, . . . ,Processorn.

For each processor pi ∈ P and actor a ∈ A, fire[i][a]
represents the start of the execution of actor a on a processor
pi, and end[i][a] represents its ending. The action fire[i][a] is
enabled if the incoming buffers of actor a have sufficient tokens.

We do not have any clocks and invariants in AG. Therefore,
Inv: L → B(C) and Inv(l0) = true . For each a ∈ A and all
d ∈ In(a), E contains two edges such that:

• Initial
ρ(d)≥CR(d):fire[i][a]!,∅
−−−−−−−−−−−−−−→ Initial and

• Initial
true:end[i][a]?,∅
−−−−−−−−−−→ Initial.

Here, ρ(d) ≥ CR(d) refers to a guard and it signifies that tokens
on all input edges d ∈ In(a) of an actor a ∈ A must be greater
than or equal to their consumption rate in order to take the
action fire!. As a result of taking the action fire!, tokens on all
input edges d ∈ In(a) of an actor a ∈ A are subtracted i.e.
ρ(d) = ρ(d) − CR(d). Similarly, by taking the action end?,
actor firing is completed and tokens are produced on all output
edges d ∈ Out(a) of an actor a ∈ A i.e. ρ(d) = ρ(d) +PR(d).

AG contains a number of variables: for each edge from actors
a ∈ A to b ∈ B, an integer variable buff_a2b containing the
number of tokens in the buffer from a ∈ A to b ∈ B; counter_a,
which counts how many times actor a ∈ A has fired; and a
boolean flag_act, which is initially 1, and set to 0 as soon as
any actor fires. Initially, counter_a = 0 and buff_a2b contains
the number of tokens in the initial distribution of G.

Taking the action fire[i][a] consumes, for each actor a ∈
A and input edge (b, a, p, q) ∈ In(a) in G, the q tokens
from the buffer buff_b2a, and is carried out by the function
consume(buff_b2a, q). The action end[i][a] adds, for each actor
a ∈ A and output edge (a, b, p, q) ∈ Out(a) in G, the p
tokens on the buffer buff_a2b by carrying out the function
produce(buff_a2b, p). Finally, we note that the edges are pa-
rameterised in processor id’s but not in actors. This is because
each edge can contain only one parameter. Since the translation
is defined by induction on the structure of SDF graphs, it is also
composable in the (software) application.

Likewise, processor TA Processor1, . . . , P rocessorn are
defined as for all 1 ≥ i ≥ n:

Processori = (Li,Act i, Ci, Ei, Inv i, l
0
i)

where l0i = Idle is an initial location and Ci = {xi} is
a set of clocks. We do not have any invariant associated to
the initial location and therefore, Inv i(l

0
i) = true . For each

a ∈ ζ(pi), there is a set of locations L = {InUse_a} indicating
that processor pi ∈ P is currently used by actor a ∈ A.
Furthermore, each location InUse_a is equipped with an invariant
Inv i(InUse_a) ≤ τ(a) enforcing the system to stay in InUse_a
for exactly the execution time τ(a). The action set Act i =
{fire?, end!} contains for each a ∈ ζ(pi), two parameterised
actions fire? and end!. All actions in Act i synchronise with
AG. For each pi ∈ P and a ∈ ζ(pi), there are two edges,

• Idle
true:fire[i][a]?,{xi}
−−−−−−−−−−−→ InUse_a where {xi} means

clock xi is set to zero and

• InUse_a
xi=τ(a):end[i][a]!,∅
−−−−−−−−−−−−→ Initial where xi = τ(a) is

a guard.

The action fire[i][a] is enabled in the initial state and leads to
the location InUse_a. Thus, fire[i][a] “claims” the processor pi ∈

78

(a) UPPAAL model AG for actors u, v, w

(b) UPPAAL model Processor i for actors u, v, w

Fig. 8: UPPAAL editor showing SDF graph and Processor

P , so that any other firing cannot run on pi ∈ P before the
current firing of a ∈ A is finished. As each location InUse_a
has an invariant Inv i(InUse_a) ≤ τ(a), the automaton can stay
in InUse_a for exactly the execution time τ(a). If x = τ(a),
the system has to leave InUse_a by taking the end[i][a] action.
In this way, AG is notified that the execution of a ∈ A has
ended, so that AG updates the buffers and other variables. Note
that Processor i contains exactly one clock xi; since clocks in
UPPAAL are local we can abbreviate xi by x. A separate clock
variable records the overall time progress. For more details on
translation from SDF graphs to TA and analysis in UPPAAL, we
refer to [1].

VII. ANALYSIS OF SDF GRAPHS WITH UPPAAL

Following Theorem III.2, starting from the initial token
distribution of an SDF graph, we ask UPPAAL to find a trace
which leads us to the initial token distribution again in the
least possible time. We have a boolean variable flag_act

with an initial value true in our UPPAAL model. As soon as
the UPPAAL model starts executing, the value of flag_act
changes to false. In a nutshell, the purpose of flag_act is
not to give the initial state as a result and to force the model
to start executing. We also associate a counter with each actor.
By checking the values of counters after the query gives us a
trace, we determine how many times each actor has fired to
reach the target state (initial token distribution) which gives us
the repetition vector .

As we know the initial token distribution of the SDF graph in
Figure 2, selecting Fastest trace and verifying the following
query in UPPAAL generates a trace by which we determine the
repetition vector i.e. 〈4, 2, 3〉.

E<>(buff_u2v==0&buff_v2w==0&buff_v2u==2&buff_-
w2v==6&buff_v2v==1&flag_act==false)

The repetition vector γ found in the previous step is an input
to find maximal throughput . Following lemma IV.5, we find the
fastest trace to nm + kmin -multiple of the repetition vector.

We find out the throughput of SDF graph shown in Figure
2 using nm + kmin = 3rd multiple of the repetition vector i.e.
〈12, 6, 9〉 by verifying the following query.

E<>(counter_u==12&counter_v==6&counter_w==9)

Figure 6 shows the schedule build from the generated trace
when the SDF graph in Figure 2 is mapped on 4 processors.

Similarly, we can detect the presence or absence of
deadlocks in an SDF graph by checking “A[] not deadlock”.
Please note that all counters must be removed to verify the
absence of deadlocks.

VIII. CASE STUDIES

This section presents the results of the experiments in var-
ious case studies. We have used a bipartite graph with buffer
capacities [8] in Figure 9, a MPEG-4 decoder [24] capable
of processing 5 macro blocks in Figure 10, a MP3 playback
application [25] in Figure 11, an example of SDF graphs shown
in Figure 12, a MP3 decoder [20] in Figure 13 and an audio
echo canceller [11] in Figure 14. Table I shows repetition
vector of each SDF graph and Table II shows the results of
the experiments to find out the repetition vector, throughput and
deadlock freedom and comparison with SDF3. These figures are
determined using an utility called memtime. The experiments
were run on a dual-core 2.8 GHz machine with 4GB RAM.
The first column displays the number of processors, and the
second column represents the value of maximal throughput
with respect to various numbers of processors. Columns 3-6
depict memory consumption (KB) and computation time (s)
required by UPPAAL in generating the trace of second multiple
of the repetition vector to determine throughput, and to verify
deadlock freedom. The final column represents time (s) taken
by SDF3 for calculating throughput for self-timed execution. It
also explains that SDF3 only calculates the throughput of an
SDF graph assuming that a sufficient number of processors to
realise self-timed execution are available.

We could determine the exact number of processors required
for a self-timed execution, which is 4 for the example SDF graph
in Figure 1 using SDF3. Then, we apply our approach to derive
an optimal schedule on a smaller number of processors. As we
can observe from Table II, even after reducing the number of
processors to 3, the throughput is the same, i.e. 1

9 , which clearly
shows that we do not always need a self-timed execution to
realise maximum throughput. If we further reduce the number
of processors to 2, throughput does not deteriorate significantly
and decreases slightly to 1

11 . Thus, using model-checking, we
could generate an optimal schedule in a simple manner on a
given number of processors automatically, once the target state
is specified in a query. We could also check deadlock freedom
efficiently if a certain SDF graph is mapped on a reduced number
of processors than required for a self-timed execution.

So far, we have assumed a homogeneous system in which
an actor can be mapped on any processor as all processors are
identical. A homogeneous system gives more freedom to decide
which actor to assign to a particular processor. However, this
freedom is constrained in a heterogeneous system by which

79

b, 1

a, 1

d, 1

c, 13 4

463

1

4

4

4

1

4

3

3

6

4

4 9
9

124

Fig. 9: Bipartite Graph [8]

FD,1 MC,1

RC,1

VLD,1 IDCT,1

1

3

1

1

1

1 1

5

1

1 1

1

5
1

1

1

1
1

1

1

5

1

Fig. 10: MPEG-4 Decoder [24]

MP3,1 SRC,1 DAC,1470 6

6
520

470

8 1

1
190

8

1
1

1 1
1

1 1
1

1

Fig. 11: MP3 Playback Application [25]

f, 2 a, 2 b, 2

e, 2

c, 2

d, 2

1
4

2

21

3 5

5
9

3

4

11

8

4

2 3

3
6

2

1 2

2
4

1

3

11

5

3

5

16

12 12

35

5

1

1

1 1

1

1

1
1

1

Fig. 12: Example SDF Graph

TABLE I: Repetition Vectors

Case Studies Repetition Vector

Bipartite graph in Figure 9 [a b c d] = [12 36 9 16]

MPEG-4 Decoder in Figure 10 [FD VLD IDCT RC MC] = [1 5 5 1 1]

MP3 Playback Application in Figure 11 [MP3 SRC DAC] = [3 235 1880]

Example SDF graph in Figure 12 [a b c d e f] = [5 3 2 6 12 10]

MP3 Decoder in Figure 13 [Huffman,Req0,Req1,Redorder0,Reorder1,Stereo,

Antialias0,Antialias1,Hyb Syn.0,Hyb Syn.1,Freq.Inv0,

Freq.Inv1,Subb.Inv0,Subb.Inv1] = [2 1 1 1 1 1 1 1 1 1

1 1 1 1]

Audio Echo Canceller in Figure 14 [OUT SRC AEC ADC] = [23 23 1 23]

processors could be utilised to execute a particular actor.
In UPPAAL, we can utilise the same models described earlier

in a heterogeneous system following lemma IV.5. Let us consider
an SDF graph shown in Figure 1 mapped on a heterogeneous
system in such a way that actor u can be mapped only on
the processors p0 and p1, actor v can be executed only on the
processor p2, and the processor p3 is assigned to execute actor
c only. The schedule of this system is displayed in Figure 15
and the maximal throughput is 1

9 .

Huffman,1

Req0,1

Req0,1

Reorder0,1

Reorder1,1

Stereo,1

Antialias0,1

Antialias1,1

Hyb. Syn0,1

Hyb. Syn1,1

Freq. Inv0,1

Freq. Inv1,1

Subb. Inv0,1

Subb. Inv1,1

2
1

2

1

1 1

1 1

1
1

1

1 1

1

1

1

11

11

11

11

11

11

1

2

2

1

2

2

1

1

1

1

1

1

1

1

1

Fig. 13: MP3 Decoder [20]

OUT,1 AEC,1 ADC,1

SRC,1

1
44

23

231

23
44

1

123

23

44

1 1

23

1

1

1 1

1

1 1

1

1

1

1

1

Fig. 14: Audio Echo Canceller [11]

TABLE II: Experimental Results

Proc. Thr Throughput Deadlock SDF3
Memory Time Memory Time Time

Example SDF graph in Figure 1
4 1/9 38144 0.3 37880 0.21 0
3 1/9 2008 0.1 2008 0.1 -
2 1/11 2008 0.1 2008 0.1 -
1 1/21 2008 0.1 2008 0.1 -

Bipartite graph in Figure 9
4 1/42 38036 0.41 38024 0.21 0
3 1/44 37880 0.31 38008 0.2 -
2 1/51 37884 0.21 2008 0.1 -
1 1/73 2008 0.21 2008 0.1 -

MPEG-4 Decoder in Figure 10
6 1/4 99460 259.18 41576 3.5 0
5 1/5 48960 12.04 39320 1.11 -
4 1/5 39628 0.71 38268 0.41 -
3 1/6 2008 0.1 38008 0.2 -
2 1/8 2008 0.1 2008 0.11 -
1 1/13 2008 0.1 2008 0.1 -

MP3 Playback Application in Figure 11
2 1/1880 99176 7.25 67056 8.93 0.036002
1 1/2118 59472 1.41 47248 2.1 -

Example SDF graph in Figure 12
5 1/24 153048 108.48 71932 36.2 0
4 1/24 63924 10.28 48600 9.66 -
3 1/28 2008 0.1 40500 1.92 -
2 1/38 2008 0.1 38284 0.3 -
1 1/76 2008 0.1 2008 0.1 -

MP3 Decoder in Figure 13
2 1/9 38172 0.22 2008 0.1 0
1 1/15 2088 0.1 2008 0.1 -

Audio Echo Canceller in Figure 14
4 1/23 2874728 302.97 1820852 856.36 0.004
3 1/24 484736 133.65 578080 181.36 -
2 1/25 149264 18.29 150088 26.46 -
1 1/70 55572 1.41 60856 2.82 -

IX. CONCLUSIONS AND FUTURE WORK

Despite the remarkable progress in analysis of SDF graphs,
compact methods for the efficient scheduling of SDF graphs are
still needed with an optimum trade-off between the maximum

80

u

u

u

u

u

u

u

u

u

u

v v v v

w w w w w

time
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

p3

p2

p1

p0

u

u

u

u

v v

w w w

graph iteration

processors

Fig. 15: Schedule in a heterogeneous system

throughput and the number of processors. By translating SDF
graphs to TA, we have combined the flexibility of automata with
the efficiency of SDF graphs to derive optimum schedules.

Moreover, with the help of contemporary model checkers
such as UPPAAL, benefits over the range of analysable properties
such as the absence of deadlocks and unboundedness, safety,
liveness and reachability can also be achieved. We encountered
some limitations while using UPPAAL in this context such as
the state-space explosion problem for the bigger models and the
inability to express complex statements such as nesting of path
quantifiers.

To tackle these problems, we plan to apply multi-core LTL
model checking using opaal+LTSMIN [13]. Future work also
includes energy optimal reachability analysis with the help of
UPPAAL CORA [18] and possibly extending the processor ap-
plication model with the features such as stochastics and energy
costs. Similarly, we also plan to translate a recent extension of
SDF, i.e. Scenario Aware Dataflow to TA, enrich it with energy
optimal reachability and mappings to Markov automata. This
will allow us to achieve self energy-supporting computation in
the target systems where energy generation, energy storage, and
energy consumption are kept in balance over the lifetime of a
system.

ACKNOWLEDGEMENT

This research is supported by the EU FP7 projects SENSA-
TION (318490) and POLCA (610686). The authors would like
to thank Bart Theelen and reviewers for their valuable comments
and knowledge sharing.

REFERENCES

[1] W. Ahmad, R. de Groote, P. K. Hölzenspies, M. Stoelinga, and J. van de
Pol. Resource-constrained optimal scheduling of synchronous dataflow
graphs via timed automata (extended version). Technical Report TR-
CTIT-13-17, University of Twente, 2014.

[2] R. Alur and D. L. Dill. Automata for modeling real-time systems. In
Seventeenth ICALP ’90, pages 322–335. Springer, 1990.

[3] R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer

Science, 126:183–235, 1994.

[4] G. Behrmann, A. David, and K. G. Larsen. A tutorial on UPPAAL. In
Formal Methods for the Design of Real-Time Systems: 4th International

School on SFM-RT ’04, LNCS, pages 200–236. Springer, 2004.

[5] E. de Groote, J. Kuper, H. J. Broersma, and G. J. M. Smit. Max-plus
algebraic throughput analysis of synchronous dataflow graphs. In 38th

EUROMICRO Conference on SEAA ’12, pages 29–38, 2012.

[6] M. Fakih, K. Grüttner, M. Fränzle, and A. Rettberg. Towards performance
analysis of SDFGs mapped to shared-bus architectures using model-
checking. In DATE ’13, pages 1167–1172, 2013.

[7] H. Garavel, F. Lang, R. Mateescu, and W. Serwe. CADP 2010: A toolbox
for the construction and analysis of distributed processes. In TACAS

’11, Lecture Notes in Computer Science, pages 372–387. Springer Berlin
Heidelberg, 2011.

[8] M. Geilen, T. Basten, and E. Stuijk. Minimising buffer requirements of
synchronous dataflow graphs with model checking. In DAC ’05, pages
819–824. ACM, 2005.

[9] A. H. Ghamarian, M. C. W. Geilen, S. Stuijk, T. Basten, A. J. M. Moonen,
M. J. G. Bekooij, B. D. Theelen, and M. R. Mousavi. Throughput analysis
of synchronous data flow graphs. In ACSD ’06, pages 25–34. IEEE, 2006.

[10] P. H. Hartel, T. C. Ruys, and M. C. W. Geilen. Scheduling optimisations
for SPIN to minimise buffer requirements in synchronous data flow. In
FMCAD ’08, pages 21:1–21:10. IEEE Press, 2008.

[11] J. P. Hausmans, S. J. Geuns, M. H. Wiggers, and M. J. Bekooij.
Compositional temporal analysis model for incremental hard real-time
system design. In EMSOFT ’12, pages 185–194. ACM, 2012.

[12] R. Karp. A characterization of the minimum cycle mean in a digraph.
Discrete Mathematics, 23(3):309–311, 1978.

[13] A. W. Laarman, M. C. Olesen, A. E. Dalsgaard, K. G. Larsen, and J. C.
van de Pol. Multi-core emptiness checking of timed büchi automata using
inclusion abstraction. In CAV ’13, LNCS. Springer, July 2013.

[14] E. Lee. Consistency in dataflow graphs. IEEE Transactions on Parallel

and Distributed Systems, 2(2):223–235, 1991.

[15] E. A. Lee and D. G. Messerschmitt. Static scheduling of synchronous
data flow programs for digital signal processing. IEEE Trans. Comput.,
36(1):24–35, Jan. 1987.

[16] E. A. Lee and D. G. Messerschmitt. Synchronous data flow: Describing
signal processing algorithm for parallel computation. In COMPCON ’87,
pages 310–315, 1987.

[17] N. Navet and S. Merz. Modeling and Verification of Real-time Systems.
Wiley, 2010.

[18] J. Rasmussen, K. Larsen, and K. Subramani. Resource-optimal scheduling
using priced timed automata. In TACAS ’04, LNCS, pages 220–235, 2004.

[19] S. Sriram and S. S. Bhattacharyya. Embedded Multiprocessors: Schedul-

ing and Synchronization. Marcel Dekker, Inc., 1st edition, 2000.

[20] S. Stuijk. Predictable Mapping of Streaming Applications on Multipro-

cessors. PhD thesis, 2007.

[21] S. Stuijk, T. Basten, M. C. W. Geilen, and H. Corporaal. Multiproces-
sor resource allocation for throughput-constrained synchronous dataflow
graphs. In DAC ’07, pages 777–782, New York, NY, USA, 2007. ACM.

[22] S. Stuijk, M. Geilen, and T. Basten. SDF3: SDF For Free. In ACSD ’06,
pages 276–278. IEEE Computer Society Press, June 2006.

[23] B. Theelen, M. C. W. Geilen, T. Basten, J. P. M. Voeten, S. V. Gheorghita,
and S. Stuijk. A scenario-aware data flow model for combined long-run
average and worst-case performance analysis. In MEMOCODE ’06, pages
185–194, 2006.

[24] B. D. Theelen, J.-P. Katoen, and H. Wu. Model checking of scenario-
aware dataflow with CADP. In DATE ’12, pages 653–658, 2012.

[25] M. H. Wiggers. Aperiodic multiprocessor scheduling for real-time stream

processing applications. PhD thesis, Enschede, June 2009.

[26] Y. Yang, M. Geilen, T. Basten, S. Stuijk, and H. Corporaal. Ex-
ploring trade-offs between performance and resource requirements for
synchronous dataflow graphs. In ESTIMedia ’09, pages 96–105, 2009.

[27] N. E. Young, R. E. Tarjan, and J. B. Orlin. Faster parametric shortest
path and minimum-balance algorithms. Networks, 21(2):205–221, 1991.

81

