

Newcastle University ePrints - eprint.ncl.ac.uk

de Gennaro A, Stankaitis P, Mokhov A. A Heuristic Algorithm for Deriving

Compact Models of Processor Instruction Sets. In: 15th International

Conference on Application of Concurrency to System Design. 2015, Brussels,

Belgium: IEEE.

Copyright:

© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all

other uses, in any current or future media, including reprinting/republishing this material for advertising

or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or

reuse of any copyrighted component of this work in other works.

DOI link to article:

http://dx.doi.org/10.1109/ACSD.2015.17

Date deposited:

04/01/2016

http://eprint.ncl.ac.uk/
http://dx.doi.org/10.1109/ACSD.2015.17

A Heuristic Algorithm for Deriving Compact
Models of Processor Instruction Sets

Alessandro de Gennaro
School of Electrical and
Electronic Engineering
Newcastle University

Newcastle upon Tyne, United Kingdom
Email: a.de-gennaro@ncl.ac.uk

Paulius Stankaitis
School of Computing Science

Newcastle University
Newcastle upon Tyne, United Kingdom

Email: paulius.stankaitis@ncl.ac.uk

Andrey Mokhov
School of Electrical and
Electronic Engineering
Newcastle University

Newcastle upon Tyne, United Kingdom
Email: andrey.mokhov@ncl.ac.uk

Abstract—Finding a compact formal representation of a pro-
cessor instruction set is important for easier comprehension by
the designer, as well as for synthesis of an efficient hardware
implementation of the processor’s microcontroller.

We present a new heuristic algorithm for deriving compact
models of processor instruction sets. The algorithm is based on
finding similarities between pairs of instructions and assigning
similar opcodes (using a Hamming distance metric) to similar
instructions (using a newly introduced instruction similarity
metric). We demonstrate that this heuristic produces results with
an average overhead, in terms of area, of 7.8% in comparison
to the global optimum on the benchmarks we studied (subsets
of instructions of ARM Cortex M0+, Texas Instruments MSP430
and Intel 8051 processors).

The algorithm is implemented as an open-source plugin for the
Workcraft framework and is validated on a case study of a subset
of 61 (out of 68) instructions of ARM Cortex M0+ processor.
We compare the presented algorithm against a number of other
available implementations.

I. INTRODUCTION

Over the years, aggressive transistor scaling led to immense
microprocessor performance improvement. For instance, mi-
croprocessors running frequency has increased 100 times more
than theoretically predicted. However, power consumption of
chip has been increasing and has became a crucial progress
constraint [1]. Moreover, as in recent decades mobile elec-
tronics have became more and more affordable to customers,
device operation time became vital. Though, battery life has
not increased significantly [2], thus other power optimisa-
tion approaches are being researched. Reduction of power
consumption through instruction set optimisation approach
has been known for a while. Nonetheless, it is still an
active research area. In this field some important work has
been done such as the introduction of a formalism called
Conditional Partial Order Graphs [3], and a new instruction
set architecture design approach based on that model [4][5].
Reduction of power (as well as area, latency or time to design)
of Instruction Set Architecture (ISA), via an automated and
rational approach, motivates further exploration of this recently
introduced, though promising design approach.

A. Related work

Different approaches have been tried to handle the prob-
lem of Conditional Partial Order Graph encoding, targeting
the minimisation of parameters such as area, latency of the
derived controller which comes up with the synthesis of the
representation.

In [6] the so called Single-literal encoding has been im-
plemented. It finds the optimal encoding under the constraint
that each condition can have at most one literal (positive
or negative), it is based on graph colouring and works well
in practice when the single-literal constraint is appropriate.
Indeed, it does not fit well to instruction set architecture
modelling, as it is likely that the opcodes generated by such
an approach will be composed by a high number of variables.
This parameter in fact might be constrained in this application,
as in our case of study: ARM Cortex M0+ architecture has
opcodes limited to no more than 8 bits.

In [4] instead, an algorithm which is suppose to find
an optimal encoding using a SAT-solver as been developed,
named SAT-based encoding. Even though it is able to seek
an encoding on a fairly reduced number of literals in a
short amount of time, it has many constraints which limit
the usability of such approach. It doesn’t scale well and
cannot handle instruction sets with more than 12-15 instruc-
tions. The current implementation does not support branching
instructions (which are fundamental for the description of
more complex instructions behaviours), and finally it does not
allow handling opcode constraints such as the definition of the
number of variables the opcodes should be composed by, or
the definition of any bit for reserved functions.

Another approach, which is not directly related to the
Conditional Partial Order Graph model, but which may be
extended to it, given the similarity of the problem, is the
technique described in [7]. In it, an algorithm for optimally
encoding Finite State Machine representation is presented.

In this work we present an algorithm to fill in the gaps
described in this Section. We describe a technique able not
only to optimise the final controller under different perspec-
tives, but also to customise the final opcodes in order to
tailor well the design process of instruction set architectures,

Fig. 1: Example of CPOG with 2 projections: H|X=1 on the right, H|X=0 on the left side

as well as many other applications this representation might
be used to. In Section II we briefly introduce the model we
have used, to carry out the research. The heuristic algorithm
is deeply described in Section III. In Section IV the model
of ARMv6-M ISA is shown and used as case of study for our
encoding approach. In Section V the tool we have developed is
presented and a set of benchmarks to evaluate the performance
of the new technique is shown. Section VI concludes the paper
pinpointing what has been achieved, and future work.

II. BACKGROUND

Conditional Partial Order Graph [3][6][8] is a quintuple
H = (V, E, X, ρ, φ):

• V is a set of vertices which correspond to events (or
atomic actions) in a modelled system.

• E ⊆ V × V is a set of arcs representing dependencies
between the events.

• Operational vector X is a set of Boolean variables. An
opcode is an assignment (x1, x2, ..., x|X|) ∈ {0, 1}|X|
of these variables. An opcode selects a particular partial
order from those contained in the graph.

• ρρρ ∈ F (X) is a restriction function, where F (X) is the
set of all Boolean functions over variables in X. ρ defines
the operational domain of the graph: X can be assigned
only those opcodes (x1, x2, ..., x|X|) which satisfy the
restriction function, i.e. ρ(x1, x2, ..., x|X|) = 1.

• Function φφφ : (V ∪ E) → F (X) assigns a Boolean
condition φ(z) ∈ F (X) to every vertex and arc z ∈ V ∪E
in the graph. Let us also define φ(z)

df
= 0 for z /∈ V ∪E

for convenience.

This model is based on strict graphical representation, where
each event is represented by a circle ©, and each connection
between vertices, named as “arc”, depicted as an arrow →.
Both the previous elements are labelled with a predefined
pattern composed by vertex/arc name, followed by condition
φ(v/e). Next to each graph, a further condition is present

called restriction function (ρ), composed by operational vari-
ables X .

An Example of CPOG is shown in Figure 1 with two
possible projections at the bottom-side. The purpose of the
condition φ is to switch on/off vertices and edges, when
the conditions on it are satisfied or not respectively. In this
representation, dash edges and circles represent nodes and
arrows switched off, in such a way as not to affect the
behaviour of that particular event class.

III. ENCODING OF DIFFERENT PARTIAL ORDERS

The encoding process can be performed after all the partial
orders have been created and optimised. It consists of associat-
ing a unique opcode to each graph in order to be distinguished
by the other ones. This is the first step of the synthesis phase.
Here, the controller for managing the whole structure is the
main target. In order to better describe such problem, it may
be worth giving some definitions of the terms used along this
research.

An opcode points out an array of bits where each element
can be a logic 0 or 1, the following ones are examples of feasi-
ble opcodes {0010, 000000, 1110001, 0}. An opcode ensemble
is defined as the group of opcodes it is possible to use with
a particular number of bits, for instance the opcode ensemble
of length 2 is composed by opcodes: {00, 01, 10, 11} while
the one of length 3 {000, 001, 010, 011, 100, 101, 110, 111}.
Encoding, also referred to as a solution, is a subset of an
opcode ensemble where each opcode is associated to one and
only one partial order graph. Finally, the solution space is
represented as the group of all the possible encodings for a
particular CPOG.

In Figure 2, each empty circle represents a possible opcode
which might be potentially employed to encode one partial
order. A number n is present inside a circle when the partial
order n has been encoded with the opcode associated to that
particular circle. Each opcode, in this case, is composed by 3
bits.

(a) (b) (c) (d)

Fig. 2: Some examples of possible encodings for a 5 Partial orders model.

In Figure 2(a), the opcodes available to encode a CPOG that
contains up to 8 partial orders are depicted. While in Figure
2(b) and 2(c), two possible solutions, for what concerns a
CPOG composed by 5 partial orders, are shown. Designers
may also exploit Don’t care conditions when a group of
opcodes might be employed to represent partial orders, as
shown in Figure 2(d) for instance. Here, the second partial
order is encoded by the opcode 0XX.

In light of the above, we want to demonstrate that the
solution space might be really high depending on the number
of graphs to encode and on the size of the opcode ensemble
(neglecting the encodings including Don’t cares conditions).
The size of the solution space is of primary importance
because potentially, each solution might be used to synthesise
a different (with various optimisation degrees) controller, and
should be therefore inspected. As a consequence, the higher
the number of solutions, the harder it would be to seek the
best possible encoding for a particular representation. This is
the reason why one of the main concerns at this step is trying
to reduce the size of the solution space as much as possible.

For instance, let us consider a very small Conditional Partial
Order Graph representation, composed by 4 graphs only. As
analysed in [6] and briefly above, there could be several
approaches to encode various graphs in order to minimise the
Boolean functions in each vertex and arc. What we are going
to take into account hereby will be opcode ensembles with
minimum length related to number of partial orders.

This means that in order to encode 4 different graphs, we
need 2 bits (opcode ensemble of length 2). Therefore, in order
to get the minimum number of bits needed to encode an entire
model one needs to refer to Formula 1, where k stands for the
number of partial orders which composes the representation.

#{B} = dlog2(k)e (1)

In this case, the number of solutions fits perfectly to the
graphs to encode, as with two bits it is possible to encode
exactly four elements (22 = 4). Additionally, in order to
compute the entire solution space of such an instance we
should take into account all the permutations (or dispositions,
if k < m) of the opcode ensemble. Therefore, the total number
of solutions one can select by arranging opcodes differently
each time in a group of m elements is represented in Formula
2 by #{S}, where k is the number of graphs to encode.

#{S} = m!

(m− k)!
⇒ #{S}′ = (m− 1)!

(m− k)!
(2)

Example. If m and k are set to 4:

(4)!

(4− 4)!
=

4!

1
= 4! = 24

Additionally, we managed to reduce the solution space even
more by fixing the first element in every solution. This is be-
cause each circuit may be derived by two different encodings
(adding some inverter gates) complementary to each other.
Thus, by taking into account such statement, we modified
#{S} into #{S}′ (Formula 2). It is extremely beneficial for
the size of the solution space. By analysing this problem, the
ensemble reduces from 24 to 6.

Fig. 3: Number of solutions depending on number of POs.

Figure 3 shows the number of possible solutions (the vertical
axis) for encoding a given number of POs (the horizontal axis).
The plot is obtained from Formula 2: varying the number of
graphs, k, and fixing the size of the opcode ensemble, m,
assuming opcodes on minimum number of bits. On y-axis

the #{S}′ is depicted in logarithmic scale. The number of
solutions grows up exponentially.

A. Heuristic function

After discussing the number of solutions one should deal
with, it is worthwhile mentioning that in the literature of
Conditional Partial Order Graphs, a quick way to heuristically
evaluate the area of the final controller by looking at the
encoding only missed. As a direct consequence, in order to
evaluate a solution in terms of whichever constraint (as the
area consumption), logic synthesis and technology mapping
steps were needed; making the whole process of seeking the
best possible solution between the ones available an extremely
difficult task. In this research, and in particular in this Section,
we therefore aim at presenting a heuristic function for an early
evaluation of an encoding, targeting an optimised controller.

In order to describe the heuristic function just mentioned,
let us first describe algebraically the differences between the
partial order graphs which compose a single model. First
parameter for the evaluation is the similarity between couples
of graphs, in terms of nodes and arcs. One can set the results,
for each couple of partial orders, inside a matrix (named
Difference Matrix). In particular, it is defined as a strict upper
triangular matrix [N ×N], where N is the number of graphs
in a model, with all the entries on the main diagonal fixed
to 0. Every row (i) is associated to a PO, as well as every
column (j). DMi,j represents the number of vertices and arcs
that are present only in one of the two POs i and j (this is
similar to the Hamming distance, but on partial orders instead
of bit vectors). An example is depicted below, on the left-side
of Formula 3. In a similar way it is possible to store all the
differences between the opcodes assigned to couples of graphs
i and j in the Hamming Distance matrix [9] (right-side of
Formula 3).

DM =

0 2 1 4

0 0 1 2

0 0 0 1

0 0 0 0

 HD =

0 1 1 2

0 0 2 1

0 0 0 1

0 0 0 0

 (3)

A key point to develop the cost function was to associate more
similar partial orders to more similar opcodes. Exploiting this
knowledge, the cost function we used to evaluate area before
the synthesis phase is depicted in Formula 4.

F =

i 6=j∑
i,j∈N

(DMij −HDij)
2 (4)

Intuitively, minimising F means encoding similar instruc-
tion classes with couples of opcodes with lower Hamming
Distance.

In order to demonstrate the applicability of such heuristic,
we tried to synthesise all the possible solutions of a repre-
sentation composed by eight graphs (presented in [10], Figure
2.7) and to map the controllers generated with a 90nm simple

library composed by basic 1/2 input logic gates (AND, OR,
INV, NOR, NAND). The results, taking into account area and
the heuristic function, are plotted in Figure 4 where it is clearly
present an average correlation between the area of the final
circuit and the cost stem by the encoding.

Fig. 4: Points dispersion of CPOG composed by 8 graphs.

B. Encoding generation

Exploiting the heuristic function presented previously, de-
signers may achieve quite good results in terms of area (as
well as for other constraints) of the final controller without
going through the synthesis phase of the model. The last part
to complement the encoding association process is to present
the encoding generation algorithms that have been developed.

Designers have mostly two choices: trying to generate
and synthesise all the possible solutions, or generating few
solutions targeting a low cost of function results. It is worth
mentioning that, even though the former approach would
guarantee a more optimised controller, it is not always possible
to apply it to all the models as the number of solutions might
exponentially explode for bigger representations. During this
work, a tool has been developed (presented in Section V) and it
features all the approaches described in this research and in the
previous ones. Therefore, both the possibilities are available
for the designer who might freely choose between them.

Below we discuss how Simulated Annealing technique can
be used to accelerate the search of the optimal encoding. The
interested reader is referred to [10] for further information
about the so called Exhaustive encoding. Briefly, the heuristic
algorithm generates as many solutions as the designer wants,
trying to associate dynamically couples of opcodes presenting
a lower Hamming distance to more similar graphs. As some
steps of the algorithm are decided randomly, for example
when pairs of graphs or opcodes contain the same number of
differences, the result is not guaranteed to be optimal, so an
additional step is performed in order to minimise the heuristic

TABLE I: Comparison between encodings generations applied to a CPOG with eight Partial orders.

Generation approach #Encodings inspected Best area [µm2] Area overhead Runtime [s] Speed-up
Exhaustive encoding 5040 (all) 220 - 2105 -

10 255 15.73% 2 ×1052
Random encoding 100 247 12.39% 17 ×124

1000 230 4.46% 218 ×10

1 254 15.47% 1 ×2105
Heuristic encoding (SA) 10 237 7.65% 2 ×1052

100 225 2.30% 16 ×131

function associated to the solution found. Such a step is based
on Simulated Annealing optimisation technique.

Hereinafter referred to as SA, it was introduced by Kirk-
patrick et al. in 1983 [12]. The aim of this method is to find
minimum or maximum values of a function which depends on
many independent variables. Commonly, it is named cost func-
tion, and in our case is the one in Formula 4. Much research
was conducted exploiting such an optimisation method, either
in computer engineering field or in other subjects [13]. In our
case we have used this approach by swapping the opcodes
associated to various partial orders attempting to minimise the
cost function. We found that the following simulated annealing
parameters work well experimentally: initial temperature set
to 10, cooldown factor fix to 0.996 and the ending temperature
set to 0.1.

The results, applied to the same model mentioned before
composed by eight partial orders, are depicted in Table I. In
the last row, the outcome of the generation algorithm described
so far in this Section is shown. It leads to a quite good
result in terms of area-runtime. As one might observe by the
Table, the higher the number of solutions inspected, the better
the result, no matter which approach is used. Nonetheless,
heuristic encoding provides better results with fewer solutions
inspected with respect to random encoding and that is the main
reason of the extremely good speed-up it is able to provide
with respect to Exhaustive encoding runtime.

The results of this Section will be applied to a real Instruc-
tion Set Architecture of a microprocessor in the next Section,
in such a way to have an extremely sound case of study for
demonstrating the applicability of this technique. In Section V
instead, this approach will then be applied to a set of different
models in order to have a proof of the area overhead which this
technique lead to, compared with optimal solutions obtained
using the Exhaustive encoding method, that is optimal, but
slow and computationally expensive.

IV. CASE OF STUDY: INSTRUCTION SET ARCHITECTURE
OF ARM CORTEX M0+

In order to further explore the CPOG formalism and encod-
ing process, a case study was completed with the ARM Cortex
M0+ processor’s instructions as a study basis. Methodology
for this work was introduced in [14] and was also followed
throughout this research. The first step required a derivation
of partial orders and it was mainly done by analysing the

instruction set description. Although, before partial orders can
be constructed, datapath components need to be specified. In
[15] five datapath units were obtained, four were reused in this
study, Table II describes each of them.

TABLE II: Datapath units that model instructions of ARM
Cortex M0+ processor.

Component Description
ALU Executes mathematical operations.
MAU Access internal and external memory.
PCIU Increments Program Counter (PC).
IFU Provides opcodes to Instruction Register (IR).

Derivation of partial orders involved deep analysis of in-
dividual instruction, which was done using the ARMv6-M
technical manual [16]. This manual provides detailed infor-
mation about every instructions including encoding, operation
pseudo-code and functions of instructions. This process was
simplified due to the ability to cluster instructions and give
class a single Partial Order (PO). During the derivation process
it was noticed that in particular two aspects of instructions
affect its graphical representation: functional similarity and
addressing mode. Since, ARM Cortex M0+ instructions can
have two types of addressing modes to specify operands:
register and immediate addressing. Obtained graphs shared
this property in their representation. In particular, addressing
mode affected operand fetching process part, instructions with
register type operand were able to fetch next instruction
concurrently with current execution, while immediate address-
ing type instructions required to fetch constant in order to
complete instruction.

Functionality difference was another aspect, which differen-
tiated graphs. It is perhaps more intuitive than addressing mode
differentiation, as one may understand various purpose instruc-
tions are executed in different manner, thus resulting in unique
graph. However, instructions can be still categorised under
their functionality. General groups are: arithmetic-operations,
memory access, control and miscellaneous.

Specification of instruction set procedure extracted 11 dif-
ferent partial orders (which are depicted in Figure 5), which
covered in total 61 ARM Cortex M0+ instructions out of
a possible 68. The majority of covered instructions were
arithmetical and logical. As just mentioned, not all processor
instructions were covered. In particular, hint type instructions,

(a) Class 1 (b) Class 2 (c) Class 3 (d) Class 4

(e) Class 5 (f) Class 6 (g) Class 7

(h) Class 8 (i) Class 9 (j) Class 10 (k) Class 11

Fig. 5: Conditional Partial Order Graphs model of the ARMv6-M instruction set architecture.

which are associated with interrupts and microprocessor state
mode. These instruction required more insightful analysis and
due to project time constraints and very high level description
of these instruction in [16] they were left out. It is reasonable
to predict the effect these instructions could have had on size
and complexity of CPOG and control circuit are insignificant.
Derived instructions classes are described below.

Class 1 This class models loading data from memory
location to Program Counter register instruction. Since this
instruction contains the register type operand, constant fetch-
ing is not required, which is typically represented by PCIU→
IFU. Example ARM Cortex M0+ instruction: LDR (reg.)

Class 2 NOP instruction, which has no special functionality
but proceeding to another instruction, is modelled by this
graph. So, after another Program Counter increment next
instruction can be fetched by IFU. Example: NOP

Class 3 This class is a representation of Stack instruction:
POP. It loads multiple memory locations into registers -
represented by MAU and then fetches next instruction IFU.
Example: POP

Class 4 This class covers an exotic type of Branch in-
structions, so called Branch with Link and Exchange, and
Branch and Exchange. BLX and BX instructions are a register
addressing type, so no constant fetching is needed. We assume
that the ALU can perform all functions required to execute
these instructions i.e. saving Program Counter address to Link
Register. Examples: BLX(reg.), BX

Class 5 Instructions covered by this graph are memory
type load/store instructions with immediate addressing mode.
Therefore, the constant has to be fetched, which is rep-
resented by PCIU → IFU part. After offset is calculated
and actual function of instruction executed, next instruction
can be fetched PCIU/2 → IFU/2. Examples: LDR (literal),
STR(imm.)

Class 6 This class contains a single instruction, which is
memory type with immediate operand. The functionality of

this instruction is loading memory location to the Program
Counter register. Likewise, other immediate operand classes, a
constant has to be fetched (PCIU→ IFU). Then an instruction
could be executed by ALU → MAU and the next instruction
fetch IFU/2. Example: LDR (imm.)

Class 7 Unconditional branch instruction is represented by
this graph, where address offset to branch is specified as a
constant and thus needs to be fetched (PCIU → IFU). Then,
ALU updates Program Counter with new value, which is
calculated with provided offset, lastly next instruction can be
fetched IFU/2. Example: B

Class 8 This graph covers the same instructions as Class
5 just with register addressing mode. Since this addressing
mode, instructions do not require operand fetching: PCIU →
IFU (next instruction fetch) and ALU → MAU (instruction
execution) can be completed in parallel. Examples: LDR
(reg.), STR(reg.)

Class 9 This class shares several instructions with Class
11, with a key difference in addressing mode only, which is
an immediate addressing mode. Like other instructions with
constants, it requires constant fetching to Instruction Register,
which is modelled by PCIU→ IFU, then ALU can be executed
concurrently with another Program Counter increment; lastly
the next instruction is fetched. Examples: ADD(imm.),LSR
(imm.)

Class 10 Instructions modelled by this class are memory
type instructions, although this time multiple registers/address
locations are transferred. Stack instruction: PUSH, is an ex-
ample of this class. Examples: LDM, STM

Class 11 This class covered largest subset of instructions
with functionalities including: arithmetical, logical and data
copy. Every instruction within this class is a register addressing
type. Therefore, likewise this type of class some concurrency
exists in this graph, the next instruction can be fetched PCIU
→ IFU in parallel with latter execution ALU. Examples: CMP
(reg.), MOV(reg.)

A. Compositional results

After derivation of partial orders was completed, research
proceeded with the next step: encoding and generation of
CPOGs. As the solutions space for such a Conditional Par-
tial Order Graph composed by 11 different behaviours is
extremely wide, according to Formula 2, we could not apply
the approach named Exhaustive encoding in order to seek the
most optimised controller, targeting in our case area reduction.
Therefore, in order to carry out a fair comparison, we focused
on comparing the newly introduced Heuristic encoding (SA)
with several solutions obtained by adopting Random encoding
technique. The latter one does nothing else but associating
random opcodes to the partial order graphs composing the
whole representation. Those two algorithms indeed fit well
to a CPOG with such a high number of graphs as the one
represented in Section IV. Additionally, together they provide
a good case of study to give a rough idea to readers about the
potential of the heuristic approach, compared with the random
one. Runtime of the tool and area of controller are used as
comparison parameters.

The best results, exploiting the algorithm just mentioned, are
depicted in Table III, obtained with three different approaches
applied to the partial orders representing the ARMV6-M In-
struction Set Architecture.

TABLE III: Controller size comparison for ARMv6-M ISA
model (enc stands for encodings).

Generation approach Area [µm2] Runtime [s] #enc.
Random encoding 226 18243 100000

SAT-based encoding 204 2 -

Heuristic encoding (SA) 191 169 1000

The worst solution is represented by the controller that
comes up with the Random encoding approach, it generates
the biggest controller. It is pareto-dominated by all the other
techniques, but it is useful for giving a general idea about the
whole area of the controller without using any optimisation
technique. Even though the area of the controller might not
look much bigger than the other two shown in the Table, it is
worth observing that one hundred thousands of encodings have
been tried to reach out such result. It has been required much
more time with respect to the other approaches as observable
by the runtime column.

The SAT-based encoding approach, described in [4], gives
a very good result compared to the Heuristic encoding (SA)
technique, which in this case gives the best result by analysing
one thousand encodings only. To understanding the benefit
of this approach, the reader should take into account that,
according to Figure 3, the size of the solution space for a
representation composed by 11 POs contains approximately
1010 possible encodings. Single-literal encoding has not been
taken into account for the comparison because of the higher
number of variables it requires to synthesise the controller.

Now, let us compare the heuristic technique, which is the
one we aim to present in this paper, with the random approach

in order to perform a fair comparison. As we mentioned
before, we tried to generate an extremely high number of
solutions with Random encoding, and a small one with Heuris-
tic encoding (SA). The result is surprisingly good, and it is
shown in Figure 7. Though the number of solutions generated
by the random encoding technique is much higher than the
encodings tried referring to the new approach, they are mostly
concentrated between 110 and 220 on the x-axis. The heuristic
solutions instead concentrate between 80 and 110 ([10], Figure
6.7) and that is why the probability of finding a better (in terms
of area in this case) derived controller is much higher. The
results in Table III confirm our hypothesis. The x-axis of the
graph is the cost function presented in SectionIII-A, while on
the y-axis the bare area [µm2]. As we demonstrated, the lower
the cost function of the solution, the higher the probability to
select a better encoding in terms of area, therefore the main
goal is to have a heuristic which returns encodings with a low
cost of the function, in Figure 6 the compositional graphs of
the ARMv6-M model are depicted for sake of completeness.

Fig. 7: Comparison between Heuristic encoding (SA) and Ran-
dom encoding techniques applied to ARMV6-M ISA model.

The reason for such a bad result for random encoding
resides on the massive number of possibilities the solution
space is composed by. Indeed, even though 100000 may seem
a high number of solutions, it represents the 0.0009 % of
solution space only, so it is extremely unlikely to find a really
good point.

The only drawback depending on the heuristic cost function
is related to the non total linearity in the relationship between
the heuristic function and the parameter to optimise (area in
this case). The error that intrinsically affects the solution space
(Figure 7) constrains the tool to analyse the whole range of
solutions, as the best controller in terms of area might be
present with a slightly higher cost of F (Formula 4).

In light of the above, one of the main goals of this research
has been addressed. The composition of partial order graphs

Fig. 6: CPOGs generated with Heuristic encoding (SA) (left side) and Random encoding (right side) algorithms.

has been automated exploiting a heuristic-based algorithm
which is able to synthesise the final controller relying on an
early-evaluation of the opcodes, prior to the synthesis phase.
In the next Section another problem related to instruction set
architecture modelling will be addressed: that is the encoding
customisation. It is needed when one has to deal with particu-
lar applications where some bits have to be fixed for reserved
functions, or when the opcodes have to be composed by a
variable number of bits.

V. TOOL IMPLEMENTATION

SCENCO is the name of the tool which features all the
approaches we described in this work, it embeds either the
previous techniques (with the advantages and drawbacks high-
lighted in Section I) and the new algorithm that we aim at
presenting hereby. SCENCO, which stands for SCENarios
ENCOder, has been integrated as an open source tool in
Workcraft [17], in particular inside the Conditional Partial
Order Graphs plugin. It provides a friendly graphical user
interface which complements the representative power of the
model. All the generation algorithms described in this work
can be used.

In order for the tool to provide different optimisation
features, such as the ones which might be related to area,
power or latency optimisation of the derived controller, ABC
framework [18] has been integrated into the standard flow
of the software. It allows optimisation of the final equations
which come up with the synthesis of the representation, con-
strained by different parameters. It might be extremely useful
for having concrete outcome under different constraints, in fact
a real gate library (in genlib format [19]) can be manually
set in order to map the Boolean equations onto gates with
real characteristics. Furthermore Espresso logic minimiser
[25] has been integrated into SCENCO in order to solve the
Karnaugh Maps for deriving the Boolean equations associated
to each vertex/arc. Finally Clasp[23]/Minisat[24] are used
to provide the SAT-based optimal encoding option.

The approaches which may be exploited by using this
tool are mainly three. Heuristic encoding is the approach we

aim to present in this work, it is extremely fast and totally
customisable: the designer is allowed to tune the depth of
the search (it may be useful to trade off the soundness of
the solution with the time for obtaining good encoding, as
demonstrated in Table I) as well as totally customise the
opcodes. Indeed, one can set the length of the opcodes to use
as well as some particular bits in the way described following:

• if an X is inserted, the tool will have the total control on
that particular bit, therefore it will try to optimise it as
much as possible (i.e. an opcode with length 2 set as XX
may become {00, 01, 10, 11});

• if a 0 or a 1 is inserted in the opcode associated with
a partial order graph, the tool will look for the optimal
encoding without modifying those bits set by the user (i.e.
an opcode with length 2 set as X1 may become {01, 11},
the second bit will be stuck at 1 in both cases);

• if a - is inserted the tool will deal with that particular
bit as a Don’t care condition. Hence, the final opcode
containing a - will be on a shorter number of variables
with respect with the ones without any Don’t care (i.e.
an opcode with length 3 set as XX- might become
{00, 01, 10, 11}, that is because: in the case 01 is chosen
both the two opcodes {010, 011} will be theoretically
assigned to the partial order graph).

The possibility to completely customise the opcodes addresses
the need of flexibility which particular applications, as instruc-
tion set architectures, need.

Single literal encoding [6] is the fastest, but can use a lot
of variables for encoding and does not support customisable
opcodes, which might be a problem if one has to deal with
instruction set architecture modelling; otherwise it provides a
good solution in terms of the derived controller.

SAT-based optimal encoding is the technique described in
[4] which, as highlighted in Section I, has many limitations;
but might be useful when one does not need to customise the
encodings, deal with dynamic CPOGs, or with representations
which contain more than 12 - 15 instruction classes.

A. Benchmarks

In this Section, we aim at demonstrating the benefits of
the approach we presented in Section III. To do so, we are
going to apply heuristic encoding by fixing the number of
solutions to find to 100, and by constraining the opcodes to
minimum number of variables necessary to encode all the
POs. This latter imposition is helpful when the number of
external I/O pins need to be reduced. Other methods will
also be applied to multiple instances of Conditional Partial
Order Graph representations composed by different behaviours
each. Afterwards, we are going to carry out a comparison, in
terms of area overhead and runtime of the tool, with the best
possible solution (if available) present in the whole encoding
set for each representation. The other approaches will also be
considered in the benchmark for the sake of completeness,
even though some of them are able to find solutions by using
a higher number of variables.

The other two instances we applied these techniques to
are subsets of instruction set architectures belonging to
Texas Instruments MSP430 processor which has been
modelled in [20], and the Intel 8051 [14]. The former
one contains dynamical partial order graphs, that are particular
conditions which, applied to some particular vertices or arcs,
modify dynamically the behaviour of the system, while the
latter one, as for the model of the ARMv6-M does not contain
such typology of partial orders.

Table IV depicts all the results in terms of area of the
derived controller and runtime of the tool, for seeking an
optimal encoding for the models. Many considerations might
be done on the data collected in the Table. First of all let
us analyse why the results are not present in each box of
the Table (“-” character). Regarding Exhaustive encoding, it
was not possible to apply this approach to Conditional Partial
Order Graph models composed by more than 8 partial orders
because of the high number of encodings the whole solution
sets are composed of. According to Formula 2 and Figure 3,
when the #POs increases beside 8, the size of the solution
set tends to be too wide to be inspected entirely. Concerning
the SAT-based encoding method instead: when applied to
the Texas Instruments MSP430 instances, it does not
produce any result due to the limit of handling branching
instructions, as mentioned in Section I.

Another characteristic that is worth analysing is the number
of variables which the various approaches use to seek an opti-
mal solution. While the heuristic approach does not increment
the length of the opcodes in order to reduce the complexity of
the derived controller, the Single-literal encoding approach and
SAT-based encoding do. The former increments the number of
variables in order to target one single Boolean literal per node
and arc, while the latter one (regarding the Intel 8051
subset expressed with 9 POs) cannot solve the problem with
3 variables only, probably due to the high complexity of the
graphs. Therefore it needs 4 variables to generate a feasible
solution. These approaches are fast and good in terms of the
controller optimisation, nonetheless sometimes they might not

be exploited either because they do not allow customisation
of the opcodes, because of the increased number of variables
they may require for the encoding process, or finally due to
the limitation in dealing with dynamic behaviours.

On the other hand, heuristic encoding search, improved
via simulated annealing optimisation algorithm, provides ex-
tremely good results with a slight increase of the search time.
In this case we chose to keep the length of the opcode at the
minimum, but it may be customised addressing the need of
instruction set architectures modelling. In the Table V the area
overheads and the speed-up with respect to the Exhaustive
encoding are depicted.

TABLE V: Area overhead and speed-up of the heuristic
encoding approach with respect to optimal one.

Model #POs Area overhead Speed-up
ARM Cortex M0+ 11 - -

8 7.96% ×92

Texas Instruments MSP430 8 11.24% ×124
7 8.42% ×110

9 - -
Intel 8051 8 3.52% ×138

7 7.69% ×139

Average - 7.77% ×120

As one might observe, the average overhead in terms of
area is 7.77%, which is an extremely good result considering
the high average speed-up of the search of ×120, which the
tool provides considering all the cases taken into account in
this research.

VI. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

As was already demonstrated, the Conditional Partial Order
Graph model provides a compact environment to represent
a system that includes different behaviours, both for syn-
chronous and self-timed implementations. As proved in Sec-
tion IV and V-A additionally, CPOG tailors well to instruction
set architecture development, it may help designers find an op-
timal and efficient encoding as well as to automatically instan-
tiate the decoding module. Furthermore, this work addresses
the gap in the synthesis part allowing designers to choose
the encoding for the representation via different generation
algorithms targeting a better controller (which can be further
optimised under different perspectives via Abc framework).

In order to bridge this gap, SCENCO has been developed
and integrated into Workcraft [17]. As described in [10],
an interesting option provided by this tool is the possibility to
select custom encoding either by setting the number of bits the
designer wants the opcodes to be composed of, and by fixing
some bits inside. Both of these options might be worth apply-
ing to particular applications where some particular bits should
be fixed for particular functions. This research may be useful
to those companies which already design ASIP (Application
Specific Instruction-set Processor) such as Altera with Nios,
Xilinx with Microblaze or Cadence (Tensilica section)
with XTensa.

TABLE IV: Benchmark of the encoding approaches applied to seven instructions set architecture subsets. Text in bold represents
the smallest controller for each model analysed. Unit of measure: Area: [µm2] (opcode length in brackets), Runtime [s].

Model #POs Exhaustive encoding Single-literal encoding Heuristic encoding (SA) SAT-based encoding
Best area Runtime Best area Runtime Best area Runtime Best area Runtime

ARM Cortex M0+ 11 - - 167 (5) 1 191 (4) 16 204 (4) 2
8 133 (3) 1292 126 (5) 1 143 (3) 14 166 (3) 2

Texas Instruments MSP430 8 219 (4) 1982 255 (9) 1 244 (4) 16 - -
7 171 (4) 1754 176 (9) 1 185 (4) 16 - -

9 - - 184 (8) 1 185 (3) 16 195 (4) 3
Intel 8051 8 160 (3) 2075 161 (7) 1 165 (3) 15 195 (3) 3

7 130 (3) 2092 140 (6) 1 140 (3) 15 143 (3) 1

There are many research directions that our work might
lead to. One of the most worthwhile to inspect is surely the
enhancement of the heuristic function in order to improve the
search of an optimal encoding, maybe making the relationship
between the cost and the constrained parameter (area, power,
latency, etc.) more linear. In fact, as one might observe in
Figure 7, the cost function so far is affected by a certain
degree of error (given by the solutions with the same value
of the heuristic function, but different area), which may also
affect the final result negatively. Secondly, the research on
a new generation algorithm could be conducted, as might
be the ones inspected in [7][21], which we think may be
adapted to our purposes. The work of Goldberg et al. (Section
3) additionally, presents an interesting characterisation of the
symmetrical solutions, that is surely worthwhile to explore in
order to speed-up the search process. Finally, as CPOG tailors
well to asynchronous controller design [22], a further research
direction might be to integrate analogue specifications into
the CPOG representation in order to represent asynchronous
circuits able to satisfy analogue requirements.

ACKNOWLEDGMENT

We would like to thank all the µSystems Research Group
members at Newcastle University for supporting us and this
research. In particular a special acknowledgement goes to:
Alex Yakovlev, Danil Sokolov, Maxim Rykunov and Jonathan
Beaumont. This research was supported by Royal Society
Grant Computation Alive: Design of a Processor with Survival
Instincts and EPSRC Grant UNCOVER.

REFERENCES

[1] H. Iwai, “Roadmap for 22nm and beyond (Invited Paper)”, Microelec-
tronic Engineering, vol. 86, pp. 1520-1528, 7/2009.

[2] J. Rabaey, “Low Power Design Essentials: New York, London”; Springer
2009.

[3] A. Mokhov, A. Yakovlev. “Conditional partial order graphs: Model,
synthesis, and application”. IEEE Transactions on Computers, Volume
59, Pages 1480-1493, November 2010.

[4] A Mokhov, A Alekseyev, A Yakovlev. “Encoding of processor instruction
sets with explicit concurrency control”. Computers & Digital Techniques,
IET. Volume 5, Pages 427-439. November 2011.

[5] A. Mokhov, M. Rykunov, D. Sokolov and A. Yakovlev. “Design of Pro-
cessors with Reconfigurable Microarchitecture”. J. Low Power Electron.
Appl. 2014, 4, Pages 26-43. 20 January 2014.

[6] A. Mokhov. “Conditional Partial Order Graphs”. Ph.D. Thesis, Newcas-
tle University, September 2009.

[7] Evguenii I. Goldberg, T. Villa, R. K. Brayton and Alberto L. Sangiovanni-
V Incentelli. “A Fast and Robust Algorithm for Face Embedding”.
Computer-Aided Design, 1997. Digest of Technical Papers., 1997
IEEE/ACM International Conference on 9-13 Nov. 1997, San Jose, CA,
USA, Pages 296 - 303.

[8] A. Mokhov, A. Yakovlev. “Conditional partial order graphs and dynam-
ically reconfigurable control synthesis”. Design, Automation and Test in
Europe, 2008. DATE’08, Pages 1142-1147, 10/03/2008.

[9] R. W. Hamming. “Error Detecting and Error Correcting Codes”. The
Bell System Technical Journal Vol. XXIX, No. 2, April, 1950.

[10] A. de Gennaro, “Design of Reconfigurable Dataflow Processors”. Mas-
ter’s Degree in Computer Engineering (Facolta’ di Ingegneria, Politecnico
Di Torino), October 2014.

[11] E. L. Lawlor, “Combinatorial Optimization”, (Holt, Rinehart & Win-
ston, New York, 1976).

[12] S. Kirkpatrick, C. D. Gelatt Jr and M. P. Vecchi, “Optimization by
Simulated Annealing”, vol. 220, number 4598, 13 May 1983.

[13] F. Javier Rodriguez-Diaz, Carlos Garcia-Martinez and Manuel Lozano,
“A GA-Based Multiple Simulated Annealing”, IEEE, Evolutionary Com-
putation (CEC), July 2010.

[14] M. Rykunov. “Design of Asynchronous Microprocessor for Power
Proportionality”. Ph.D. Thesis, Newcastle University, December 2013.

[15] P. Stankaitis, “Algebraic Specifications of ARM Cortex M0+ Instruction
Set”, Bachelor Degree thesis, 2014.

[16] ARM Ltd. “ARMv6-M Architecture Reference Manual”. ARM DDI
0419C (ID092410), 2010.

[17] I. Poliakov, D. Sokolov, A. Mokhov. “Workcraft: A static data flow
structure editing, visualisation and analysis tool”. Petri Nets and Other
Models of Concurrency - ICATPN 2007. Pages 505-514, 2007.

[18] Berkeley Logic Synthesis and Verification Group. “ABC, a System for
Sequential Synthesis and Verification”. www.eecs.berkeley.edu/∼alanmi/
abc/

[19] Richard Rudell. “Genlib: Combinational Gate Specification”. Berke-
ley University, http://www.eecs.berkeley.edu/∼alanmi/publications/other/
SIS paper genlib.pdf.

[20] A. Mokhov, V. Khomenko. “Algebra of Parameterised Graphs”. ACM
Transactions on Embedded Computing Systems, Volume 13, Issue 4s,
2014.

[21] T. Villa. “Encoding Problems in Logic Synthesis”. University of Cali-
fornia at Berkeley, Ph.D. Thesis in Engineering. 1995

[22] D. Sokolov, A. Mokhov, A. Yakovlev, D. Lloyd. “Towards asynchronous
power management”. 2014 IEEE Faible Tension Faible Consommation
(FTFC), Pages 1-4, May 2014.

[23] Martin Gebser, Benjamin Kaufmann and Torsten Schaub. “Conflict-
Driven Answer Set Solving: From Theory to Practice”. Potsdam Uni-
versity, Institut fur Informatik, August-Bebel-Str. 89, D-14482 Potsdam,
Germany. May 4, 2012.

[24] Niklas En, Niklas Sorennson. “An Extensible SAT-solver”. Chalmers
University of Technology, Sweden.

[25] McGeer, P., Sanghavi, J., Brayton, R. and Vincentelli, A.S. “ESPRESSO-
SIGNATURE: A New Exact Minimizer for Logic Functions”. Design
Automation, 1993. 30th Conference on 14-18 June 1993. Pages: 618 -
624. DOI: 10.1109/DAC.1993.204022. Publisher: IEEE.

