

University of Birmingham

Weaving true-concurrent aspects using constraint
solvers
Bowles, Juliana K F; Bordbar, Behzad; Alwanain, Mohammed

DOI:
10.1109/ACSD.2016.19

License:
None: All rights reserved

Document Version
Peer reviewed version

Citation for published version (Harvard):
Bowles, JKF, Bordbar, B & Alwanain, M 2017, Weaving true-concurrent aspects using constraint solvers. in 16th
International Conference on Application of Concurrency to System Design 2016. International Conference on
Application of Concurrency to System Design. Proceedings, IEEE Xplore, 16th International Conference on
Application of Concurrency to System Design (ACSD 2016), Torun, Poland, 19/06/16.
https://doi.org/10.1109/ACSD.2016.19

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
(c) 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists,
or reuse of any copyrighted components of this work in other works
Checked for eligibility: 01/07/2016

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 23. Apr. 2024

https://doi.org/10.1109/ACSD.2016.19
https://doi.org/10.1109/ACSD.2016.19
https://birmingham.elsevierpure.com/en/publications/1db75d58-7f22-4602-944d-a6a52b7d4ab9

Weaving True-Concurrent Aspects using Constraint Solvers

Juliana K. F. Bowles
School of Computer Science

University of St Andrews
St Andrews KY16 9SX, UK

Email: jkfb@st-andrews.ac.uk

Behzad Bordbar, Mohammed Alwanain
School of Computer Science
University of Birmingham

Edgbaston, Birmingham B15 2TT, UK
Email:{b.bordbar|m.i.alwanain}@cs.bham.ac.uk

Abstract—Large system models usually consist of several sim-
pler models that can be understood more easily. Making
changes to the behaviour of a component will likely affect
several models and could introduce accidental errors. Aspects
address this by modelling new functionality required in several
places as an advice, which can be integrated with the original
base models by specifying a pointcut. Before checking that
the overall outcome is correct, we need to weave the cross-
cutting advice into the base models, and obtain new augmented
models. Although considerable research has been done to
weave models, many such approaches are not fully automated.
This paper looks at aspect weaving of scenario-based models,
where aspects are given a true-concurrent semantics based on
event structures. Our contribution is a novel formal automated
technique for weaving aspects using the Z3-SMT solver. We
compare the performance of Alloy and Z3 to justify our choice.

1. Introduction

Aspect-oriented programming aims to modularise the
development of software by separating crosscutting concerns
into different modules. Although aspect-oriented program-
ming was originally intended for increasing modularity and
separation at the code level, the concepts have been proven
very useful for reducing design complexity at the modelling
level. Aspect-oriented modelling (AOM) offers mechanisms
for separating crosscutting concerns in models through so-
called aspects. AOM techniques use the term advice for
the action an aspect will take, and pointcut to specify
more general rules of where to apply an advice. AOM is
particularly useful for dealing with non-functional properties
and dependability concerns (including security, reliability,
availability, safety, and so on) which usually cut across the
system as a whole [1].

To obtain an overall model of the system, we may
need to integrate one of more crosscutting concerns (advice
models) into the system’s model (base). This process, known
as aspect weaving, has received considerable attention in
recent years [1], [2], [3], [4]. Providing an overall model
is essential, because it contributes to a better understanding
of the system behaviour, and makes it possible to analyse

the correctness of the model. Here, we are concerned with
a weaving method for UML 2.4 sequence diagrams [5].

Composing sequence diagrams manually for large and
complex systems is unrealistic. As a result, various auto-
mated methods for model composition have been introduced
[1], [2], [3], [4], [6], [7], [8], [9], [10]. Most of these
methods introduce algorithms to produce a composite model
from simpler models obtained from partial specifications.
In recent work [9], [10], we presented a fully automated
approach for the composition of sequence diagrams making
use of the constraint solver Alloy [11]. Moreover, a well
known problem of how poor tool performance impacts on
their applicability for large and complex models is discussed
for instance in [12], [13]. As a result, this paper investi-
gates an alternative composition method in the context of
AOM weaving through the use of Z3 [14]. Z3 is a high-
performance SMT solver from Microsoft Research, targeted
at solving problems arising in software analysis and verifi-
cation [14]. Furthermore, we present a novel true-concurrent
semantics for sequence diagram weaving, and a model-
driven transformation of sequence diagrams to Z3, which
preserves the semantics of composition and addresses the
scalability of models. We carried out a series of experiments
to evaluate and compare the suitability of two solvers (Z3
and Alloy).

The remainder of the paper is structured as follows:
Section 2 highlights the key contributions of this paper.
Sequence diagrams and their semantics are given in Sec-
tion 3. We introduce an example in Section 4, and a detailed
description of our approach in Section 5. Section 6 shows a
comparison study between Z3 and Alloy. Finally, Section 7
discusses related work, and Section 8 concludes the paper.

2. Our Contribution

There are two fundamental problems that need to be
considered when composing models, where weaving can be
seen as a form of composition: composition must be well
defined to be feasible for automation, and the associated
algorithm must be efficient.

To address the first problem, we define a formal seman-
tics of composition and encode this semantics as formal
transformation rules. These transformation rules generate

the logical constraints associated to our source models,
which serve as input to the constraint solver. Thereafter,
the constraint solver produces (if existing) a solution for the
composition in accordance to our formal semantics.

The second problem, namely the efficiency of the com-
position algorithm, requires some further analysis by run-
ning different experiments and performing a comparison
with suitable alternatives. Naturally, the problem arises when
the models to be composed increase in size and complexity,
but it is also influenced by how the transformation was
implemented, the complexity of the composition algorithm
and the programming language used.

In recent work [9], [10], we have presented a method
for sequence diagram composition based on Alloy. The
approach taken does not directly involve an algorithm to
compose sequence diagrams, but rather uses Alloy to pro-
duce all possible solutions for the composition, where each
solution is a possible trace of execution in the composed
model. The composed model in Alloy satisfies the conjunc-
tion of all logical constraints associated to the sequence
diagrams and additional matching constraints. The approach
does not, however, explicitly incorporate the semantics of
scenarios in the transformation itself. Further, whereas in
[9] composition is treated as a simple conjunction of models
through syntactic matching of elements of both models, in
[10] we allow the matching glue to consist of additional
behavioural constraints (for instance imposing an order,
disallowing event occurrences, etc). Our approach in this
paper is more generic, and covers a more complex form of
composition through aspect weaving.

3. Modelling Aspects

UML sequence diagrams capture scenarios of execution
as object interactions, and are also commonly used to model
aspects and aspect weaving. As such they naturally capture
notions such as base model, advice and pointcut [1], [8],
[15], [16].

A sequence diagram shows all objects involved in the
interaction it describes. Each object has a vertical dashed
line called lifeline showing the existence of the object at a
particular time. Points along the lifeline are called locations
(a terminology borrowed from LSCs [17]) and denote the
occurrence of events such as sending/receiving a message.
The order of locations along a lifeline is significant denoting,
in general, the order in which the corresponding events
occur. One example of a sequence diagram showing a base
model is given in Figure 1. This example is explained in
detail in Section 4. There are three instances involved in the
interaction, and we show explicitly the locations along the
lifeline of (the arbitrary) instance of class PetrolStation.

A message is a synchronous or asynchronous communi-
cation between two objects shown as an arrow connecting
the respective lifelines, that is, the underlying send and re-
ceive events of the message. Asynchronous communication
is shown by an open arrowhead and is the form of commu-
nication used in this paper. An interaction between several
objects consists of one or more messages, but may be given

l1

l2

l3

l4

l5

l6

l7

l8

l9

l10

l0

l11

l12

Figure 1: Petrol station base model

further structure through so-called interaction fragments.
There are several kinds of interaction fragments includ-
ing seq (sequential behaviour), alt (alternative behaviour),
par (parallel behaviour), neg (forbidden behaviour), assert
(mandatory behaviour), loop (iterative behaviour), and so
on [5]. Depending on the operator used, an interaction
fragment consists of one or more operands. In the case
of the alt fragment, each operand describes a choice of
behaviour. Only one of the alternative operands is executed
if the guard expression (if present) evaluates to true. If
more than one operand has a guard that evaluates to true,
one of the operands is selected nondeterministically for
execution. In the case of the par fragment, there is a parallel
merge between the behaviours of the operands. The event
occurrences of the different operands can be interleaved in
any way as long as the ordering imposed by each operand
as such is preserved.

The model in Figure 1 contains one alternative fragment
with two operands. The events associated to the locations of
the instance PetrolStation are ordered (one occurs before or
after another) unless they are associated to locations within
different operands of the alternative fragment in which case
they are mutually exclusive.

When modelling with aspects, we start with one or more
scenarios capturing base behaviour. If we then need to add a
new piece of functionality or a concern that may cut across
many parts of the system (such as a dependability require-
ment) we model the new piece of behaviour as an advice.
In order to integrate the advice into the base behaviour we
need to specify how this should be done through a pointcut.

In order to be able to define and implement a technique
for weaving aspects given as scenarios, we have to make
sure that we understand the meaning of a scenario (base
model or advice) and how to compose them under certain
conditions (pointcut). In other words, we need to have a
formal semantics for the scenario-based language and a
formally defined parallel composition with synchronisation
(done in accordance with the pointcut).

There is a plethora of papers defining a semantics for
sequence diagrams and other UML diagrams. See [18] for

an overview. We have given a formal semantics to sequence
diagrams in [19] using a true-concurrency model, namely
labelled event structures (LES) from [20]. We have defined
parallel composition with synchronisation for LES formally
in [21]. Our approach in this paper effectively automates a
weaving mechanism in accordance to this semantics.

LES are very suitable to describe the traces of execution
in sequence diagrams, being able to capture directly the
notions available such as sequential, parallel and iterative
behaviour (or the unfoldings thereof) as well as nondeter-
minism. For each of the notions we use one of the (binary)
relations available over events: causality, nondeterministic
choice and true concurrency.

We keep the presentation of the semantics as simple
as possible here. A LES consists of a set of events and
binary relations on events which satisfy certain conditions.
The binary relations are causality (a partial order) and
nondeterministic choice also called conflict (an irreflexive,
symmetric relation which propagates over causality). The
formal definition is given below, where L is an alphabet of
labels.
Definition 1. A labelled event structure (LES) is a tuple E =

(Ev,→∗,#, µ) where Ev is a set of events with binary
relations →∗,# ⊆ Ev × Ev for causality and conflict
respectively. Causality→∗ is a partial order, and conflict
is irreflexive and symmetric. Conflict propagates over
causality, that is, for arbitrary events e1, e2, e3 ∈ Ev if
e1#e2 and e2 →∗ e3 then e1#e3. A labelling is given
by µ : Ev → L, a (possibly partial) function which
maps events to labels in L.

There is a further implicit relation between events in a
LES, namely concurrency. Two events e1, e2 are concurrent,
written e1 co e2, iff they are neither related by causality
nor by conflict. Since system computations always have a
starting point, we only consider discrete event structures
here, that is, structures where the set of previous occur-
rences of an event (also called local configuration) is finite.
Formally, the local configuration of an event e, given by
↓ e = {e′ | e′ →∗ e}, is finite. This allows us to refer
to the notion of immediate causality. Formally, two events
e1, e2 ∈ Ev, related by causality e1 →∗ e2, are related by
immediate causality, written e1 → e2, if we cannot find
another event e3 with e1 6= e3 6= e2, such that e1 →∗ e3
and e3 →∗ e2. Further, a configuration C in E consists of a
subset of events that is conflict free and downwards closed
(i.e., for an arbitrary event e ∈ C, if e

′ →∗ e then e
′ ∈ C). A

trace τ in E is a maximal configuration. A LES encodes all
possible traces of execution. A further useful notion is that
of a LES morphism. A LES morphism h is a partial function
h : E1 → E2 such that for an arbitrary configuration C in
E1, h(C) is a configuration in E2, and h is injective on C.

To give a semantics to sequence diagrams with LES,
we need a labelling function that relates events to diagram
locations. To keep it simple, one possible label for an event
could be (m, s) or (m, r) to denote sending or receiving
a message m respectively. We assume that other events do
not have labels. Let M be the set of message labels, and

I be the set of instances associated to a diagram. We can
partition the set of events Ev =

⊎
i∈I Evi such that each

subset Evi denotes the events along a lifeline of i ∈ I . In
other words, each event in a LES associated to a sequence
diagram corresponds to a unique instance of the diagram.

Figure 2: LES associated to the petrol station base model

The LES associated to the example from Figure 1 is
illustrated in Figure 2. Minimal events, where a minimal
event e satisfisfies ↓ e = {e}, are always associated to a
different instance from the sequence diagram. In Figure 2,
only immediate causality → is shown. Events belonging to
different instances are related by immediate causality iff
they are associated to the sending/receiving of the same
message (for instance, g10 → e8 on message invalidPin).
Note that in Figure 2 we indicate the name of the message
on the immediate causality between send and receive events
only for convenience. In effect what we have is for instance
µ(g10) = (invalidPin, s) and µ(e8) = (invalidPin, r). The
existence of events in conflict in this example reflects the
alternative fragment in the sequence diagram which shows
two alternative interactions. Conflict is shown, for instance
between g7#g10 denoting the case of a valid and invalid pin
respectively. Conflict propagates and future events are also
in conflict, so for instance g9#g10, and so on. This example
contains two possible traces of execution.

As seen in [19], LES offer a suitable semantics for
sequence diagrams and the various interaction fragments
defined. Whereas operators such as seq, alt, and par have
a natural correspondence to the relations within a LES, it
may be less obvious how to capture other operators. To
represent a loop fragment, a LES has to model all possible
iterations of the loop as unfoldings (traces in the LES). In
an automated approach, we must assume a finite number
of possible iterations and hence unfoldings. To be able to

(a) Base (b) Advice (c) Pointcut

Figure 3: Models of the petrol station example

describe a neg fragment, we must distinguish allowed from
disallowed traces of execution which we do not do here. We
have dealt with this operator in [10], where the composition
glue can specify disallowed behaviour overall. The effect is
that we prune all possible (composite) traces that contain
disallowed behaviour.

4. Example

Consider a simple example of how the behaviour of
a system given as a scenario may have to be extended,
and how this can be done through the use of aspects.
The example describes a petrol station scenario which was
adapted from [22]. Let us consider the base model first as
shown in Figure 3(a). In this scenario a user of a petrol
station can only fill their car with petrol provided they have
a card (and know the pin code for the card).

The scenario starts with the user inserting a payment
card (insertCard). The petrol station requests the pin code
from the user (requestPin), which the user then enters
(pinCode). The petrol station sends a message to the bank
to validate the pin code (validate and result), and an alt
fragment is used to model the two possible outcomes: (1)
the pin code is valid, the user is allowed to start fuelling
(startFuel), and when the user has finished he/she stops
(stop); (2) the pin code is invalid, the user is informed that
the pin code entered is invalid (invalidPin). In both cases,
the scenario ends by ejecting the card (cardOut).

Now assume that we want a more refined model where
we allow the user to indicate the exact amount of fuel
required in advance. This is added by modelling an advice
as shown in Figure 3(b).

The advice model starts with a valid pin code scenario.
The idea here is that after entering the amount of fuel re-
quested the petrol station forwards a message to the bank to
validate whether the request is acceptable (basically the user
has enough balance to cover the request). Again two options
are possible. If the account balance covers this amount, it

will be debited from the account and the petrol station will
start fuelling. However, if the account balance cannot cover
the amount requested the transaction is cancelled.

To consider the advice within the original base model
corresponds to weaving it into the base model and obtain
an augmented model. Strictly speaking we can have more
than one base model in a system and may want to integrate
more than one advice. Without loss of generality we can
assume that we can first obtain a composed model for the
base behaviour and deal with weaving of an advice one
at a time. Note that there may be an interaction (conflict)
between two advices and our method would detect that when
applying weaving the second time, but we are not explicitly
dealing with aspect interaction in this paper. The order in
which advices are weaved into a model can produce different
results, and the designer needs to take this into account
when applying weaving in succession. Our technique can in
addition be used to identify these differences automatically.

In order to do the weaving, we specify a pointcut which
shows how the elements in the base and advice models
match. The pointcut in Figure 3(c) indicates that the lifelines
and messages validPin and StartFuel are matched.

Bowles [21] showed how to compose two diagram mod-
els by injecting new behaviour into a model through a
category-theory based construction. Even though weaving
was not the intention of that paper, the results make it clear
that weaving an advice into a base model in accordance
with a pointcut is feasible, and a solution (if it exists) can
be obtained (by hand) with this construction. The idea of the
categorical construction applied to the present context is as
follows. Let Eb and Ea be the LES associated to the base and
advice models respectively, and let Ep be the LES associated
to the pointcut. If we can define two surjective morphisms
fb : Eb → Ep and fa : Ea → Ep such that fb(Eb) = fa(Ea),
µb(eb) = µp(fb(eb)) and µa(ea) = µp(fa(ea)), then we are
able to apply a categorical construction (a combination of
pullbacks and a final pushout in the categories involved) and
obtain the resulting composed model. This model matches

the events identified in accordance to fb and fa, and by
definition is such that configurations are preserved and have
injective mappings (for full details cf. [21]).

For our example, the LES for the base has been given
in Figure 2. Consider the LES for the advice as shown in
Figure 4. Assume all events are further indexed by b (base)
or a (advice) to avoid confusion.

Figure 4: LES for the advice

The LES for the pointcut Ep (not shown) contains
four events {e1p, e2p, e3p, e4p} and the following causal-
ity relations e1p → e2p, e1p → e3p, e2p → e4p and
e3p → e4p. We would have morphisms defined such that
fb(g7b) = e1p = fa(g1a), fb(e5b) = e2p = fa(e1a),
fb(g8b) = e3p = fa(g8a) and fb(e6b) = e4p = fa(e5a).
The categorical construction is thus applicable and we are
able to obtain a solution. This paper automates the process
using Z3 [14].

5. Automated Weaving

5.1. Overview

Sequence diagrams capturing the base, advice and point-
cut models are transformed into equivalent textual repre-
sentations of their underlying semantics in LES. The trans-
formation is defined at the metamodel level [23], that is,
we have a metamodel representation for sequence diagrams
and for LES, and translate elements of one metamodel into
elements of the other. We treat a pointcut as a simple
sequence diagram, which gives us an indication of the
matching constraints. We then transform the LES models
into equivalent Z3 [14] models. Since LES is a formal
model (essentially a set and relations on elements of this set,
and additional labels) the transformation to Z3 (where we
have first-order logical constraints and functions) is fairly
straightforward. A unique Z3 model is produced for each

LES model. The constraint solver considers the conjunction
of all logical constraints associated to the three models, and
generates a solution which corresponds to the augmented
model in accordance to the semantics of parallel composi-
tion as defined in [21]. If the matching cannot be done Z3
returns unsat (unsatisfiable) which means that no solution
exists. Recall that formally this means that we cannot find
surjective LES morphisms fb and fa on which to apply the
categorial construction.

In our approach, all models have to be converted into Z3
specifications, and we focus on the LES to Z3 transforma-
tion step. Transformation rules define the mapping between
a source (LES) and target (Z3) metamodel. A transformation
engine executes the transformation rules on a source model
to generate its equivalent target model.

Z3 supports many types of declarations, such as Integer,
Real and Boolean, as well as allowing users to declare
new sorts (types). Functions in Z3 are the basic building
blocks of SMT formulas. Moreover, functions have no
side effects and are total (i.e., they are defined for any
element in the domain). Z3 is based on first-order logic.
Constants are functions that take no arguments, and we
write Const(a,A) to declare a constant a of type A. In
addition, Z3 supports Boolean operators, such as And, Or,
Not, Implies (logical implication), and equality == (used
for bi-implication) among others. Universal (ForAll) and
existential (Exists) quantifiers are also supported by Z3.

In Z3, it is possible to create a general purpose solver
using Solver() and associate it to a particular variable by
declaring s=Solver(). Later we can add constraints to s
through the method add(). Finally, we can check (solve)
all the constraints associated to a solver by calling method
check(). The result is either sat (satisfiable, a solution
was found), or unsat (unsatisfiable, no solution exists).

5.2. Model transformation from LES to Z3

Table 1 shows how the main LES concepts are mapped
onto Z3. In particular, a LES is understood here as the
semantic model for sequence diagrams as discussed in Sec-
tion 3. All main LES notions including events Ev, instances
I and messages M have a matching new type of element
in Z3. This corresponds to creating new types called Ev,
I and M using DeclareSort (rules 1,3,6 in Table 1).
Elements of these sets (as event, a message and a lifeline)
are mapped onto constants of the corresponding sort (rules
2,4,7). The set of events in a LES used as a semantic model
for sequence diagrams defines a partition determined by
the set of instances I . This is dealt with in Z3 through
a cover function. In particular, if an event e belongs to
an instance i1 it cannot belong to a different instance i2
(rules 5). A message is captured in an LES as a triple
(e1,m, e2) such that µ(e1) = (m, s) and µ(e2) = (m, r)
and is captured in Z3 as a function isMsg that for a triple
(e1,m, e2) determines whether it corresponds to a valid
message tuple or not. A message always relates different
events by causality (rule 8).

TABLE 1: How LES for SDs are captured in Z3.

LES Z3
1 Set of events Ev Ev = DeclareSort (’Ev’)
2 An event e1 ∈ Ev e1 = Const (’e1’,Ev)
3 Set of instances or lifelines I I = DeclareSort (’I’)
4 An instance i1 ∈ I i1 = Const (’i1’,I)
5 Ev =]i∈IEvi cover = Function (’cover’, Ev, I, BoolSort())

ForAll([e,i1,i2],Implies(And(cover(e,i1),(i1!=i2)), (Not(cover(e,i2)))))
6 Set of messages M M = DeclareSort (’M’)
7 A message m ∈M m = Const (’m’,M)
8 For (e1,m, e2) µ(e1) = (m, s) isMsg = Function (’isMsg’, Ev, M, Ev, BoolSort())

µ(e2) = (m, r) ForAll([e1,m,e2],Implies(isMsg(e1,m,e2),Next(e1,e2)))
and e1 6= e2 ForAll([e,m],(Not(isMsg(e,m,e))))

9 Causality Next=Function(’Next’,Ev,Ev,BoolSort())
→∗⊆ Ev × Ev is a p.o.:
Reflexive ForAll ([e],(Next(e, e)))
Antisymmetric ForAll([e1,e2],Implies(And(Next(e1,e2),(e1!=e2)), Not(Next(e2,e1))))
Transitive ForAll([e1,e2,e3],Implies(And(And(Next(e1,e2),Next(e2,e3))),(Next(e1,e3))))

10 Conflict Conflict = Function(’Conflict’, Ev, Ev, BoolSort())
⊆ Ev × Ev
is irreflexive, ForAll([e],(Not(Conflict(e,e))))
symmetric, and ForAll([e1,e2],Implies(And(Conflict(e1,e2),(e1!=e2)), Conflict(e2,e1)))
propagates over →∗ ForAll([e1,e2,e3],Implies(And(And(Conflict(e1,e2),Next(e2,e3))),(Conflict (e1, e3))))

11 Concurrency e1 co e2 Conc =Function(’Conc’,Ev,Ev,BoolSort())
¬(e1 →∗ e2 ∨ e2 →∗ e1 ∨ e1#e2) ForAll([e1, e2],Conc(e1, e2) == Not(Or(Conflict(e1, e2),Next(e1, e2),Next(e2, e1))))

Furthermore, rules 9, 10 and 11 show how the binary
relations between events in a LES are captured in Z3 and
in accordance to the LES Definition 1. All relations are
captured as functions in Z3 with additional constraints. The
rules capture directly all the aspects of the formal definition
given. For instance rule 9 shows how to define the partial
order, that is, the relation is reflexive, antisymmetric and
transitive. Rule 10 describes the conflict relation which is
irreflexive, symmetric and propagates over causality.

The concurrency relation in an LES (rule 11) represents
an additional binary relation between events. Rather than
explicitly defining events in concurrency, any two events
not related by causality or conflict are concurrent.

To keep it simple we only show the transformation of
the advice model of Figure 3(b) and Figure 4. The Z3 model
considered is obtained from the LES of Figure 4.

For each lifeline in the sequence diagram, the transfor-
mation generates a constant in Z3 as the snippet of code
shows below.

I = DeclareSort(’I’)
//Declaring the lifelines of the advice.
User = Const(’User’, I)
PetrolStation = Const(’PetrolStation’, I)
Bank = Const(’Bank’, I)

Similarly to what was done for lifelines, for each event
in the LES the transformation generates a constant in Z3.

Ev = DeclareSort(’Ev’)
//events of lifeline :User
e0 = Const(’e0’,Ev)
e1 = Const(’e1’,Ev)
...
e71 = Const(’e71’,Ev)
e72 = Const(’e72’,Ev)

//events of lifeline :PetrolStation
g0 = Const(’g0’,Ev)
g1 = Const(’g1’,Ev)
...
g112 = Const(’g112’,Ev)
g111 = Const(’g111’,Ev)

//events of lifeline :Bank
l0 = Const(’l0’,Ev)
l1 = Const(’l1’,Ev)
...
l61 = Const(’l61’,Ev)
l62 = Const(’l62’,Ev)

The relationship between events and instances/lifelines
is dealt with by the function cover in rule (5). We show
it only for User.
//events of lifeline :User
s.add(cover(e0,User))
s.add(cover(e1,User))
s.add(cover(e1,User))
.....
s.add(cover(e71,User))
s.add(cover(e72,User))

For each message in the model, the transformation gen-
erates the following constants in Z3.
M = DeclareSort(’M’)
//Defining the set of messages in the advice model
ValidPin = Const(’ValidPin’,M)
EnterFuelAmount = Const(’EnterFuelAmount’,M)
FuelAmount = Const(’FuelAmount’,M)
CheckAmount = Const(’CheckAmount’,M)
BalanceOk = Const(’BalanceOk’,M)
StartFuel = Const(’StartFuel’,M)
Cancel = Const(’Cancel’,M)
PaymentDeclined = Const(’PaymentDeclined’,M)

Withdraw = Const(’Withdraw’,M)

The relationship between messages and associated
send/receive events is given by the function isMsg given
in Table 1 (rule 8). For our advice model example, this is
as follows.

s.add(isMsg(g1,ValidPin,e1))
s.add(isMsg(g2,EnterFuelAmount,e2))
s.add(isMsg(e3,FuelAmount,g3))
s.add(isMsg(g4,CheckAmount,l1))
s.add(isMsg(g8,StartFuel,e5))
s.add(isMsg(g10,PaymentDeclined,e6))
s.add(isMsg(l4,Withdrow,g7))
s.add(isMsg(l3,BalanceOk,g6))
s.add(isMsg(l5,Cancel,g9))

Next, we define the relations between the events, namely
causality and conflict. Concurrency is generated automati-
cally by the solver in accordance to rule 11. The following
code shows the User events related by causality and conflict.
Further causality and conflict relations between other events
are obtained automatically through the rules 9 and 10.

s.add(Next(e0,e1))
s.add(Next(e1,e2))
s.add(Next(e2,e3))
s.add(Next(e3,e4))
s.add(Next(e4,e5))
s.add(Next(e4,e6))
s.add(Next(e5,e71))
s.add(Next(e6,e72))

s.add(Conflict(e5,e6))

5.3. Aspect weaving

After producing the Z3 code for the advice, base, and
pointcut, we need to create Z3 code that relates them
together. This involves creating a set of constraints which
identify how base model elements are matched to advice
elements in accordance to the pointcut.

There is a wide range of interpretations of how pointcuts
should be used to match model elements of the base and
advice. Wimmer et al. [24] survey some of these interpreta-
tions. To produce the Z3 code that glues the advice and base,
any chosen interpretation must be formalised. For example,
Klein et al. [4] introduce and formalise four interpretations.
These four interpretations describe the degree of strictness
when trying to detect a set of model elements which relate
to another. For example in Figure 3(c), if we are looking
for message validPin followed by startFuel between two
lifelines, we can be very strict and assume that the only
acceptable match for this is to have the two messages ap-
pearing consecutively in a diagram. Alternatively, we can be
less restrictive and allow a match provided every occurrence
of message validPin happens before startFuel irrespective
of the behaviour that may occur in between the messages.
Klein et al. refer to the later as the general interpretation.
Our implementation follows the general interpretation since
this is what our categorical construction in [21] does. It is

possible to replace this and follow any of the other three
alternatives, but we would have to redefine the semantics
for the composition in that case. Furthermore, choosing for
instance the strict interpretation will not allow weaving of
the models depicted in Figure 3.

Formal matching has been described for LES earlier (cf.
Section 4) through the surjective morphisms fb and fa where
source and target events have identical labels. We follow the
same approach in Z3.

Assume that M1 and M2 represent model elements of the
base and advice respectively. Model elements of the advice
of Figure 3 include validPin and balanceOK. In addition,
validPin is also a model element of the base. To distinguish
the two we write M1.validPin and M2.validPin instead.
Matching can be represented as a boolean partial function
match on the cartesian product of the model elements of M1
and M2. For instance, match(M1.validPin,M2.validPin) =
true. The value of match can be obtained from the pointcut
model which describes which elements can be matched. The
following snippet of Z3 describes the code for matching
messages, events and lifelines.

MessageMatch = Function(’MessageMatch’,M,M,
BoolSort())

EventMatch = Function(’EventMatch’,Ev,Ev,BoolSort
())

LifelineMatch = Function(’LifelineMatch’,I,I,
BoolSort())

ForAll ([ei,ej,en,ek,Mi,Mj],Implies(And(
MessageMatch(Mi,Mj),isMsg(ei,Mi,ek),isMsg(ej,
Mj,en)),And(EventMatch(ei,ej), EventMatch(ek,
en))))

ForAll ([ei,ej,Li,Lj],Implies(And(EventMatch(ei,ej
),cover(ei,Li),cover(ej,Lj)),LifelineMatch(Li,
Lj)))

Above, the first three lines declare boolean valued func-
tions for equality of messages, events, and lifelines, re-
spectively. The fourth line states that if two messages are
matched then their send and receive events are matched
as well. As two matched events must belong to matched
lifelines, we have the final line. In addition to the above
well-definedness criteria, further Z3 code is required to
capture the complete definition of the matching morphisms,
including how matching preserves configurations (causality
and concurrency), and is injective over configurations. One
example includes if two events are matched, then any event
which follows one of them, will follow the other as well.
For space reasons, we omit further rules.

ForAll ([ei,ej,en],Implies(And(EventMatch(ei,ej),
Next(ei,en)),Next(ej,en))))

Finally, it is possible that multiple instances of advice
messages are found in the base. For example, consider
the scenario that validPin and startFuel appear twice or
more in the base. In such cases we may follow the ”Per
Pointcut Match” strategy introduced in [25] and assume
that a new instance of the advice element is introduced

for each pointcut match. This is important because if the
repeated occurrences of messages in the base are part of
the same configuration, then our morphisms (injective on
configurations) force the events associated to these messages
to be mapped onto different events in the pointcut.

If all the constraints are satisfiable (outcome of
s.check()), the transformation generates a new Z3 model
which is a solution representing the result of merging the
original models. For our example the model obtained cor-
responds to the diagram shown in Figure 5 as expected.

Figure 5: Woven sequence diagram

6. Comparing Z3 and Alloy

We want to compare the performance of our approach
using Z3 with our earlier solutions that used Alloy for
sequence diagram composition. For that purpose, we ran
12 experiments, divided in two phases. In Phase 1, we used
sequence diagrams without combined fragments. The first
experiment of Phase 1 consisted of composing two sequence
diagrams each with 4 messages and 2 lifelines. Then, in
the following experiments, the number of messages was
increased until the composition time was very prolonged.

Table 2 shows the Phase 1 experiments in detail. The
results illustrate that increasing the number of sequential
messages strongly affected Alloy’s performance.

Overall, this study showed that the maximum number of
clauses Alloy can solve is 1753293, taking approximately
3 hours and 10 minutes to produce a solution. However,
increasing the number of elements will run out of memory.
This is due to the fact that the number of clauses and amount
of composition time grows exponentially with respect to the
increasing number of sequence diagram elements. The Alloy
analyzer is SAT solver-based and SAT-solving time may in-
crease enormously, depending on factors such as the number
of variables and the average length of the clause [12]. On the

(a) Composition time in Z3. (b) Composition time in Alloy.

Figure 6: Composition time in Z3 and Alloy

other hand, Z3 showed good performance throughout most
of the experiment and increasing the number of messages
did not produce any significant effect on its performance
(less than 1 minute on average - see Figure 7).

According to Nijjar and Bultan [13], there are several
reasons that explain why Z3 performs better than Alloy.
First, Z3 uses many heuristics to eliminate quantifiers in
formulas. It uses an E-graph to instantiate quantified vari-
ables, code trees, and eager instantiation which makes it very
effective at dealing with quantifiers [26]. Second, Z3 and
Alloy use different implementation languages. For example,
Z3 was implemented in C++, while Alloy and its SAT-
solver were implemented in Java. Another reason that might
make Z3 more efficient is that SMT solvers operate at a
higher level of abstraction than SAT solvers. SMT solvers
can use information about the structure and semantics of
a formula to make the satisfiability process faster whereas
a SAT-based approach converts the model to SAT formulas
using a Boolean encoding. Due to the increasing size of
the Boolean encoding, we then suffer from an exponential
increase in composition time. We observed that the Z3-SMT
clauses size is much smaller than the one produced by Alloy,
which uses a SAT4J solver (see Figure 7).

Figure 7: Number of clauses in Z3 and Alloy for phase 1.

In Phase 2, the experiments tested how combined frag-
ments affected the performance of Alloy and Z3. We
adopted one of the Phase 1 examples as a test case, namely
Example 5, which already had a performance problem and
inserted a combined fragment. The number of nested com-

TABLE 2: Experiments.

Total Combined
Fragment Lifelines Messages Events Alloy Z3

Time (sec) Clauses Time (sec) Clauses

Phase 1

1 22 0 2 6 14 0.31 210603 2.38 7590
2 28 0 2 8 18 5.91 373819 3.05 12853
3 34 0 2 10 22 9.02 609675 5.51 36805
4 40 0 2 12 26 630.12 818146 7.87 52542
5 46 0 2 14 30 4329.79 1344924 13.73 220154
6 52 0 2 16 34 Time-out 1870923 24.10 300227
7 58 0 2 18 38 Time-out 2505690 26.21 464612
8 64 0 2 20 42 Time-out 3294658 36.95 582375

Phase 2
10 47 1 2 14 30 11163.872 1753293 14.32 285163
11 48 2 2 14 30 Time-out 2281797 17.85 393111
12 49 3 2 14 30 Time-out 2348862 23.08 409395

bined fragments was then increased until one of the solvers
ran out of memory. Table 2 shows that when messages are
structured further through combined fragments, the perfor-
mance of Alloy is strongly affected. This study confirms
the conclusion of [13], i.e., that Alloy’s performance is
affected by the number of variable clauses. Indeed, with an
increasing number of combined fragments the performance
of Alloy becomes very slow. For examples 11 and 12,
Alloy runs out of memory. Z3, on the other hand, had
a steady performance throughout and adding a number of
combined fragments did not have any significant effect on
its performance.

7. Related work

In [16] Araújo and Whittle introduce a tool called
MATA for weaving based on sequence diagrams. They put
less emphasis on the semantics of composition. Grønmo et
al. [8] propose a semantics-based technique for weaving
behavioural aspects into sequence diagrams. However, we
have a true-concurrent semantics and deal with parallelism
in interactions. In later work, Grønmo et al. [15] propose
the conformance issue for aspects and ensure that the woven
outcome is always the same regardless of the order in which
aspects are applied. Moreover, they propose a semantics-
based matching, which is looking for matches in the seman-
tics of two diagrams. This approach has some similarities
to ours, however we use constraint solvers to automatically
check consistency of the semantics in the composed model.
We have not addressed the order in which aspects are ap-
plied, and we do not believe that this will lead to necessarily
the same outcome. Whether this can be claimed for a subset
of problems remains under investigation.

Klein et al. [4] propose a semantics-based weaver for
sequence diagrams. This approach used a number of algo-
rithms that allow the detection of join-points which cannot
be detected if only the syntax of the model is used. How-
ever, this approach did not address how this technique can
weaving sequence diagram with complex behaviour such as
two sequence diagrams with nested combined fragments.

Reddy et al. [1] use UML sequence diagram templates
for describing behaviours of design aspects and use tags for
behaviour composition. In their work, an aspect may include
position fragments (e.g., begin, end) designating the location
to be added in the sequence diagram. Clarke and Walker [27]
use UML templates to define aspects. It composes static
structural properties of aspects with interaction properties.
However, this approach focuses on less complex structures
and does not illustrate the methodology of composing inter-
action models.

Aspects can sometimes be used to model non-functional
concerns such as dependability requirements which usually
cut across several parts of the system. Regarding the use of
AOM for security, [28] presents a method for the analysis
of the performance effects of security properties specified as
aspects. Moreover, Whittle et al. [7], uses sequence diagrams
to model and execute misuse case scenarios(desired and at-
tack scenarios) for secure systems development. Mitigation
scenarios are then designed as aspect scenarios and woven
into the core behaviour to prevent against the execution of
the attack scenarios.

When looking at the integration of several model views
or diagrams, Widl et al. [6] deal with composing con-
currently evolved sequence diagrams in accordance to the
overall behaviour given in state machine models. They make
direct use of SAT-solvers for the composition. Liang et al.
[29] present a method of integrating sequence diagrams
based on the formalisation of sequence diagrams as typed
graphs. Both these papers focus on less complex structures.
For example, they do not deal with combined fragments,
which can potentially cause substantial complexity. Bowles
and Bordbar [30] presented a method of mapping a de-
sign consisting of class diagrams, OCL constraints and
sequence diagrams into a mathematical model for detecting
and analysing inconsistencies. It uses the same underlying
categorical construction as done in [21] but it has not been
automated. On the other hand, Zhang et al. [31] and Rubin
et al. [32] use Alloy for the composition of class diagrams.
They transform UML class diagrams into Alloy and com-
pose them automatically. They focus on composing static
models and the composition code is produced manually.

8. Conclusion

This paper presents an automated method for aspect
weaving of scenario-based models. Although considerable
research has been done to weave models, many such ap-
proaches are not fully automated. By contrast, in this paper
we showed how aspects can be woven automatically with the
help of constraint solvers. Amongst the available constraint
solvers we decided to use the Z3-SMT solver. Moreover, in
this approach, matching and weaving is done at the semantic
level since we incorporate the semantics of the models into
our transformation algorithm to generate Z3 code.

The example shown in the paper focuses on one base
model, one advice and one pointcut. Our approach is not
restricted to this and works for any number (of pairwise
composed) models. If a solution does not exist it shows that
there is an inconsistency between one of the models used.
As discussed our weaving follows the general interpretation
by [4] which is in accordance to our composition semantics
defined in [21].

Finally, our approach should be applicable to a wide
range of modelling notation used for design. Although we
focus on sequence diagrams and how to capture aspects and
aspect weaving, we can similarly use it to compose many
different kinds of large static and behaviour models such as
class diagrams and state machines.

References

[1] R. Reddy, A. Solberg, R. France, and S.Ghosh, “Composing sequence
models using tags,” in Proc. of MoDELS Workshop on Aspect Ori-
ented Modeling, 2006.

[2] R. France, I. Ray, G. Georg, and S. Ghosh, “Aspect-oriented approach
to early design modelling,” IEE Proceedings-Software, vol. 151, no. 4,
pp. 173–185, 2004.

[3] J. Klein, L. Hélouët, and J. Jézéquel, “Semantic-based weaving of
scenarios,” in AOSD’06. ACM, 2006, pp. 27–38.

[4] J. Klein, F. Fleurey, and J. Jézéquel, “Weaving multiple aspects
in sequence diagrams,” in Transactions on aspect-oriented software
development III. Springer, 2007, pp. 167–199.

[5] OMG, UML: Superstructure. Version 2.4.1, OMG, 2011, document
id: formal/2011-08-06.

[6] M. Widl, A. Biere, P. Brosch, U. Egly, M. Heule, G. Kappel, M. Seidl,
and H. Tompits, “Guided merging of sequence diagrams,” in SLE
2012, LNCS 7745. Springer, 2013, pp. 164–183.

[7] J. Whittle, D. Wijesekera, and M. Hartong, “Executable misuse cases
for modeling security concerns,” in ACM/IEEE 30th International
Conference on Software Engineering. IEEE, 2008, pp. 121–130.

[8] R. Grønmo, F. Sørensen, B. Møller-Pedersen, and S. Krogdahl,
“Semantics-based weaving of UML sequence diagrams,” in ICMT
2008, LNCS 5063. Springer, 2008, pp. 122–136.

[9] J. Bowles, M. Alwanain, B. Bordbar, and Y. Chen, “Matching and
merging scenarios automatically with Alloy,” in Model-Driven Engi-
neering and Software Development, CCIS 506. Springer, 2015, pp.
100–116.

[10] J. Bowles, B. Bordbar, and M. Alwanain, “A logical approach for
behavioural composition of scenario-based models,” in 17th Inter-
national Conference on Formal Engineering Methods, LNCS 9407.
Springer, 2015, pp. 252–269.

[11] D. Jackson, Software Abstractions: Logic, language and analysis.
MIT Press, 2006.

[12] N. D’Ippolito, M. Frias, J. Galeotti, E. Lanzarotti, and S. Mera,
“Alloy+ Hotcore: A Fast Approximation to Unsat Core,” in Abstract
State Machines, Alloy, B and Z, LNCS 5977. Springer, 2010, pp.
160–173.

[13] J. Nijjar and T. Bultan, “Unbounded data model verification using
SMT solvers,” in IEEE/ACM International Conference on Automated
Software Engineering, IEEE, 2012, pp. 210–219.

[14] L. D. Moura and N. Bjørner, “Z3: An efficient SMT solver,” in TACAS
2008, LNCS 4963. Springer, 2008, pp. 337–340.

[15] R. Grønmo, R. Runde, and B. Møller-Pedersen, “Confluence of as-
pects for sequence diagrams,” Software & Systems Modeling, vol. 12,
no. 4, pp. 789–824, 2013.

[16] J. Araújo and J. Whittle, “Aspect-oriented compositions for dynamic
behavior models,” in Aspect-Oriented Requirements Engineering.
Springer, 2013, pp. 45–60.

[17] D. Harel and R. Marelly, Come, Let’s Play: Scenario-based Program-
ming Using LSCs and the Play-Engine. Springer, 2003.

[18] Z. Micskei and H. Waeselynck, “The many meanings of UML 2 se-
quence diagrams: a survey,” Software and Systems Modeling, vol. 10,
pp. 489–514, 2011.

[19] J. Küster-Filipe, “Modelling concurrent interactions,” Theoretical
Computer Science, vol. 351, pp. 203–220, 2006.

[20] G. Winskel and M. Nielsen, “Models for Concurrency,” in Handbook
of Logic in Computer Science, Vol. 4, Semantic Modelling, Oxford
Science Publications, 1995, pp. 1–148.

[21] J. K. F. Bowles, “Decomposing Interactions,” in Algebraic Methodol-
ogy and Software Technology, LNCS 4019. Springer, 2006, pp. 189–
203.

[22] R. Grønmo and B. Møller-Pedersen, “From UML 2 sequence dia-
grams to state machines by graph transformation.” Journal of Object
Technology, vol. 10, no. 8, pp. 1–22, 2011.

[23] C. Gonzalez-Perez and B. Henderson-Sellers, Metamodelling for
Software Engineering. Wiley, 2008.

[24] M. Wimmer, A. Schauerhuber, G. Kappel, W. Retschitzegger,
W. Schwinger, and E. Kapsammer, “A survey on uml-based aspect-
oriented design modeling,” ACM Comput. Surv., vol. 43, no. 4, p. 28,
2011.

[25] B. Morin, J. Klein, J. Kienzle, and J.-M. Jézéquel, “Flexible model
element introduction policies for aspect-oriented modeling,” in MOD-
ELS, Part II, LNCS 6395. Springer, 2010, pp. 63–77.

[26] L. De Moura and N. Bjørner, “Efficient e-matching for SMT solvers,”
in CADE 2007, LNAI 4603. Springer, 2007, pp. 183–198.

[27] S. Clarke and R. J. Walker, “Composition patterns: An approach to
designing reusable aspects,” in ICSE. IEEE, 2001, pp. 5–14.

[28] M. Woodside and et al., “Performance analysis of security aspects by
weaving scenarios extracted from UML models,” Journal of Systems
and Software, vol. 82, no. 1, pp. 56–74, 2009.

[29] H. Liang, Z. Diskin, J. Dingel, and E. Posse, “A general approach for
scenario integration,” in MoDELS’08, LNCS 5301. Springer, 2008,
pp. 204–218.

[30] J. Bowles and B. Bordbar, “A formal model for integrating multiple
views,” in ACSD 2007. IEEE, 2007, pp. 71–79.

[31] D. Zhang, S. Li, and X. Liu, “An approach for model composition
and verification,” in NCM 2009. IEEE Computer Society Press.,
2009, pp. 1102–1107.

[32] J. Rubin, M. Chechik, and S. Easterbrook, “Declarative approach for
model composition,” in MiSE’08. ACM, 2008, pp. 7–14.

