

Newcastle University ePrints - eprint.ncl.ac.uk

Rafiev A, Xia F, Iliasov A, Gensh R, Aalsaud A, Romanovsky A, Yakovlev A.

Order Graphs and Cross-Layer Parametric Significance-driven Modelling. In:

15th International Conference on Application of Concurrency to System

Design (ACSD'15). 2015, Brussels, Belgium: IEEE Computer Society.

Copyright:

© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all

other uses, in any current or future media, including reprinting/republishing this material for advertising

or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or

reuse of any copyrighted component of this work in other works.

DOI link to article:

http://dx.doi.org/10.1109/ACSD.2015.16

Date deposited:

06/01/2016

http://eprint.ncl.ac.uk/
javascript:ViewPublication(214755);

1

Order Graphs and Cross-layer Parametric
Significance-driven Modelling

A. Rafiev, F. Xia, A. Iliasov, R. Gensh, A. Aalsaud,
A. Romanovsky, A. Yakovlev – Newcastle University, UK

{ashur.rafiev, fei.xia, alexei.iliasov, rem.gensh, a.m.m.aalsaud,
alexander.romanovsky, alex.yakovlev}@ncl.ac.uk

Abstract—Traditional hierarchical modelling methods tend to
have layers of abstraction corresponding to naturally existing
layers of concern in multi-level systems. Although logically and
functionally intuitive, this is not always optimal for analysis and
design. For instance, parts of a system in the same logical layer
may not contribute to the same degree on some metric, e.g. system
power consumption. When focusing on a specific parameter or
set of parameters, to moderate the analysis, design and runtime
effort, less significant parts of the system should be modelled at
higher levels of abstraction and more significant ones with more
detail. This parametric significance-driven modelling approach
focuses more on optimal parametric fidelity than on logical
intuition. Using system power consumption as an example para-
meter, this paper presents Order Graphs (OGs), which have a
clear hierarchical structure, and provide straightforward vertical
zooming across multiple layers (orders) of model abstraction,
resulting in the discovery of power-proportional cuts that run
through different orders to be analysed together in a flat manner.
Stochastic Activity Networks (SANs), a good flat modelling
method, is suggested as an example of studying techniques for
cuts discovered with OGs. A series of experiments on an Odroid
development system consisting of an ARM big.LITTLE multi-
core structure provides initial validation for the approach.

I. INTRODUCTION

Systems with large scale concurrency and complexity, e.g.
computation systems built upon architectures with multiple
and increasingly many processing cores with heterogeneity
among the components, are becoming more popular and
common-place [3]. The hardware motivations are clear, as
concurrency scaling can help delay the potential saturation
of Moore’s Law with current and future CMOS technology
and better use the opportunities provided by the technology
scaling. In this environment, software designs are increasingly
focused towards greater concurrency and mapping to such
many-core hardware [12].

Both hardware and software of these types tend to form
hierarchical structures, for instance, the levels of detail in
hardware include the entire spectrum from transistors to gates
to function blocks to entire CPUs to multiple CPUs with
supporting logic, memory, etc. For system designers, software
(e.g. applications), operating systems, and the platforms on
which these are run also form natural design layers with clear
boundaries between the layers. Such structures are usually
conveniently modelled with traditional hierarchical modelling
methods, with the modelling levels of abstraction correspond-
ing to these system layers of concern [10].

This is, however, not always optimal for analysis, design and
runtime management, which functionally and pragmatically
usually focus on a set of physical parameters connected to
the notion of ‘performance’ known as system metrics. The
“modelling fidelity” should therefore, ideally, be determined
by the parameter(s) under study [19], [16]. For instance, when
designing for power efficiency, if a part of a system makes
a crucial contribution to the power consumption of the entire
system and small changes may have a significant effect, it pays
to study it in detail, i.e. at some lower layer of abstraction.
On the other hand, to moderate the modelling, analysis and
design effort, and potentially runtime overhead for models that
need to be used in runtime, other less significant parts of the
system should be studied at higher levels of abstraction. When
this “centre of gravity” of system operation concerning power
(and/or other important parameters) can dynamically move
around the system, traditional hierarchical modelling methods
are ill positioned for efficient representation.

Hierarchical methods, because of their complexity, are usu-
ally less straightforward to use than flat representations. Petri
nets [2], which exemplify flat modelling methods, have ex-
tremely simple semantics and offer conveniences in reasoning,
proofing and other aspects of analysis, a quality shared by
other flat modelling methods. But when the modelling needs
span multiple layers in a hierarchy it becomes somewhat
difficult to adopt flat methods as study tools.

In this paper, we present Order Graphs (OGs), a model that
has a clear hierarchical structure, and at the same time provides
straightforward vertical zooming across multiple layers (or-
ders) of model abstraction, independently in different regions
of a model, resulting in the isolation of cuts that run through
different orders for reasons important for the designer. For
instance, one of these reasons may be to identify cuts with
a constant fidelity for some parameter. Such cuts can then
be analysed in a flat manner using existing flat modelling
methods. The concept not only works during design time
but are also applicable at runtime. Parametric significance-
driven cuts can move with the system’s operation based on the
changes of the significance of parameters related to different
system parts and thus always concentrate the most appropriate
amount of modelling effort on each part of the system resulting
in the optimal modelling fidelity for each part at each state.
The ideal scenario will lead to true parametric-proportional
modelling fidelity and thus parametric-proportional effort for
analysis, design, and runtime management.

2

In this paper, the usefulness of parametric-proportional cuts,
obtained with the help of OGs through cross-layer reason-
ing, is demonstrated by using Stochastic Activity Networks
(SANs) [17] to study such cuts. Although other flat mod-
elling methods can also be used for such studies, SANs, a
quantitative derivative of Petri nets with both probabilistic
and deterministic representation facilities, have the advantage
of being useful for reasoning about qualitative issues such as
correctness and quantitative issues such as parameter values.
A series of experiments on an Odroid development system
consisting of an ARM big.LITTLE multi-core structure [9]
provides initial validation for the approach.

The initial concept of this work has been introduced in [16].
This paper presents the formal definition of OGs compared to
classic hierarchical representation of graphs, which includes
the theory on model transformations and on forming cross-
layer cuts, and gives more detailed insight on the benefits of
using cross-layer cuts w.r.t. the state space size.

Section II formally describes the modelling approach in-
cluding resource graphs, hierarchical graphs, and OGs. Sec-
tion III describes the overall parametric significance-driven
modelling flow. Section IV presents the application example
Odroid system with platform modelling in OGs and compon-
ent modelling in SANs, and a series of experiments which
support the approach. Section V includes discussions. In this
paper we take system power consumption as the example
parameter and focus on power-proportionality in modelling,
but it must be emphasised that the method itself is parameter-
independent.

II. MODELLING APPROACH

A. Resource-driven Modelling

The central subject of our method is the study of a com-
putational platform comprising a number of diverse resources
and the way resources may be handled in order to realise a
computation. A resource is in this case an indivisible element
required by the system in order to change its state, and it
is defined by its function and availability in relation to this
transition. With the word “resources” we make the point that
we do not exclude computation, communication, or other
facilities, e.g. energy and time. A resource graph is a relation
graph, where each vertex represents a single resource and
each edge represents a relation or dependency between two
resources [15].

In many real-life systems the dependencies between the
resources do not have to be maintained all the time in order for
the system to function normally. In fact, for some systems the
functionality requires switching dependencies on and off [20].
In this paper, however, we focus on a static resource view of
the system, showing all possible resources and dependencies.
This way of modelling is focused on exploring the structure
of the system and does not provide the means to estimate
quantitative properties of the system. For quantitative analysis
we can use other methods, for example, SANs [17].

Focusing on resources in modelling is a well-established
practice. For example, resource dependency graphs [4], [14]
are partial orders representing causality relationships between

resources. In our case, however, the view on resource depend-
encies is focused on a pair of resources being dependent on
each other at a certain point in time for delivering their func-
tionalities. Hence, there is no directionality, and dependencies
are dynamic.

In our previous work [15], approaching the cross-layer mod-
elling was suggested using labelling in the flat resource graphs.
However, it appeared to be impractical compared to hierarch-
ical models. The following discussion revisits the definition
of a hierarchy as a sequence of model transformations, which
thereafter is applied to graph models leading to Order Graphs.
The latter combines the notions of resource modelling with
the hierarchical representation of system layers.

B. Introducing Hierarchies

An underlying approach for having adjustable fidelity in the
models relies on different levels of abstraction. Naturally, these
layers have to be consistent with each other, however the very
definition of consistency may vary from model to model and
depend on the system properties that need to be preserved.

A common way to define a model of a system is to represent
it as a set tuple M = (E1, E2, . . . En), where each set Ek

contains system elements of a particular type, e.g. vertices,
edges, labels, etc. We can also generalise these to a single type
– “system element” – and have a type-agnostic representation
of a model:

M = E0 ∪ E1 ∪ . . . ∪ En. (1)

Definition 1. Let Ma and Mb be some system models with
corresponding sets of system elements Ma,Mb, and some
relation between these elements γ ⊆ Ma × Mb. Given a
boolean predicate Φ, such that:

Φ : P (Ma)× P (Mb)× P (Ma ×Mb)→ {0, 1} , (2)

the relation γ is called a consistency relation between models
Ma and Mb under the predicate Φ if Φ (Ma,Mb, γ) = 1. Φ is
called the rule set, and for convenience can be specified as a
conjunction of smaller predicates of the same type (2).

The predicate Φ is called strongly consistent if it requires γ
to be a total surjective relation, i.e. for every element in Ma

there must be at least one related element inMb, and for every
element in Mb there must be at least one related element in
Ma. In this case, γ is called a transformation; transformations
are further denoted as γ =Ma ` Mb (or γ = Ma `Mb since
Ma,Mb are derived from Ma and Mb).

Definition 2. Let
{
. . . ,M (k−1),M (k),M (k+1), . . .

}
be an

infinite or finite set of models of the same system, where each
M (k) models the system in a specific level of details. An
abstraction hierarchy is a total order of models where any two
adjacent models form a transformation γk = M (k) `M (k+1)

under a given strongly consistent predicate Φk, and the size
of models monotonically decreases (or increases) with k:

H = . . . `M (k−1) `M (k) `M (k+1) ` . . . (3)

Each M (k) is k-th level of abstraction, also called order k.

Axel
Sticky Note
I have no idea how to explain what P(M) is, but if M is a graph then P(M) is all possible graphs; if M is SAN then P(M) is all possible SANs, etc.

3

a b

a1 a2

a3

b1 b2

b3

a b

a1

a2

a3

b1

b2

b3

c

k:

k-1:

k:

k-1:

(a) (b)

Figure 1. Conventional hierarchy representation (a) compared to Order Graphs (b); k is the higher level of abstraction and k − 1 is the lower level.

A hierarchy is called homogeneous if it uses the same
rule set Φ for all its consistency relations; this implies that
P
(
M (k)

)
= P

(
M (k+1)

)
for all k.

Each hierarchy contains both horizontal and vertical know-
ledge: each abstraction layer M (k) is a horizontal view of the
system, while the set of relations {. . . , γk, γk+1, . . .} stores
the information on how different layers interlink. Notions of
horizontality and verticality have been first introduced in [8].

C. Hierarchical Graphs

Figure 1(a) shows the conventional approach to hierarchical
graphs, which is based on clustering and uses tree struc-
tures [10]. Each node of the higher layer zooms into a
subgraph in the lower layer. Consequently, an edge between
two nodes becomes multiple edges between the corresponding
subgraphs. The notation used in the diagram is based on Zoom
Structures [8]. A convenient way to display graph hierarchies
is zoom views, showing verticality and horizontality with
vertical and horizontal arcs respectively. The following is a
redefinition of hierarchical graphs in the terms presented in
Section II-B.

Definition 3. Hierarchical graph is a homogeneous hierarchy,
such that, each k-th order is a graph G(k) = (V,E), where
V is the set of vertices and E ⊆ V × V is the set of edges;
and all consistency relations in this hierarchy are defined as
follows:

γ = γv ∪ γv+ ∪ γe.

Let G(k) = (V,E) and G(k+1) = (V ′, E′), called lower and
higher orders respectively. Thus, γ ⊆ (V ∪ E)× (V ′ ∪ E′).

Inclusion function γv : V → V ′ represents vertex clustering.
Supplementary inclusion function γv+ : E → V ′ and

predicate (4) ensure that all edges within a cluster are also
included.

∀ 〈v1, v2〉 ∈ E, v′ ∈ V ′ : γv+ (〈v1, v2〉) = v′ ⇔
⇔ γv (v1) = v′ ∧ γv (v2) = v′. (4)

Edge grouping function γe : E → E′ groups edges
connecting vertex clusters:

∀ 〈v1, v2〉 ∈ E, 〈v′1, v′2〉 ∈ E′ : γe (〈v1, v2〉) = 〈v′1, v′2〉 ⇔
⇔ γv (v1) = v′1 ∧ γv (v2) = v′2. (5)

Thus, inclusion function γv can be chosen arbitrarily; and
from it, the predicates (4) and (5) uniquely describe the edges
in the hierarchical graph.

The most important property of the rule set defined above is
that it preserves all paths in the graph during the mapping. In
other words, for any vertices v1, v2 ∈ V and related vertices
v′1, v

′
2 ∈ V ′, if there exists a path between v1 and v2 in G(k),

there will be a path between v′1 and v′2 in G(k+1), and vice
versa:

∀v1, v2 ∈ V, v′1, v′2 ∈ V ′ : γv (v1) = v′1 ∧ γv (v2) = v′2 ⇒
⇒ (P (v1, v2)⇔ P (v′1, v

′
2)) , (6)

where P (x, y) is a function that is true iff there is a path
between x and y.

D. Order Graphs

By the nature of resource graphs, according to Section II-A,
anything can be considered a resource. Can we say that the
edges of a graph are also resources? It is actually true, and
this contradiction is explained and solved by Order Graphs.

As an example, let’s imagine that Figure 1(a) models a
network interaction, where a is a server and b is a client.
On the very abstract level we do not care about the structure
of the network at this level of abstraction, we just need to
know that the client and the server are connected somehow,
thus we model this entire system as the client and the server
connected directly with a single dependency. However, in a
detailed model we can no longer ignore the network protocols
and have to introduce it at least as a single resource node as
shown in Figure 1(b).

A distinct property of the proposed OG modelling approach
is that a high-order edge relates to a node at the lower order.
In this case we say that the node supports an edge, while
in fact this is the same entity viewed from the different
abstraction levels. In real-life systems, any dependency is
always supported by a resource of some kind, and this “fractal”
structure goes down to the smallest details, including atoms
and below. Of course, we do not want to include all these in
the model, so we had to flex the rule by saying that an edge
is either supported by a resource at the lower layer or stays
an edge like in conventional hierarchical graphs.

Definition 4. Order Graph is a homogeneous hierarchy, such
that, each k-th order is a graph G(k) = (V,E), where V is

4

k+1:

k:

(a)

a

a1 a2 a3

e1

k+1:

k:

e

e1

e2

(b)

k+1:

k:

a

a1

b

b1

e

e1 e2
c

(c)

a1 a2

b1

b2

a b

Figure 2. Elementary transformations in Order Graphs and their notation: (a) inclusion, (b) edge grouping, (c) support.

the set of vertices and E ⊆ V ×V is the set of edges; and all
consistency relations in this hierarchy are defined as follows:

γ = γv ∪ γv+ ∪ γe ∪ γs ∪ γs+.

Here γv, γv+, γe are defined as in Section II-C.

Let G(k) = (V,E) and G(k+1) = (V ′, E′); support function
γs : V ↔ E′ is a one-to-one mapping of some vertices onto
some of the edges of a higher order graph.

The first rule on γs is as follows:

∀v ∈ V, 〈v′1, v′2〉 ∈ E′ : γs (v) = 〈v′1, v′2〉 ⇒
⇒ (∃v1 : 〈v1, v〉 ∈ E ∧ γv (v1) = v′1)∧

∧ (∃v2 : 〈v, v2〉 ∈ E ∧ γv (v2) = v′2) , (7)

meaning that we can map vertex v onto an edge 〈v′1, v′2〉 iff
v is connected to at least one vertex related to v′1 and at least
one vertex related to v′2. In addition, all vertices adjacent to v
must be related either to v′1 or v′2:

∀v, vadj ∈ V, 〈v′1, v′2〉 ∈ E′ : γs (v) = 〈v′1, v′2〉 ⇒
⇒ (〈vadj , v〉 ∈ E ∧ γv (vadj) = v′1)∨

∨ (〈v, vadj〉 ∈ E ∧ γv (vadj) = v′2) . (8)

Finally, the same vertex cannot be used in a vertex-to-vertex
and a vertex-to-edge relation; and the same higher order
edge cannot be used in an edge-to-edge and a vertex-to-edge
relation:

domγv ∩ domγs = ∅,
ranγe ∩ ranγs = ∅.

Supplementary support function γs+ : E → E′ groups all
edges adjacent to v into the same higher order edge using the
following predicate:

∀ 〈v1, v2〉 ∈ E, 〈v′1, v′2〉 ∈ E′ : γs+ (〈v1, v2〉) = 〈v′1, v′2〉 ⇔
⇔ γs (v1) = 〈v′1, v′2〉 ∨ γs (v2) = 〈v′1, v′2〉 . (9)

OGs preserve paths just like hierarchical graphs (6).

E. Cross-layer Cuts

In the presented work, the analysis of the system is per-
formed on a flat model, not the entire hierarchy. The actual
benefit of using hierarchies in this case is in the possibility to
obtain flat model (or models) by cutting the hierarchy not ho-
rizontally but across layers. The level of details is selected per

element of the system, which gives high control on adjusting
the precision of the obtained models, ultimately leading to the
best size models for the given fidelity requirement.

Let G(k) = (V,E) and G(k+1) = (V ′, E′) be two
subsequent orders of an OG. For some subgraphs g =
(Veq, Eeq) ⊆ (V,E) and g′ =

(
V ′eq, E

′
eq

)
⊆ (V ′, E′), we

say g = g′ iff conditions (10) and (11) are met; hence g is
the part of the graph (V,E) that is not changed during the
transformation.

∀ 〈x, x′〉 ∈ γ :
(
x ∈ Veq ⇔ x′ ∈ V ′eq

)
∧

∧
(
x ∈ Eeq ⇔ x′ ∈ E′eq

)
, (10)

∀ 〈v1, v2〉 ∈ Eeq, 〈v′1, v′2〉 ∈ E′eq : γ (〈v1, v2〉) = 〈v′1, v′2〉 ⇔
⇔ γ (v1) = v′1 ∧ γ (v2) = v′2, (11)

where γ = G(k) ` G(k+1) is the transformation between these
orders. If such pair g, g′ exists, then G(k) is partially equal to
G(k+1).

Elementary transformation is the minimum set of changes
that may happen between two graphs without violating the rule
set of OGs. Thus, OGs have the following types of elementary
transformations, shown in Figure 2:
• Inclusion: Vertices and edges of the lower order are

mapped into a single vertex in the higher order. Fig-
ure 2(a) shows vertices a1, a2, a3, and edge e1 being
mapped into vertex a; relation 〈e1, a〉 is implied from (4)
and not drawn. This elementary transformation also ap-
pears in conventional hierarchical graphs.

• Edge grouping: Edges of the lower order are mapped
into a single edge in the higher order. Figure 2(a) shows
edges e1, e2 being mapped into edge e. The relations are
drawn as thin black lines to be differentiated from vertex-
to-vertex relations. This elementary transformation also
appears in conventional hierarchical graphs.

• Support: One vertex is mapped into one edge in the
higher order. Figure 2(c) shows vertex c being mapped
into edge e; relations 〈e1, e〉 , 〈e2, e〉 are implied from (9)
and not drawn. This elementary transformation is unique
to OGs.

Any transformation γ = G(k) ` G(k+1) in OG can be
represented with a sequence of elementary transformations
γ = γ1 ◦ . . . ◦ γn, or:

G(k) ` G(x1) ` . . . ` G(xn) ` G(k+1). (12)

5

gb
γa

ga
γb

gi
γi γi

ga

gi

gb

gi

G(k+1)G(x)G(k)

Figure 3. Cross-layer cut G(x) explained.

Definition 5. For two subsequent orders G(k), G(k+1) of an
OG, a cross-layer cut G(x) between order k and order (k + 1)
is a graph, such that G(k) ` G(x) ` G(k+1) under the same
rule set, and G(x) is partially equal to G(k) and G(k+1).

Figure 3 explains the above definition. Let’s represent
γ = G(k) ` G(k+1) as γa ∪ γb ∪ γi, such that domγi =
ranγi = gi is the unchanged part of the graph; γa, γb can
be chosen arbitrarily. Subgraph gb = ranγa is the part
that has been already transformed by γ, one can see that
gb ⊆ G(k+1). Similarly, ga = domγb is the part that has
not been transformed yet, and ga ⊆ G(k). Therefore, cross-
layer cut G(x) = ga ∪ gb ∪ gi = ranγa ∪ domγb ∪ gi contains
parts from both order k and order (k + 1). Note that it is not
possible to construct γa or γb without the other being empty
if γ is an elementary transformation. From (12) one can see
that a cross-layer cut between G(k) and G(k+1) is one of the
steps in a sequence of elementary transformations.

As an example, two possible cuts in Figure 1(b) are
V = {a1, a2, a3, c, b} (with corresponding edges) and V =
{a, c, b1, b2, b3} (also, with corresponding edges).

Making a cut through more than two layers – from G(k)

to some G(k+b) – can be done iteratively. Firstly, obtain a
cut between G(k), G(k+1), so G(k) ` G(x1) ` G(k+1). Then,
obtain a cut G(x2) between newly created G(x1) and G(k+2),
which may now contain parts from G(k), G(k+1) and G(k+2).
Repeat the process until the final cut G(xb−1) ` G(xb) `
G(k+b) is found.

Cross-layer cuts are models of the same system and are
consistent with the layers in the corresponding OG. This
consistency preserves graph properties like connectivity, which
are used when parametric modelling is applied during the
workflow, described in the following section.

III. MODELLING FLOW

We propose a modelling flow based on the exploration
of power-proportional cuts using OGs. This modelling flow
will result in both fidelity and effort to be as proportional
to power as possible (or, instead of power, any metric or
combination of metrics). The flow is shown in Figure 4.
Characterisation experiments on the components of the system
provide information on the crucial parameters and establish the
elementary model for each component. The parameters would
help to identify appropriate cuts in the OG model for further

Characterisation
experiments

System model in Order Graphs

Discover power-proportional cut
Parametric models

for components

Composite model of the cut

Knowledge of the system resources

Figure 4. Modelling workflow.

analysis. The flat model used for this analysis is obtained from
composing separate elementary models according to the OG
cut.

The method of using hierarchy cuts is non-destructive,
meaning that the model can be easily re-arranged and adapted
for a different fidelity distribution. This is especially helpful
if the model is used in runtime management of the systems
working in various “modes”. Hence the proposed approach
appears advantageous compared to a single flat model.

Intuitively, when using this parametric significance-driven
modelling approach, if there are multiple parameters, there
is no guarantee that the designer or the runtime management
will end up with the same cut for different parameters. This
method does not preclude the use of different cuts for different
parameters either during design time or runtime. Cut discovery
across the fundamental OG system model facilitates the use
of different cuts for different parameters in the same way as
different cuts for the same parameter at different system states.

At design time, the development of a system OG model
can also be a cumulative process of building parametric-
proportional cuts. The designer does not have to have a fully
detailed OG right from the start. OG elements can be added to
models as parameter investigations become more detailed and
more and finer characterisation data becomes available. With
further research and development of the method, especially
with OG-related tools, it is conceivable that this will become
true at runtime as well.

The method provides modelling effort savings through two
provisions. First the complexity of the overall system OG
model may grow in an effort-optimal manner according to
parametric design goals because its construction process can
be an accumulation of parametric proportional cuts. And
second when a complex OG model is already available, at any
one time during analysis or runtime, only a specific parametric
proportional cut or set of such cuts need to be studied and not
the entire detailed system model.

In Section IV we apply this flow to obtain power-
proportional models for an example platform. We use SANs as
a possible technique for quantitative modelling of the system’s
metrics. Hence we do not focus on evaluating the absolute
values. The goal of the study is to demonstrate the flexibility
of the method w.r.t. a heterogeneous platform and a variety of
tasks.

6

Platform

Power

A7
power

domain

Computation

A15
cores

k+2:

k+1:

k:

k-1:

Tasks

A7
cores

Core 0 Core 3

...

Core 4 Core 7

...

DVFSVDD
Tree

Current
Sensor

A15
power

domain
Task

Task

GPU
power

domain

Memory
power

domain

Figure 5. Order Graph model of running tasks on Odriod XU3 platform (some horizontal dependencies are omitted).

IV. CASE STUDY

A. Platform Description

The Odroid XU3 board [1] is a small Octa-Core computing
device implemented on energy-efficient hardware. The board
can run different versions of OS, for example Ubuntu 14.04
or Android 4.4.

The main component of Odroid XU3 is the 28nm Applic-
ation Processor Exynos 5422. This System-on-Chip is based
on the ARM big.LITTLE architecture [9] and consists of a
high performance Cortext-A15 quad core processor block, a
low power Cortex-A7 quad core block, a Mali-T628 GPU
and 2GB DRAM LPDDR3. The board contains four real
time current sensors allowing the measurement of power
consumption on the four separate power domains: big CPU,
little CPU, GPU and DRAM. There are also four temperature
sensors for the A15 processors and one for the GPU.

On the Odroid, for each power domain, the supply voltage
(Vdd) and clock frequency can be tuned through a number
of pre-set pairs of values, allowing dynamic frequency scaling
(DFS) when the frequency is between 200MHz and 800MHz
(the Vdd stays constant in this region) and dynamic voltage
and frequency scaling (DVFS) [5], [11] when the frequency
is 800MHz and above.

B. Platform Model in Order Graphs

In this case study we focus on modelling power consump-
tion of the platform. Two major contributors are task affinities
(which task runs on which core) and DVFS. Figure 5 shows the
OG model of the system. At the higher levels of abstraction,
the system is represented as a set of tasks running on a
platform, which in turn consists of a computation component
and a power component. The computation resource is provided
by A7 and A15 cores, which appear in the lower orders, and
the power resource is divided into four power domains, as
described in Section IV-A. For clarity, some of the horizontal
edges on this diagram are hidden: every core is actually
connected to the corresponding Vdd tree and to the task node,
etc.

C. Platform Model Components

SANs are an extension to Generalised Stochastic Petri
Nets (GSPNs) and a more expressive representation language.
The SANs formalism provides a general way of specifying
the enabling of an activity or transition, a general way of
specifying a completion (firing) rule, a method of representing
zero-time events (hence including deterministic as well as
stochastic behaviours), a method of representing probabilistic
choice in addition to probabilistic delay provided by GSPNs.
It also provides state-dependent parametric values and general
delay distributions on activities.

With the Odroid platform, the major controls available for
runtime power management are the DFS and DVFS of the
core blocks (power domains), the activation and inactivation of
individual cores, and the mapping of specific threads or tasks
to individual cores. Figure 6 shows several possible ways of
modelling these choice-based decisions. The task scheduling
models describe an environment where tasks are organised into
three queues, one going to the A15 processors, one going to the
A7 processors, and one with non-deterministic designations.
The algorithm in these models sets tasks to either the A15
or the A7 queue. This is done by specifying the logic for
the output gates to decrement and increment the task queue
markings accordingly when a transition fires. For instance, if
transition A15 fires, one of the tasks in one of the other queues
is moved to the A15 queue. The two models have different
levels of fidelity in their representation; Figure 6(b) is a more
deterministic case; Figure 6(a) is a more probabilistic case.
The modelling and analysis costs/efforts of these models are
related to their representational fidelity. The DVFS model in
Figure 6(c) is the most probabilistic, has the least fidelity, and
is the easiest to use, but higher fidelity versions up to fully
deterministic can also be constructed. In these models, the task
scheduling and DVFS transitions are assumed to be triggered
by other sub-nets representing the controllers, which are not
included here.

The other crucial issue to be modelled for this system, when
we talk about system power consumption, is processing, i.e.
the execution of threads/tasks in the cores. The fundamental

7

A7

A15

A15 tasks

A15/A7 tasks

A7 tasks

A7

A15

A15 tasks

A15/A7 tasks

A7 tasks

High

Mid

Low

DVFS

(a) (b) (c)

Figure 6. SANs models for stochastic (a) and deterministic (b) affinity, and DVFS (c).

Tasks Start Processing Finish

Capacity

Task Type 1 Start 1 Processing 1 Finish 1

Capacity

Task Type 2 Start 2 Processing 2 Finish 2

(a)

(b)

Figure 7. SANs models for task execution.

processing element model is shown in Figure 7(a). Here the
place Capacity represents the unused capacity of a processing
element (e.g. a core), and the place Processing represents the
current number of tasks being executed in the core. If it is a
single core, the sum of markings of these two places represents
the pipeline depth or multi-threading capability of the core. If
there are multiple cores in this model, the sum of markings
represents the entire block’s multi-threading capability.

Different levels of fidelity are possible with this representa-
tion. For instance the degree of probabilistic vs. deterministic
can be tuned for a more or less fuzzy representation. We
may decide to model part of a core (i.e. a multiplier), an
entire single core, a core-block, or the entire Odroid chip
with one of these sub-nets. When setting up a more detailed
model with higher fidelity, we may need to distinguish how
a processing element behaves with different types of tasks
(see Figure 7(b)), as shown in subsequent sections the Odroid
cores consume different amounts of power when dealing
with different tasks. Another power-related issue in terms of
processing is the workload or CPU utilisation when running a
task on a CPU, which could be a number between 0 and 100%.
Deterministic modelling of workload can be done similarly
to what’s done for tasks in Figure 7(b), with the workload
resolution determining how many copies of the processing
sub-net to use. For example, a resolution of 20% will result in
5 such sub-nets each representing 0-20%, 20-40%, etc. With
more fuzzy representations, all such issues may be covered by
probabilities using rates in the transitions.

Once a cut has been determined using the OG model, a
flat SANs model covering the entire system can be made with
different levels of fidelity for different parts. This will be a
flat model with power-proportional fidelity and effort.

D. Model Characterisation Experiments

Experiments with the Odroid platform were carried out in
order to understand the power consumption under different op-
eration frequencies and voltages. The low-power A7 quad core
block can scale its frequencies from 200MHz to 1400MHz,
whilst the performance-oriented Cortex A15 block has a range
of frequenciy from 200MHz to 2000MHZ. The frequency of
each block can be changed independently using OS commands
and the system scales the operating voltage of the block to
fit the chosen frequency. The on-chip sensors allow voltage,
current and power for each processor to be measured in real
time.

In our characterisation experiments, firstly the above para-
meters were measured without any additional workload, with
only the OS running. Then the same parameters were meas-
ured for each core with application threads running. We
experimented with the typical Linux stress task, i.e. running
square root calculations repeatedly, and in addition, other
computations including logarithm calculations and the four
arithmetic operations. We also covered different levels of
workload.

Another important experiment is the measurement of the
same parameters with some of the cores in each block dis-
abled: Odroid allows from one to four of the A15 being
disabled and from one to three of the A7 to be disabled. At
least one A7 must be running for the OS to be alive.

In these experiments, it was observed that an A15 consumes
four times or more power than an A7 when both are running at
the same frequency, up to an order of magnitude more power
when both are running at the same voltage. Figure 8 shows
the relationship between power consumption and the execution
time for the two types of cores on the average running a range
of different types of tasks.

These radically different performance and power figures,
and their complex relations to the different tasks being ex-

8

120

100

80

60

40

0

20

E
x

e
c

u
ti

o
n

 t
im

e
,

s
e

c

0 0.5 1 1.5 2 2.5

Power, W

A7

A15

Figure 8. Measured power to execution time.

Task

A7
cores

Core 4

Core 7

...

A7
power

domain

A15
power

domain

Figure 9. Proposed cross-layer cut for power-proportional modelling of
Odriod XU3.

ecuted in a core, validate the approach promoted in this paper.
For instance, when certain tasks are mapped to the A7 block,
because of the relatively light power demand of these cores
we may be able to afford to model such processing with less
fidelity, i.e. using a more probabilistic model and/or using a
more structurally fuzzy model. For instance, when the A15
block is also running, it may be a good idea to not represent
individual A7 cores but to cover the entire A7 block with a
single model of the type in Figure 7(a).

E. Power proportional model sizes
Using the modelling flow presented in Section III and based

on experimental data from the Odroid, presented earlier in
this section, for a certain modelling fidelity we may need
to represent each A15 core with a model of the type in
Figure 7(b), with multiple types of tasks – e.g., CPU heavy
and memory heavy, and many levels of DVFS and workload
resolutions. For the same level of fidelity, we can represent the
entire A7 block with a single sub-net of the type in Figure 7(a)
without task, DVFS and workload differentiation.

The corresponding OG cut is shown in Figure 9.
Power proportional cuts through the model space usually

result in models whose sizes are optimal for studying power, in
the sense that the resolution or fidelity of power as a parameter
is constant through the model. In other words, a power
proportional cut for a specific power representational fidelity
gives the smallest possible model for that degree of fidelity.
Other representations away from this cut will inevitably result
in certain parts showing an unnecessarily higher degree of
fidelity leading, usually, to higher degrees of representational
complexity.

One of the generally accepted metrics of model size and
therefore modelling effort and the effort of using models is

the size of the state space of the model. For instance, one
of our envisaged applications of our modelling method is
the design and analysis of runtime parametric management
algorithms or machines, e.g. runtime power management
for mobile and embedded systems. For such management
or control schemes, more sophistication is usually needed
to achieve better results. Naïve examples that are widely
available in the public and commercial domains, such as
such Linux/Android power governors as ondemand, usually
assume very simplistic plant models and rely on feedbacks to
achieve some degree of effectiveness, which is almost never
optimal. More sophisticated algorithms such as those based on
learning and those providing a degree of adaptation can almost
always provide better results than the standard governors, but
inevitably require better plant models. On the other hand,
most computer system control algorithm designers are most
comfortable with thinking of the plant as a state machine.
And many types of parametric management algorithms, e.g.
learning and model adaptive schemes, depend on a state space
representation of the plant being available [6], [18], [7], [13].
The size of the state space of a model, therefore, is directly
relevant for this type of model usage.

The example architecture of the type seen in the big.LITTLE
Exynos chip featured in the Odroid system consists of N
power domains. The k-th power domain, 0 ≤ k < N , has
dk DVFS points (pre-set pairs of Vdd and clock frequency
values) and ck processing cores of the same type, each of
which supports a workload between 0 and 100% running tk
types of tasks. For such a system and for power studies, the
fundamental state element is ‘a particular core in a particular
power domain is running a particular type of task at a certain
workload’. Usually the parametric representational fidelity
requirement dictates the granularity of workload representa-
tion, which should be constant within each individual power
domain, as there is no intra-domain core heterogeneity. This
leads to each of the ck cores having wk workload points and
tk types of tasks. The size of the state space S of a cut model
for such a system as the controlled plant, of the type described
in the previous sections, is therefore:

|S| =
N−1∏
k=0

dkckwktk.

For the particular example of managing the Odroid’s 8
general processing cores, reducing the representation of the
A7 cores to a single execution sub-net model, as in Figure 9,
produces 4 times reduction of the state space (the state space
is reduced to 25% of the original full model). Reducing the
workload resolution of the A7 cores to equal power fidelity of
the A15 cores produces a similar reduction of the state space
(i.e. the same power fidelity results in workload resolutions of
wA15 ≥ 4 and wA7 = 1). The same is true for DVFS resolu-
tion. There are 20 DVFS points for the A15 power domain and
15 for the A7 power domain in the Odroid. Maintaining the
same power fidelity, there is no need to represent all 15 of the
A7 DVFS points. Even if we represent all 20 DVFS points for
the A15 domain, a maximum of 5 DVFS bands are needed for
the A7 domain in the model. And with the simplest possible

9

task type differentiation, CPU-heavy and memory-heavy, for
the A15 processors, the A7 domain would have no need for
task type differentiation. Given all these considerations and
without going into any other more sophisticated elaborations,
a 128 times reduction of the state space (new state space
size = 1/128 or 0.8% of the original) can be obtained by
exploiting the knowledge that each A15 core is as significant
as the entire A7 block in terms of power. This kind of state
space reduction may result in qualitative differences in the
sophistication of the runtime management scheme given any
constant overhead budget for the management, or it can be
used to reduce the management overhead whilst maintaining
the same degree of management effectiveness. This modelling
method provides more opportunities for runtime tuning and
adaptation because cuts may be allowed to dynamically change
during run time. For instance, if it is found that no A15 core
is active and the entire A15 block is shut down, power fidelity
may be improved by representing the A7s individually by
adopting a different cut. This can be necessary because A15
total shutdown in may indicate that the system is running in
low power or even survival modes and during these modes
what are regarded as small amounts of power during normal
operation become significant. This should lead to a higher
degree of fidelity in representing the quantity of power in the
runtime model. On the other hand, if the A15 total shutdown is
purely a result of workload reduction, the previous coarse A7
block cut should be entirely satisfactory. The facility of layer-
crossing cuts provides additional flexibility for model tuning
and adaptation.

V. CONCLUSIONS

This paper, to our knowledge for the first time, formally
recognises the need for parametric significance-driven design,
where modelling fidelity and hence effort are proportional to
design parameters. This concept is supported by a parametric
significance-driven modelling approach to complex systems,
illustrated by using power as an example metric in this paper,
resulting in the reported modelling flow which has power-
proportional fidelity.

This method is centred on Order Graphs, a new formalism
with facilities for independent vertical zooming among dif-
ferent parts of a model, and the straightforward exploration
and discovery of appropriate parametric-proportional cuts.
These cuts are then very suitable for exploration, reasoning
and analysis with established flat qualitative and quantitative
representation methods. Here SANs are used as an example
for this type of exploration. Experiments with a heterogeneous
system with multiple cores and power domains as well as
different types of computation tasks help validate and fur-
ther motivate the approach. Analysis showed that parametric-
proportional cuts can reduce the size of models radically when
system heterogeneity can be exploited.

The future work would focus on two aspects. Theoretically,
the OG modelling method will be expanded beyond the
static knowledge stage into dynamic progression semantics.
Practically, the proposed method will be applied to the devel-
opment of an intelligent runtime parametric control scheme
for heterogeneous many-core systems.

Acknowledgement This work is supported by EPSRC grant
EP/K034448/1.

REFERENCES

[1] Odroid XU3. http://www.hardkernel.com/main/products.
[2] G. Balbo. Formal Methods for Performance Evaluation, volume

LNCS4486, chapter Introduction to Generalized Stochastic Petri Nets,
pages 83–131. Springer, 2007.

[3] S. Borkar. Thousand core chips: A technology perspective. In
Proceedings of the 44th Annual Design Automation Conference, DAC
’07, pages 746–749, New York, NY, USA, 2007. ACM.

[4] Yitzhak Brave and Dominique Bonvin. A minimally restrictive policy for
deadlock avoidance in a class of fms. In Silvano Balemi, Petr Kozák, and
Rein Smedinga, editors, Discrete Event Systems: Modeling and Control,
volume 13 of Progress in Systems and Control Theory, pages 57–69.
Birkhäuser Basel, 1993.

[5] A. P. Chandrakasan, S. Sheng, and R. W. Brodersen. Low power CMOS
digital design. IEEE Journal of Solid State Circuits, 27:473–484, 1995.

[6] Anup K. Das et al. Reinforcement learning-based inter- and intra-
application thermal optimization for lifetime improvement of multicore
systems. June 2014.

[7] Anup K. Das et al. Workload uncertainty characterization and adaptive
frequency scaling for energy minimization of embedded systems. In
Conference on Design, Automation & Test in Europe, March 2015.

[8] A. Ehrenfeucht and G. Rozenberg. Zoom structures and reaction systems
yield exploration systems. In IJFCS, pages 275–306, 2014.

[9] P. Greenhalgh. big.LITTLE Processing with ARM Cortex-A15 & Cortex-
A7 – Improving Energy Efficiency in High-Performance Mobile Plat-
forms. ARM, 2011. White Paper.

[10] B. Kumar and E. S. Davidson. Computer system design using a
hierarchical approach to performance evaluation. Commun. ACM,
23(9):511–521, September 1980.

[11] E. Le Sueur and G. Heiser. Dynamic voltage and frequency scaling: The
laws of diminishing returns. In Proc. of 2010 Intern. Conf. on Power
Aware Computing and Systems, HotPower’10, USA, 2010.

[12] Yves Lhuillier et al. HARS: A hardware-assisted runtime software for
embedded many-core architectures. ACM Trans. Embed. Comput. Syst.,
13(3s):102:1–102:25, March 2014.

[13] Luis Alfonso Maeda-Nunez et al. PoGo: an application-specific adaptive
energy minimisation approach for embedded systems. In HiPEAC Work-
shop on Energy Efficiency with Heterogenous Computing (EEHCO).
HiPEAC, January 2015.

[14] R. Murphy, S. Carter, M. Ornelas, and S. Deshpande. System and
method for dynamic resource reconfiguration using a dependency graph,
September 9 2004. US Patent App. 10/382,427.

[15] A. Rafiev et al. Studying the interplay of concurrency, performance,
energy and reliability with ArchOn – an architecture-open resource-
driven cross-layer modelling framework. In Proc. to ACSD, 2014.

[16] A. Rafiev et al. Power-proportional modelling fidelity. In Proc to Model-
Implementation Fidelity (MiFi), 2015.

[17] W.H. Sanders and J.F. Meyer. Lectures on Formal Methods and Perform-
ance Analysis, volume LNCS2090, chapter Introduction to Generalized
Stochastic Petri Nets, pages 315–343. Springer, 2001.

[18] A. Suardi, S. Longo, E.C. Kerrigan, , and G.A. Constantinides. Robust
explicit MPC design under finite precision arithmetic. In Proc. to IFAC,
2014.

[19] Bo Wang et al. End-to-end power estimation for heterogeneous cellular
LTE SoCs in early design phases. In Power and Timing Modeling, Op-
timization and Simulation (PATMOS), 2014 24th International Workshop
on, pages 1–8, Sept 2014.

[20] Fei Xia, Alexandre Yakovlev, Ian G. Clark, and Delong Shang. Data
communication in systems with heterogeneous timing. IEEE Micro,
22(6):58–69, 2002.

