

COMPUTING
SCIENCE

Studying the Interplay of Concurrency, Performance, Energy and
Reliability with ArchOn – an Architecture-open Resource-driven
Cross-layer Modelling Framework

Ashur Rafiev, Alexei Iliasov, Alexander Romanovsky,
Andrey Mokhov, Fei Xia and Alex Yakovlev

TECHNICAL REPORT SERIES

No. CS-TR-1408 January 2014

TECHNICAL REPORT SERIES

No. CS-TR-1408 January, 2014

Studying the Interplay of Concurrency, Performance,
Energy and Reliability with ArchOn – an Architecture-open
Resource-driven Cross-layer Modelling Framework

A. Rafiev, A. Iliasov, A. Romanovsky, A. Mokhov, F. Xia and A. Yakovlev

Abstract

The interplay between pairs of critical factors such as performance, energy and
reliability within modern computing systems has always been an interesting topic of
study. However, studying the interplay of all three factors together in a many-core,
multi-layer design setting has been a relatively recent undertaking. This work
explores the practical problems encountered in such studies and introduces the
modelling framework ArchOn, which is based on a novel resource-driven graph
representation. ArchOn facilitates the analysis and potentially design and synthesis of
systems whose design domains are more conveniently organized into multiple layers
or levels (e.g. application, OS, hardware, etc.) and potentially large scale and diverse
types of concurrency. The layer-agnostic formalism helps designers reason about
cross-layer issues and the resource-driven approach is advantageous for reasoning
about such issues as energy and time. Example single- and multi-core case studies
help explain and illustrate the method.

© 2014 Newcastle University.
Printed and published by Newcastle University,
Computing Science, Claremont Tower, Claremont Road,
Newcastle upon Tyne, NE1 7RU, England.

Bibliographical details

RAFIEV, A., ILIASOV, A., ROMANOVSKY, A., MOKHOV, A., XIA, F., YAKOVLEV, A.

Studying the Interplay of Concurrency, Performance, Energy and Reliability with ArchOn – an Architecture-open
Resource-driven Cross-layer Modelling Framework
[By] A. Rafiev, A. Iliasov, A. Romanovsky, A. Mokhov, F. Xia and A. Yakovlev

Newcastle upon Tyne: Newcastle University: Computing Science, 2014.

(Newcastle University, Computing Science, Technical Report Series, No. CS-TR-1408)

Added entries

NEWCASTLE UNIVERSITY
Computing Science. Technical Report Series. CS-TR-1408

Abstract

The interplay between pairs of critical factors such as performance, energy and reliability within modern
computing systems has always been an interesting topic of study. However, studying the interplay of all three
factors together in a many-core, multi-layer design setting has been a relatively recent undertaking. This work
explores the practical problems encountered in such studies and introduces the modelling framework ArchOn,
which is based on a novel resource-driven graph representation. ArchOn facilitates the analysis and potentially
design and synthesis of systems whose design domains are more conveniently organized into multiple layers or
levels (e.g. application, OS, hardware, etc.) and potentially large scale and diverse types of concurrency. The
layer-agnostic formalism helps designers reason about cross-layer issues and the resource-driven approach is
advantageous for reasoning about such issues as energy and time. Example single- and multi-core case studies
help explain and illustrate the method.

About the authors

Ashur Rafiev is an RA on the EPSRC PRiME Program Grant. In this project he leads the development of the
ArchOn modelling environment.

Alexei Iliasov is a Researcher Associate at the School of Computing Science of Newcastle University, Newcastle-
upon-Tyne,UK. He got his PhD in Computer Science in 2008 in the area of modelling artefacts reuse in formal
developments. His research interests include agent systems, formal methods for software engineering and tools
and environments supporting modelling and proof .

Alexander (Sascha) Romanovsky is a Professor in the Centre for Software and Reliability, Newcastle University.
His main research interests are system dependability, fault tolerance, software architectures, exception handling,
error recovery, system structuring and verification of fault tolerance. He received a PhD degree in Computer
Science from St. Petersburg State Technical University and has worked as a visiting researcher at ABB Ltd
Computer Architecture Lab Research Center, Switzerland and at Istituto di Elaborazione della Informazione,
CNR, Pisa, Italy. In 1993 he became a postdoctoral fellow in Newcastle University, and worked on the ESPRIT
projects on Predictable Dependable Computing Systems (PDCS), Design for Validation (DeVa) and on UK-
funded projects on the Diversity, both in Safety Critical Software using Off-the-Shelf components. He was a
member of the executive board of EU Dependable Systems of Systems (DSoS) Project, and between 2004 and
2012 headed projects on the development of a Rigorous Open Development Environment for Complex Systems
(RODIN), and latterly was coordinator of the major FP7 Integrated Project on Industrial Deployment of System
Engineering Methods Providing High Dependability and Productivity (DEPLOY). He now leads work on fault
tolerance in Systems of Systems within the COMPASS project and is Principal Investigator of Newcastle’s
Platform Grant on Trustworthy Ambient Systems.

Andrey Mokhov studied computing science at Kyrgyz-Russian Slavic University from 2000 to 2005. After
graduation with honours he joined the Asynchronous Research Group at Newcastle University as a PhD student
and in 2009 he successfully defended his PhD dissertation. Currently he is a research associate in the School of
Computing Science, Newcastle University. His research interests include different levels of electronic design
automation: from formal models for system specification and verification to logic synthesis and application-
specific optimisation.

Fei Xia is a Senior RA on the EPSRC PRiME Program Grant. Fei is with the EE School. His research interests
include Asynchronous Data Communication. Asynchrnous System Design. Systems and Networks on Chip.
Energy and Power in Computing.

Alex Yakovlev received D.Sc. from Newcastle University in 2006, and M.Sc. and Ph.D. from St. Petersburg
Electrical Engineering Institute in 1979 and 1982. Since 1991 he has been at the Newcastle University, where he
worked as a lecturer, reader and professor at the Computing Science department until 2002, and is now heading
the Microelectronic Systems Design research group (http://async.org.uk) at the School of Electrical, Electronic
and Computer Engineering. His current interests and publications are in the field of modeling and design of
asynchronous, concurrent, real-time and dependable systems on a chip. He has published four monographs and
more than 200 papers in academic journals and conferences, has managed over 25 research contracts.

Suggested keywords

MANY CORE SYSTEMS
MODELLING
DEPENDABILITY

https://legacy.ncl.ac.uk/owa/redir.aspx?C=afb239e7bc33498999b206cff128fd70&URL=http%3a%2f%2fasync.org.uk%2f

1

Studying the Interplay of Concurrency,
Performance, Energy and Reliability with ArchOn –

an Architecture-open Resource-driven Cross-layer
Modelling Framework

A. Rafiev, A. Iliasov, A. Romanovsky, A. Mokhov, F. Xia, A. Yakovlev
Newcastle University, UK

{ashur.rafiev, alexei.iliasov, alexander.romanovsky, andrey.mokhov, fei.xia, alex.yakovlev}@ncl.ac.uk

Abstract—The interplay between pairs of critical factors such
as performance, energy and reliability within modern computing
systems has always been an interesting topic of study. However,
studying the interplay of all three factors together in a many-core,
multi-layer design setting has been a relatively recent undertak-
ing. This work explores the practical problems encountered in
such studies and introduces the modelling framework ArchOn,
which is based on a novel resource-driven graph representation.
ArchOn facilitates the analysis and potentially design and syn-
thesis of systems whose design domains are more conveniently
organized into multiple layers or levels (e.g. application, OS,
hardware, etc.) and potentially large scale and diverse types
of concurrency. The layer-agnostic formalism helps designers
reason about cross-layer issues and the resource-driven approach
is advantageous for reasoning about such issues as energy and
time. Example single- and multi-core case studies help explain
and illustrate the method.

I. INTRODUCTION

Translating integration scaling to performance growth is
challenged by such factors as the utilization wall [16]. Pro-
cessor clock frequencies have not increased since 2005 despite
increasing transistor speed [15]. Using multi-core to main-
tain the predictions of Moore’s Law [14] will only delay
the inevitable [12], as the near-threshold computing (NTC)
advantages are limited by such factors as variability and
reliability concerns when voltage is radically scaled down.
When other issues, such as reliability, are considered in ad-
dition to performance in the context of increasing parallelism
(e.g. increasing the number of cores), there is little concrete
research result to be found in the literature and the picture is
even more uncertain.

Modern computing systems, especially mobile and/or em-
bedded systems, must deal with a high degree of uncertainty
from within the systems themselves and without in the envir-
onment. Examples include the not-always predictable inherent
physical parameters such as temperature, voltage, energy avail-
ability, external noise, variability etc. and from unpredictable
user demands. In the communication-heavy devices the en-
vironment a device is communicating to can also be highly
unpredictable, a natural consequence of networks based more
on the concept of best effort and probabilistic behaviours than
guaranteed service and deterministic behaviours.

Managing and adapting to on-chip conditions such as power,
thermal dissipation, and computation flow, therefore, are vi-
tal for pushing computing forward. Powering off inactive
cores [7], dynamically changing clock frequencies [19] and
other power saving and performance boosting measures [18]
already exist, but runtime monitoring, feedback, management
and control are needed for systems to operate close to their
power and thermal budgets under process and environment
variation, and workload conditions difficult to predict at design
time.

On-chip parametric sensing has been an important field
of advancement, providing diverse and concrete support for
feeding back the physical parameters needed by any runtime
management scheme. In addition to detecting threshold cross-
ing using voltage and thermal sensors to trigger simple actions
such as throttling [26], it’s also possible to sense a wider
range of parameters including current/power [17], process
variations [20], supply noise [4], voltage drop [23], transistor
ageing [30] and electromagnetic induction [10]. More recently,
reference-free sensing techniques have also been developed
which would support better sensing under uncertain operating
conditions, especially when no high-quality references can be
had in terms of voltage, current or frequency [25].

How to make the best use of this information available
at runtime, and conduct a coherent runtime management of
multi-core systems where factors such as reliability, power,
throughput and ageing need to be balanced with the demand
from system operational requirements remains very much an
open question, in spite of a substantial body of research
tackling sub-problems [7], [12], [14], [25].

The main goal of the PRiME project [3] (of which this
work is an integral part) is to develop a comprehensive
runtime management system that takes into account all of
the natural layers of computation, from application to core
software (including OS) to hardware, is able to receive and
process information from all layers and maintains cross-layer
communications and interactions. For this to be meaningful,
a solid theoretical foundation based on concrete mathematical
models at all levels of detail is necessary. Layer-crossing has
been a design concern for a long time and most methods
concentrate on building interfaces between layers, a pragmatic
approach which allows experts of different disciplines to both

2

work together and remain in their respective comfort zones.
However, a unified mathematical foundation should not be
ignored as it ultimately enables the different and diverse layers
to be reasoned together.

This paper describes an initial investigation of the inter-
play of the essential parameters of multi-core computation,
including performance (P), energy (E) and reliability (R) as
well as how they relate to the scale of parallelism, i.e. the
number of cores being used. This investigation leads to a set
of techniques where data collected from hardware in the design
process could be used to build design-time models of reliable
operating regions for systems (PER models) which can be
used to fully annotate the eventual system model used by the
runtime management system.

An architecture-open, layer-agnostic modelling and design
framework called ArchOn is then presented. ArchOn targets
the reasoning, analysis, and design of systems with diverse
and potentially large concurrency whilst especially taking into
account the interplay between such salient metrics as PER
and the related parameters power, voltage, delay, etc. Studies
using ArchOn demonstrate its relevance especially with regard
to different types and degrees of concurrency.

The paper is organized as follows: Section II discusses
the interplay between PER parameters within a context of
concurrency scaling; Sections III and IV introduce the ArchOn
framework formally; Section V discusses PER with regard to
concurrency between multiple but different components within
a single computation core, and uses ArchOn to solve such an
example problem; Section VI exemplifies ArchOn’s usability
in the context of larger scale concurrency, i.e. multiple cores.
The paper is concluded with further discussion in Section VII.

II. THE REGION OF RELIABLE OPERATION

In digital CMOS systems, a higher supply voltage (V)
usually allows a higher operating (clock) frequency and hence
a higher throughput, at the cost of higher power dissipation.
When power is limited, it is possible to obtain an increase in
system throughput by scaling to multiple computation units,
i.e., cores, if the computation can be reasonably parallelised.
Parallelisation scaling in this fashion could also be used to
tackle the related problem of reducing power consumption
while faced with a certain throughput requirement.

This type of parallelisation scaling has been known to
provide the best advantage when V is scaled down to just
above the threshold voltage of the CMOS node concerned.
This is known as near threshold computing (NTC), which max-
imally takes advantage of the parallelisation scaling without
entering the sub-threshold region, where a number of other
factors limit the throughput and efficiency under further paral-
lelisation. However, what happens to reliability in this region
is not well known, because these general knowledge points
were obtained usually by considering reliability as a separate
issue. Here we study the inter-relationship of all these issues
together, namely voltage, throughput, power, reliability and
parallelisation scaling.

In order to retain reliability, a system must operate within
certain constraints. For instance, a particular hardware im-
plementation may not behave correctly if the supply voltage

V

f
Power

f·V2x=xconst

Reliability

(clock)

Reliability

(data)

Vmin0

fmin
Performance

Single-core

designxspace

Vmax

Reliability

(ageing)

Figure 1. The region of reliable operation

V goes below or above certain values. Different hardware
components in a system may have different minimum and
maximum V values and this means that software components,
depending on how they are mapped onto hardware, could also
be constrained by different V limits, even within the same sys-
tem. Another type of constraint is the performance/throughput
requirement specification. A system or a part of a system may
be required to attain at least a certain level of throughput for
the execution to be meaningful. A third type of constraint is
the power supply limitation. The amount of available power
limits the behaviour of the system.

The minimum latency, which is related to computation
throughput, of any specific hardware logic is related to the
V supplied to it. This means that if this logic is run on
a clock too fast for a certain V the computation may not
complete in time before the next clock pulse arrives, which
usually leads to unreliable or unusable results. A common
technique for determining the appropriate clock frequency for
computation logic is to first determine the critical path delay
of the logic under the given V condition, and add enough delay
margins to account for potential effects of process, voltage and
temperature (PVT) variations.

The region of reliable operation for a system within the
V /throughput space is bounded by constraints on power, timing
reliability, minimum throughput requirements and low and
high V boundaries. The minimum and maximum V boundaries
and the minimum throughput are defined as

minV ≤V ≤maxV T hroughput ≥minT hroughput. (1)

The power limit and timing reliability boundaries, however,
are more complex. Their general shapes can be derived from
theories on semiconductor characteristics. For instance, the
timing reliability boundary within a V – throughput/frequency
space usually starts off at very low V with the frequency
climbing from almost zero upwards exponentially until V
increases to around the threshold voltage, from there upwards
the increase in frequency is more or less linear, until usually
when V is around the nominal V of the technology, where the
frequency increase starts to saturate. The region of reliable
operation is illustrated by the diagram in Figure 1.

3

Throughput, 108

V
0.20 0.4 0.6 0.8 1.0

2

4

6

8

10

1 core

4 cores

256 cores

16 cores
64 cores

4Pmax region

Pmax

region

1.2

1024 cores

12

2Pmax

region

Figure 2. SRAM constant max power curve and scaling lines

For reliable operation, the system throughput must be re-
stricted below the timing (clock) reliability and power limit
lines and must be above the throughput requirement line. The
system’s V must also be restricted between the high and low V
limits. In the super-threshold region, we can hypothesize that
dynamic power dominates power consumption while leakage
power and its influence can be ignored.

Dynamic power is known to be related to switching activity
(and through which to system frequency), switching swing
voltage (and through which to system V) and switching
element capacitance (and through which to system size/area
– which is a constant before hardware scaling). Lumping all
the constants together we can say that power is related to
frequency and V in the following manner:

P = cFV 2, (2)

where c is a constant, P is the power and F is the frequency.
In this work, we explore the issue of core scaling (increasing
or decreasing the degree of parallelisation) with an assumption
of perfect scaling. Multiplied hardware operating at the same
frequency will provide multiplied throughput and require a
multiplied amount of power based on the same constant
multiplier. Non-zero scaling overheads will be investigated in
the future. In perfect scaling with a scaling factor of n, the
constant c is scaled in the same way, i.e.

c = nc1, (3)

where c1 is the c for the hardware before scaling (e.g. a single
core). In general, scaling with a factor of n will give a new c
which is a factor of n of the unscaled c.

For each core in a new scaled set-up, the available power
is also changed by a factor of 1/n. Considering these factors,
for each core, equation (2) now becomes

Pn = cFV 2/n, (4)

and the overall system power equation with n cores stays the
same as (2).

With the V values near threshold to below threshold, the
super-threshold power relation (2) no longer describes the total

power as leakage power starts to become an equally important
or more important factor compared with dynamic switching
power.

Instead of drawing the constant power curves from equa-
tions (2) and (4) or dealing with the much more complex
power equations taking leakage power into account, observed
power from experiments can be used to estimate the points
along the frequency curves pertaining to any known power
budget.

Figure 2 shows the scaling effects on the reliable operation
region, based on experimental data collected from an asyn-
chronous SRAM [6], with the total power from experimental
data (and not calculated from (2) and (4)) including both dy-
namic and leakage power. As can be seen after about n = 256,
further scaling would not improve the system throughput of
the system given the constant power limit reached at the max
writing frequency and voltage of 1.2V without scaling, but the
operable region continues to be expanded to the left, although
the increase becomes smaller even without considering minV .

To determine the shape of power limit boundary curves, we
start by setting a power limit amount, Plim, usually the power
consumption when operating an unscaled system at nominal V
and the appropriate reliable frequency for this V (Pmax). Then
for each point i where there is experimental power data, we
calculate the maximum possible scaling factor ni for that V
based on

ni = Plim/Pi, (5)

where Pi is the experimental power observed at data point i.
This, similar to (3) and (4), is based on the perfect scaling
assumption. Plotting T hroughput = niT hroughputi gives the
power limit curve for the particular Plim.

Figure 3 shows a similar study on the reliable operation re-
gion and its relationship with power and parallelisation scaling.
This is based on experimental data from a low-power ARM
M0 core implementation [21]. Both examples demonstrate that
the relationship between power limits, parallelisation scaling,
and the reliable operation region within the V /throughput space
is the same with both processors and memory, and the reliable
operation region is reasonably straightforward to model given
standard experimental data collected during any reasonable
hardware design process.

III. ARCHON ENVISIONED

Due to the unusually vast design space, our research de-
mands a special thinking in designing the model. The mod-
elling and simulation methods are required to be open-ended
with the capability of easily extending the simulated platform’s
functionality. We approached the problem in three stages, as
described below.

Hardware vision approach: The traditional method of
creating extendible software is based on plug-in modules.
In this case, the design of module interfaces is crucial and
generally defines how difficult it is to create a program
extension.

In order to understand the interaction between software
modules, we have taken an unusual approach: “think hardware
– make software”. We imagined that we are to make a flexible

4

V

Throughput, 106

0.20 0.3 0.4 0.5 0.6

50

100

150

200

250

1 core

2 cores

4 cores

8 cores
16 cores

32 cores

4Pmax

region

Pmax

region

Figure 3. Scaling close to and in the sub-threshold region

hardware architecture. What would the challenges be, and how
should we overcome them? Just as FPGA allows customisation
at the scale of logic gates, our hypothetical hardware must
allow customisation at the scale of hardware modules, e.g.
ALUs, register banks, memory units. Although in our research
we do not have an actual task to deliver such a platform, this
non-traditional thinking immediately paid back with a number
of original design decisions, giving a better insight to the
model from the simulation perspective.

Figure 4 shows a communication-based hardware archi-
tecture that could potentially emulate most cyber-physical
systems. This type of architecture is called transport-triggered
architecture [9]. It hasn’t become popular in general purpose
microprocessors, but it appeared attractive for our purposes.
Assuming that the target system has an instruction set, its
software can be recompiled into the connectivity fabric routing
commands. The process of executing such software would
have alternating phases of configuring the connectivity fabric
and executing modules.

Of course, not everything can be envisaged in terms of
hardware logic modules. At some point we had to introduce
other types of elements like, for example, limited energy pool
or time in order to explore the system capabilities. This is
where our model diverged from the purely hardware view.

Resource dependency approach: The central subject of
our method is the study of a computational platform com-
prising a number of diverse resources and the way resources
may be handled in order to realise a computation. A resource
is in this case an indivisible element required by the system
in order to change its state, and it is defined by its function
and availability in relation to this transition. With the word
“resources” we make the point that we do not exclude com-
putation, communication, or other facilities. e.g. energy, time.

We propose to represent a system with a relation graph,
consisting of a set of vertices and a set of edges. Each
vertex represents a single resource and each edge represents
a dependency between two resources. Modelling different
types of resources may be achieved by labelling the graph,
as illustrated in Figure 5(a).

With a reference to the hardware vision approach, we also
prefer to view the system as a dynamic set of resource rela-

Connectivity Fabric

Router Controller

Decoder

ALU MMU Reg1 Reg2 ...

instructions

"execute" command

etc.

Figure 4. What a flexible architecture would look like in silicon? Making
software design decisions while thinking in hardware terms.

MMU ALU

power_supply

data

timing

timing

energy energy

RAM

CORE1
abstract

abstract

detail

MMU_in_CORE1
detail

(a) (b)

Figure 5. Examples of using labelled graphs to reason about diverse resource
types and dependencies (a), and different levels of abstraction (b).

tions. Resources may become unavailable in certain points in
time, and the model must be able to capture this behaviour. The
understanding of resource availability properties helps to plan
ahead and orchestrate resource consumption at a high and yet
sustainable rate. A dynamic model can be represented using
the state transition semantic, where the states are concrete
resource allocations or configurations.

Cross-layer approach: Organising systems, both prac-
tically and conceptually, as hierarchies is a popular way of
thinking and engineering. The practical motivation for this is
manageability. This is the “natural” way for humans to reason
about, design, and organize most of our systems. Since in
this project we emphasize the cross-layer aspects of our work,
having a flat graph model as the foundation may seem counter-
intuitive.

In fact, the flat labelled graph approach facilitates the cross-
layer way of thinking, as Figure 5(b) demonstrates. A label
can be viewed as a condition that includes or excludes an
edge or a vertex, giving a graph projection onto that label. The
complexity of the system can be dealt with using projections
of the resource graphs. With resources as diverse as a software
instruction or a single hardware gate, within the same single
graph executed in a transition, we could reason about different
parts of the system at different abstraction layers. This helps
a designer focus their attention on any particular details of
a system they want, and build a system either top down or

5

bottom up or with mixed-level components at different stages
of development. This layer-agnosticism also helps a runtime
management scheme to focus attention on different layers at
the same time. This versatility is not available for methods
which use explicit hierarchy within their frameworks.

At the same time, this does not prevent designers to isolate
concerns and concentrate on some layers only. For instance,
all resources in one transition could be elements of the same
layer, or a software engineer could arrange complex low-
level software resources for detailed study with coarse-grain
hardware resources provided by hardware colleagues (which
are not the specific target of concern) in the same transition.

Recently, in the area of modelling biological systems and
chemical processes, the authors of [11] developed "explor-
ation systems" which are based on describing system dy-
namics as transitions among graphs, which contain the static
knowledge of system components and their inter-relations
including dependencies. This division of system dynamics
and static knowledge allowed the use of an essentially flat
model for the dynamic evolution of systems whilst retaining
a potential view of system static knowledge in a hierarchy of
unbounded number of layers. Compared with these exploration
systems, ArchOn is more targeted at computation systems
without a biological or chemical specialization, allowing a
richer representation of system hierarchy from its specifically
layer-agnostic approach. ArchOn also emphasizes the issue of
concurrency and its active management which is not a focal
point for exploration systems.

IV. MODEL FUNDAMENTALS

The ArchOn framework is a further development of Condi-
tional Partial Order Graphs [22] that have been used for mod-
elling low-level multimode asynchronous microcontrollers.

An ArchOn system is defined by
• set R of resources;
• communication fabric relation A defining feasible de-

pendencies (communication channels), A ⊆ R×R;
• set A of currently present inter-resource dependencies,
A⊆A ;

• indexed set (Ui)i∈R of resource states; set U = ×i∈RUi
denotes the overall resource state;

• resource and resource dependency labelling function L ∈
(A∪R)→L attaching uninterpreted labels from set L ;

• initial resource state U0 ∈ U;
• finite set I of configurations;
• indexed set (εi)i∈I of idempotent reconfiguration functions

εi ∈A×L→A×L; it must hold that εi(a 7→ l)= εi(εi(a 7→
l)) for all i ∈ I;

• indexed set (ϕi)i∈R of resource evolution functions ϕi ⊆
Ui×Ui;

• strict partial order relation ≺ on set I parametrised by
U: ≺∈ U→ P(I× I) where for every u ∈ U, ≺u⊆ I× I is
irreflexive and transitive.

A resource is deemed ready when all its input dependencies
are connected (enabled). For some resource r ∈ R we define
predicate ready(r) to be

ready(r)≡ r ∈ R∧A−1[{r}] = A −1[{r}].

Here A−1[{r}] denotes the pre-set of r (set of resources on
which r has a dependency). In the paper we also use short-cut
notation •r and r• to denote pre-set and post-set (which is
A[{r}], or set of resources dependent on r) of resource r. A
ready resource r may fire resulting in a new resource state u′r;
resources that are not ready do not change their state:{

u′r ∈ ϕr[ur], for ready(r),
u′r = ur, otherwise,

where u′r ∈ Ur. Note the non-deterministic computation of
new resource state as expressed by u′r ∈ ϕr[ur]. This allows
a designer to abstract from the specifics of resource state
evolution or abstract a complex of a resources by a single non-
deterministic resource. All ready resources fire concurrently
and the overall new state u′ is

u′ =×r∈Ru′r.

The use of a primed identifier to denote a new state is merely
a syntactic convention. Conceptually, new state u′ instantan-
eously replaces some previous state u without observation of
intermediate states u′r computed by individual resources.
In parallel with resource state updates, the communication
fabric connecting resources (configuration) may also change
independently. The way of change is defined in the recon-
figuration functions (εi)i∈I; the overall direction of change is
controlled by order ≺u sensitive to the current resource state u.
Communication fabric changes in steps, each such step defined
by a transformation encoded in an applicable reconfiguration
functions εi:

A′ 7→ L′ ∈
⊎

i∈(I,≺u)

εi(A 7→ L),

where
⊎

is a generalised version of the relational override
operator] defined as f]g≡ {s 7→ t | (s ∈ dom(f)\dom(g)∧
s 7→ t ∈ f)∨ (s ∈ dom(g)∧ s 7→ t ∈ g)}. Expression

⊎
i∈(D,<) fi

defines a set of relations each of which is a relational override
defined over indexed set (εi)i∈I with the priority given by a
partial order (D,<):⊎

i∈(D,<)

fi ≡ { fk] fi]·· ·] f j] fn | n < j < · · ·< i < k}.

An ArchOn system is consistent if eventual resources state do
not depend on the choice of relation from set

⊎
i∈(I,≺u) εi(A 7→

L). Note that reconfiguration of communication fabric and
resource state updates are only weakly synchronised through
observation of resource state by the reconfiguration activity.
There is no assumption made about the relative rate of progress
of these two activities.
The dynamic part of ArchOn is defined by the tuple (A,L,U)
of inter-resource dependencies, labels and state. The initial
state σ0 defines no dependencies or labels and resources in
the initial state U0: σ0 = (/0, /0,U0). All subsequent states are
computed by state update and reconfiguration transitions s−→
and c−→ defined as follows:
state update:

∀r ∈ R · (u′r ∈ ϕr[ur]∧ ready(r))∨ (u′r = ur ∧¬ ready(r))

(A,L,u) s−→ (A,L,×i∈Ru′i)
,

6

configuration update:

A′ 7→ L′ ∈
⊎

i∈(I,≺u) εi(A 7→ L)

(A,L,u) c−→ (A′,L′,u)
.

To define reconfiguration functions εi and relation ≺ we
employ a mixture of textual and graph notations. There is,
of course, a tight interplay between the two as ≺ controls
which of εi is applicable at any given moment. The definition
εi for some concrete i ∈ I is given by ArchOn expression ξ of
the following form

ξ = ξ ξ | a `−→ b | a 6→ b | a : `,

where a,b∈ R are some resources and `∈L is a label. State-
ments a `−→ b and a 6→ b signify, correspondingly, the addition
and removal of dependencies arc from the communication
fabric; a : ` attaches label ` to resource a. The juxtaposition
ξ ξ chains statements in the left to right order. The following
structural induction converts ξ statements into a value of type
A × ((A∪R)→L), given some current connectivity A 7→ L:

Ja `−→ bKA 7→L ≡ (A∪{a 7→ b}) 7→ (L∪{(a 7→ b) 7→ `}) ,
Ja 6→ bKA 7→L ≡ (A\{a 7→ b}) 7→ ({a 7→ b}C−L) ,
Ja : `KA 7→L ≡ A 7→ (L∪{a 7→ `}) ,
Jx yKA 7→L ≡ JyKJxKA 7→L

.

Every instance of ξ expression must occur in the context
(explicit or implied) of some i ∈ I. It is then assumed that
the expression is converted into a statement of the form εi =
Jξ KA7→L. The definition of Jξ K clearly satisfies the idempotence
requirement of εi.
To represent relation ≺ we found it convenient to use an
acyclic directed graph defined over set I. The edges of a graph
define a relation q⊆ I× I that is asymmetric. A reflexive and
transitive closure of q yields a partial order on I. To be able
to control the direction of system evolution, it is necessary
to annotate the edges of such graph with predicates over U.
Such a predicate conditions the existence of an annotated
edge by the current resource states. This fits well with state
parametrisation of ≺u. More concretely, let (I,q) be an acyclic
directed graph and P ∈ q→P(U) be a function mapping
edges of the graph to predicates on U . Then for each u ∈ U,
≺u is computed as follows

≺u= {a 7→ b | a 7→ b ∈ q∧P(a 7→ b)(u)}+,

where f+ denotes a transitive closure of relation f .

Example 1. Let’s consider Euclid’s algorithm for computing
the greatest common divisor (GCD) of two numbers (a and b):
if (a > b), then a := a−b; if (a < b), then b := b−a; repeat
this until (a = b), which will be the result. Its implementation
in ArchOn is shown in Figure 6. In this case, the resources
are concrete hardware units: registers reg_a, reg_b, and
two ALUs: cmp and sub. Resource states store unit data,
and the resource dependencies represent data transfer between
the units. A register is simply an identity function that copies
its pre-set state, therefore in order to “maintain” the state it
requires an explicit self-loop. This rule may be useful if we
need to estimate the energy of the system: a self-dependent

Resource graph evolution:

Initial resource state:
(a, b are given parameters)

Resource graph G0:

reg_a

reg_b

cmp
x

y

reg_a

a
U0:

reg_b

b

cmp*

?

* cmp state can be one of {lt, eq, gt}

G0 stop

G1

G2

cmp=eq

cmp=gt

cmp=lt

start

Resource graph G1:

reg_a

reg_b

sub
x

y

Resource graph G2:

reg_a

reg_b

sub
y

x

Figure 6. Simulating Euclid’s algorithm for GCD(a,b). In this example,
resources are hardware units with data dependencies between them.

element remains in the graph as an active resource. Although
comparison and subtraction can be done in just one ALU,
for the sake of example we consider cmp and sub to be
different resources. Comparator cmp compares two inputs x, y
and stores the result in its state, encoded eq, lt, or gt for “equal
to”, “less than”, and “greater than” respectively. Subtraction
sub is a memoryless combinational logic element, so it has
no state in the model: the result is propagated to the output
(post-set) node.

V. EXPLORING CONCURRENCY IN A SINGLE-CORE SYSTEM

In this section we demonstrate the application of the ArchOn
framework to modelling PER trade-offs in a single-core pro-
cessor. As our example we take the basic computational step
in the 3× 3 matrix convolution that is used in most image
processing applications. Given two 3×3 matrices A and B the
goal is to multiply them element-wise and sum up the results,
denoted by A�B: x1 x2 x3

x4 x5 x6
x7 x8 x9

�
 y1 y2 y3

y4 y5 y6
y7 y8 y9

= ∑
1≤k≤9

xkyk. (6)

Usually, one of the matrices is a 3×3 sub-matrix of an image
being processed and the other matrix, called a kernel or a mask,
represents the required image transformation, e.g., sharpening
or edge detection. This step is applied to all 3×3 sub-matrices
of a given image, each time producing a value for a pixel in
the resulting image. This is an embarrassingly parallelisable
computation task: one can cut an image into pieces and process
them in parallel on different cores. In this section, however,
we focus on a single processing core, in particular on different
processor microarchitectures that can be used to accelerate the

7

computation of a single convolution step (6). Concurrency and
PER trade-offs of the parallel many-core implementation will
be discussed in Section VI.

At least two hardware resources are required for performing
a single convolution step: an adder and a multiplier. In this
section we use time and power estimates of 16-bit circuits
generated by PRIMETIME simulation tool for 130nm STMi-
croelectronics technology library at the nominal supply voltage
of 1.2V:

Component Latency, ns Power, mW
Adder (Brent-Kung [8]) 1.37 0.49

Multiplier (Wallace tree [32]) 2.25 6.7

See Section 4.1.1 of [27] for more details on hardware
implementation of adders and multipliers with different PER
characteristics.

A. ArchOn modelling

Adder and multiplier are hardware resources. There are
a number of ways to connect these resources in order to
perform the computation of a convolution step. Each way
has certain advantages and disadvantages in terms of the
PER characteristics. In order to reason in PER terms, we
need the ability to retrieve physical parameter estimates from
our models. ArchOn models of these different configurations
can be executed effectively forming simulations of system
executions to provide this data.

Time evaluation: Traces extracted from ArchOn model
reflect the ordering of the events, but did not capture the
exact execution time. In order to add numeric time value to
the model, we need to expand the resource state to store a
timestamp t, so the state of a resource becomes a time and
data tuple. The node function also becomes compound and
computes both data and the time needed to process it.

Time dependencies between resources can be implied from
data dependencies. While computing the next resource state,
the timestamps of a node and its pre-set are synchronised and
set to the maximum value. Delay function computes ∆t and
adds it to the synchronised timestamp value. It is important
that time is synchronised both ways: the destination node
must wait for the source to finish the computation, and the
source node must retain data until the destination node is ready
to use it. This is similar to request/acknowledge signals in
asynchronous circuits [29]. Synchronisation and tracking of
timestamps between different resources is achieved using a
specialised time keeper resource.

Energy and power evaluation: The simplest way to
estimate energy is by resource counting. One can add another
element to the resource state – the number of invocations of
this resource. When the simulation is finished, the resource
access vector can be extracted from the final state of the
system. These numbers can be multiplied by resource energy
costs to give a rough energy estimate. This method uses
constant energy cost values and does not consider leakage
while the resource is idle.

A better way to model energy consumption is to associate
each resource with an energy function. There is no restriction

on the type of information that can be used for computing the
energy. For a resource r, empty pre-set means that the resource
is not enabled in the current resource graph. This can be used
to capture a leakage energy:

E ′ (r) = E (r)+

{
∆edyn (r)+∆eleak (r) , if • r 6= /0
∆eleak (r) , if • r = /0

where ∆edyn (r) computes the dynamic energy of the resource
r, and ∆eleak (r) computes static (leakage) energy. E (r) is the
accumulated amount of energy stored as a part of the resource
state. Similarly to time estimation, energy estimation requires
a specialised resource node that collects information about
energy usage from other resources. Power is derived from
energy ∆E (r) and delay ∆t.

B. Microarchitectural solutions

To accelerate the computation of the convolution step one
can implement a specialised processor instruction, e.g., as in
Application Specific Instruction set Processors (ASIPs) [31].
Let us study three possible microarchitectures for the instruc-
tion.

An obvious way to compute (6) is to perform the required
multiplications concurrently (as they have no data dependen-
cies) and then sum up the results with an adder tree, thus
allowing as much Instruction Level Parallelism (ILP) [13]
as possible. The corresponding computation tree, which re-
flects the unfolding of the ArchOn model, is shown in Fig-
ure 7(a, left). As one can see this implementation requires
at least 9 multipliers and 4 adders, therefore being quite
expensive in terms of silicon area. Another disadvantage of
this microarchitectural solution is a big power consumption
spike which occurs at the very start of the instruction execu-
tion when all 9 multiplications are running concurrently, as
shown in Figure 7(a, right). This may cause a local voltage
drop affecting the reliability of the multipliers as well as
surrounding hardware components. Such voltage drops are
particularly dangerous in the near- and sub-threshold operating
modes, when drops of 10–20mV amplitude can cause timing
failures [6], [21], [25], [28].

To mitigate the above reliability issues and balance the
power profile, one can reduce the degree of concurrency. Let
us halve the number of multipliers that are allowed to run
concurrently. The resulting computation tree and power profile
are shown in Figure 7(b). As one can see the power peak is
significantly smoothed out at the cost of 23% latency increase.
As a (perhaps insignificant) side benefit, this implementation
also requires one fewer adder. In terms of the throughput,
however, the 9-multiplier version has a significant advantage
(more than 2x) if the microarchitecture is pipelined.

Finally, consider the 2-multiplier version shown in Fig-
ure 7(c). It brings further power balancing and area benefits
albeit at the cost of 81% latency overheads and 4.5x lower
throughput in comparison to the 9-multiplier microarchitec-
ture.

Note that the consumed dynamic energy is the same in all
three microarchitectures. However, the smallest (with respect
to the occupied area) implementation will generate the least

8

x1 y1 x2 y2 x3 y3 x4 y4 x5 y5 x6 y6 x7 y7 x8 y8 x9 y9

latency

power

(c) 2 multipliers, 2 adders

Figure 7. Computation trees and power profiles of three implementations of 3×3 convolution instruction: trading concurrency (latency) for power consumption

constant leakage current thus being more energy-efficient
(unless inactive components are shut down by fine-grain power
gating, in which case all three implementations will have the
same energy-efficiency).

VI. EXPLORING CONCURRENCY IN A MULTI-CORE
SYSTEM

Although having a specialised hardware to do the entire
convolution step in a single instruction is attractive and ef-
ficient, it implies considerable production costs. It might be
more practical to consider using existing hardware to do the
job. As a many-core test platform we used simplified ARM
architecture. The mainstream ARM processors to date are
mainly dual- and quad-core, however there are concrete plans
to increase the number of cores to 16, or even 32 [1].

In terms of ArchOn, the difference between multi-core and
single core architectures is in the restrictions on certain con-
nections between the resources belonging to different cores,
thus fundamentally the model is still the same.

The method to supply resource graphs to the simulation
software has been derived from our hardware vision, described

Table I
SOME COMMANDS OF GRAPH ASSEMBLY LANGUAGE

command description
U [a] = value set resource a state to value
a→ b set a dependency between resources a and b
a x→ b set a labelled dependency between resources
a 9 b unset a dependency
G = /0 clear all dependencies
go! “execute” graph: fire all resource state transitions
go to X continue assembly from label X (jump)
if condition go to X conditional jump

in Section III. We view the simulator modules as connected via
the connectivity fabric, and the simulator input parser works
as a router. Table I shows some commands for this “router”,
which provide step-by-step graph configurations as well as
explicit invocations of resource state transitions. Applying this
method to sparsely connected graphs with many vertices gives
more compact specifications than traditionally used adjacency
matrices. We call it graph assembly language.

Convolution filter software is written in ARM assembly lan-

9

Algorithm 1 ARM instruction MLA r8,r9,r10,r8 in
graph assembly language.

G = /0
r9 n→mul
r10 m→mul

go!
G = /0
mul n→ alu_add
r8 m→ alu_add

go!
G = /0
alu_add→ r8

go!

guage. Here, a 256×256 image is divided between processing
cores, each working on a separate set of pixels (with single
pixel wide overlaps). Each pixel is a 32-bit integer representing
grey-scale colour. For every ARM instruction we derive a re-
source evolution and translate it into graph assembly language.
This is a routine task since all instructions follow a common
pattern. The process of translation can be done automatically.
An example instruction is shown in Algorithm 1.

With this example we start exploring non-ideal concurrency
scaling and non-zero overheads. Since shared memory would
become the bottleneck while scaling to many-cores, we added
control over the “criticality” of this resource, so the program
can be executed in three different modes: 1) simultaneous read
and write access to the memory is allowed, 2) simultaneous
read is allowed, but only one writer is allowed at a time, 3)
all memory access is exclusive and must be done sequentially.

By Amdahl’s law [5], the theoretical speed-up that can be
achieved by executing a given algorithm on a system capable
of executing n threads is:

T (1)
T (n)

=
1

ss +
sp
n

, (7)

where T (n) is the time an algorithm takes to finish when
being executed on n cores, and ss ∈ [0,1] is the fraction of the
algorithm that is strictly serial, sp = 1− ss is the fraction of
the algorithm that runs in parallel.

For our algorithm ss and sp are not known in advance,
and actually depend on the memory mode and the number of
cores running, i.e. are not constants. ArchOn time estimation
enables analysis of this factor. Table II gives the estimates
for execution time. From (7) we can find sp, which will be
an estimate of parallelisation for our example. In Mode 1 the
scaling is nearly perfect, sp ≈ 9.999999, however in Mode 3
the memory becomes such a narrow bottleneck that there is
no performance gain for more than two cores (performance
cap is shown in bold). The most illustrative example is
Mode 2, when multiple cores are allowed to simultaneously
read, but forbidden to simultaneously write to the memory.
The performance cap is reached at 4 cores, and sp varies from
9.96 at 2 cores to 0.4 at 4 cores and decreasing.

The main goal of this section is to use ArchOn simulation to
draw PER diagrams, described in Section II. Since the actual
power data for ARM cores is implementation dependant and
proprietary, we use the power profile for an asynchronous
SRAM [6], Figure 2. This does not affect the generality of

Table II
EXECUTION TIME (IN CYCLES) VERSUS THE NUMBER OF CORES RUNNING

FOR DIFFERENT MEMORY ACCESS MODELS.

N cores multiple read multiple read single read
multiple write single write single write

1 26607635 26607635 26607635
2 13303827 13303947 19660819
3 8938515 8938755 19660819
4 6651923 7864625 19660819
5 5404691 7864625 19660819
6 4469267 7864625 19660819

0.2 0.4 0.6 0.8 1.0 1.2

V

Throughput, 108

10

0

5
Pmax

1 core

4 cores

8 cores16 cores

2 cores

(a)

0.2 0.4 0.6 0.8 1.0 1.2

5

4

3

2

1

0

V

Throughput, 108

Real Pmax

Perfect Pmax

1 core

2 cores

3 cores4 cores

(b)

Figure 8. Computed power limit for perfect scaling (a) and for an actual
scaling to many cores in the simulated example (b).

the approach. Figure 8(a) illustrates perfect scaling (memory
Mode 1) with applied power limit of 2mW. Figure 8(b) shows
the PER diagram for the same system with the same power
budget after applying actual metrics for scalability to many
cores in Mode 2. The diagram considers only integer numbers
of cores, hence the performance line looks jagged. Please
note that the line for 4 cores in Figure 8(b) is lower than
in Figure 8(a) due to imperfect scaling. The data for this graph
is computed automatically. One can see that the performance
cap is clearly reflected in the power limit.

Such diagrams can be used in a runtime management system
in order to predict the best voltage and the number of cores
for a particular software with regard to the power restrictions.
In our example, for memory Mode 2, if the system is limited
to 2mW, the best number of cores is 4 running at 0.8V. Of
course, if we consider a general purpose processor in a wide

10

range of devices, it is not possible to build scaling profiles
for all variety of applications they can run. The next step for
our research is to build-in an adaptation cycle, then model and
simulate it.

VII. CONCLUSION

The PER interplay relations are studied in a parallelisation
scaling context, yielding models which can be incorporated
into the ArchOn modelling framework.

The ArchOn method is developed to help designers of
complex systems. Its unique resource-graph based approach
represents the first known attempt at layer-crossing friend-
liness by being explicitly and implicitly layer- and level-
agnostic. Fundamentally, resource dependencies are represen-
ted as graphs, and in any one such graph, resources could be
diverse elements including components at all levels of detail
and from all different abstraction layers. Resources could also
include items outside of hardware and software components,
such as power, energy, reliability, time available, thermal
budget, etc. This allows large design teams of experts from
different disciplines to both concentrate on detailed problems
explicitly and reason about inter-related issues at more abstract
levels.

Being a graph-based model, ArchOn presents users with
a friendly interface for understanding. Its usability in system
simulation is demonstrated through a number of case study
examples in this paper. The first software implementation of
the ArchOn method, a simulator with PER model capabilities,
has been developed and demonstrated at ES4CPS ’14 work-
shop and further developments of the method including tool
support is ongoing.

The development of the method is at an initial exploratory
stage. Future topics of investigation include integration with
tools like gem5 – a popular processor simulation platform [2].
Since ArchOn’s foundation matches the traditional philosophy
comfortable for discrete event system designers, we would
also like to exploit potential mappings onto the problem
and solution spaces of existing modelling methods such as
CPOG’s [22] and Petri nets

Acknowledgement: This work is supported by EPSRC
research grant EP/K034448/1.The authors would like to thank
Maxim Rykunov and Danil Sokolov for their valuable help
in conducting hardware simulations and experiments. Parts of
Sections II and III have been previously reported in [24], [33].

REFERENCES

[1] ARM. http://www.arm.com.
[2] The gem5 simulator system. http://www.m5sim.org.
[3] The PRiME project. http://www.prime-project.org.
[4] E. Alon et al. Circuits and techniques for high-resolution measurement

of on-chip power supply noise. IEEE JSSC, 40(4), 2005.
[5] G. M. Amdahl. Validity of the single processor approach to achieving

large scale computing capabilities. In Proceedings of the Spring Joint
Computer Conference, AFIPS ’67 (Spring), pages 483–485. ACM, 1967.

[6] A. Baz, D. Shang, F. Xia, and A. Yakovlev. Self-timed sram for energy
harvesting systems. J. Low Power Electronics, 7(2):274–284, 2011.

[7] A. Branover, D. Foley, and M. Steinman. Amd fusion apu: Llano. IEEE
Micro, 32(2):28–37, 2012.

[8] R. P. Brent and H.-T. Kung. A regular layout for parallel adders. IEEE
Transactions on Computers, 100(3):260–264, 1982.

[9] H. Corporaal. Design of transport triggered architectures. In Proc. to
Design Automation of High Performance VLSI Systems, pages 130–135,
1994.

[10] S. B. Dhia et al. On-chip noise sensor for integrated circuit susceptibility
investigations. IEEE TIM, 61(3):696–707, 2012.

[11] A. Ehrenfeucht and G. Rozenberg. Zoom structures and reaction systems
yield exploration systems. In IJFCS, to appear, 2014.

[12] H. Esmaeilzadeh et al. Dark silicon and the end of multicore scaling. In
Proceedings of the 38th Annual International Symposium on Computer
Architecture, ISCA ’11, pages 365–376, New York, NY, USA, 2011.
ACM.

[13] J. A. Fisher. Very Long Instruction Word architectures and the ELI-512.
SIGARCH Comput. Archit. News, 11:140–150, June 1983.

[14] S. H. Fuller and L. I. Millett. Computing performance: Game over or
next level? Computer, 44(1):31–38, 2011.

[15] N. Goulding-Hotta et al. The greendroid mobile application processor:
An architecture for silicon’s dark future. IEEE Micro, 31(2):86–95,
2011.

[16] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki. Toward dark
silicon in servers. IEEE Micro, 31(4):6–15, 2011.

[17] J. Kruppa and D. Hesidenz. High speed, high bandwidth on-chip current
and voltage sensor. In Sensors, 2006. 5th IEEE Conference on, pages
1337–1340, 2006.

[18] H.-Y. McCreary et al. Energyscale for ibm power6 microprocessor-based
systems. IBM Journal of Research and Development, 51(6):775–786,
2007.

[19] R. McGowen et al. Power and temperature control on a 90-nm itanium
family processor. IEEE JSSC, 41(1):229–237, 2006.

[20] M. Meterelliyoz, P. Song, F. Stellari, J. P. Kulkarni, and K. Roy.
Characterization of random process variations using ultralow-power,
high-sensitivity, bias-free sub-threshold process sensor. Trans. Cir. Sys.
Part I, 57(8):1838–1847, Aug. 2010.

[21] J. N. Mistry. Leakage power minimisation techniques for embedded
processors. PhD thesis, University of Southampton, 2013.

[22] A. Mokhov and A. Yakovlev. Conditional Partial Order Graphs:
Model, Synthesis and Application. IEEE Transactions on Computers,
59(11):1480–1493, 2010.

[23] A. Muhtaroglu et al. ., on-die droop detector for analog sensing of
power supply noise. IEEE JSSC, 39(4):651–660, 2004.

[24] A. Rafiev, A. Iliasov, A. Romanovsky, A. Mokhov, F. Xia, and
A. Yakovlev. ArchOn: Architecture-open resource-driven cross-layer
modelling framework. Technical Report NCL-EEE-MICRO-TR-2014-
184, School of EEE, Newcastle University, January 2014.

[25] R. Ramesani and other. Voltage sensing using an asynchronous charge-
to-digital converter for energy-autonomous environments. IEEE JET-
CAS, 3(1):35–44, 2013.

[26] E. Rotem, A. Naveh, M. Moffie, and A. Mendelson. Analysis of thermal
monitor features of the intel pentium m processor. In in Workshop on
Temperatureaware Computer Systems, 2004.

[27] M. Rykunov. Design of Asynchronous Microprocessor for Power
Proportionality. PhD thesis, Newcastle University, 2013.

[28] M. Rykunov. Design of Asynchronous Microprocessor for Power
Proportionality. PhD thesis, University of Newcastle upon Tyne, School
of Electrical, Electronic and Computer Engineering, 2013.

[29] J. Sparso and S. Furber. Principles of asynchronous circuit design : a
systems perspective. European Low-Power Initiative for Electronic Sys-
tem Design. Kluwer Academic Publishers, Boston, Dordrecht, London,
2002.

[30] J. Tschanz et al. Tunable replica circuits and adaptive voltage-frequency
techniques for dynamic voltage, temperature, and aging variation toler-
ance. In Symp. on VLSI Circuits, 2009.

[31] J. Van Praet, G. Goossens, D. Lanneer, and H. De Man. Instruction
set definition and instruction selection for ASIPs. In Proc. of the Int’l
Symposium on High-Level Synthesis, pages 11–16, 1994.

[32] C. S. Wallace. A suggestion for a fast multiplier. IEEE Transactions on
Electronic Computers, (1):14–17, 1964.

[33] F. Xia, A. Mokhov, A. Yakovlev, A. Iliasov, A. Rafiev, and A. Ro-
manovsky. Adaptive resource control in multi-core systems. Technical
Report NCL-EEE-MICRO-TR-2013-183, School of EEE, Newcastle
University, December 2013.

	TR1408Cover
	TR1408Abstract
	TECHNICAL REPORT SERIES
	Abstract

	TR1408Bibliography
	1408withoutcovers

