Newcastle
University

ePrints @

Rafiev A, Xia F, lliasov A, Romanovsky A, Yakovlev A.
Selective Abstraction for Estimating Extra-Functional Properties in Networks-

on-Chips using ArchOn Framework.

In: 17th International Conference on Application of Concurrency to System
Design (ACSD). 2017, Zaragoza, Spain: IEEE.

Copyright:

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all
other uses, in any current or future media, including reprinting/republishing this material for advertising
or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

DOI link to article:

https://doi.org/10.1109/ACSD.2017.13

Date deposited:

14/11/2017

Newcastle University ePrints - eprint.ncl.ac.uk

http://eprint.ncl.ac.uk/
https://myimpact.ncl.ac.uk/ViewPublication.aspx?id=242957
https://myimpact.ncl.ac.uk/ViewPublication.aspx?id=242957
https://doi.org/10.1109/ACSD.2017.13

Selective Abstraction for Estimating
Extra-Functional Properties in Networks-on-Chips
using ArchOn Framework

A. Rafiev, F. Xia, A. Iliasov, A. Romanovsky, A. Yakovlev — Newcastle University, UK
{ashur.rafiev, fei.xia, alexei.iliasov, alexander.romanovsky, alex.yakovlev} @ncl.ac.uk

Abstract—The analysis for extra-functional properties like
power and performance takes a critical role in the system
design workflow. Hardware-software co-simulation is one of the
commonly used ways to perform this type of analysis. However,
with the modern development of many-core systems the problem
of scalability is becoming a bottleneck for all analysis techniques
including simulation, especially when a simple extrapolation from
the single core results is unacceptable. This paper presents a
framework aimed at the extra-functional analysis during the
rapid prototyping stages of system design. The tool is based
on stochastic modelling and simulation of cross-layer system
representations. The concept of selective abstraction is applied
to ensure a sufficient level of accuracy where it is needed, while
reducing the complexity of the parts that are of less importance.
A set of Networks-on-Chip topologies has been analysed and
presented as a use case example.

I. INTRODUCTION

Simulation is an important method in the processes of
system design and analysis. Many methods and frameworks
concentrate on studying specific aspects of systems, such as
Network-on-Chip (NoC) connectivity, on their own [8]. Other
efforts have been made to encompass multiple issues and
different parts of systems within the same design and analysis
framework, e.g. hardware-software (HW-SW) co-design and
co-simulation [3].

One of the most important issues simulation tools face
is system complexity. The trade-off between accuracy and
applicability has always been a crucial decision for designers
to make at every stage of their work [10]. This is especially
true for the initial stages of system design, when the global
decisions on the overall system architecture must be made.
This phase usually relies on rapid prototyping, which does
not allow large investments in computation time.

Detail models (e.g. SPICE and up to RTL level) are accur-
ate, but cannot be used for whole system studies when system
size go beyond a small number of gates. And even models
sitting at higher levels of abstraction, for instance ISA-level,
cycle-accurate, etc., even though can usually be generated
automatically from implementation specs, do not scale well
to many cores. More abstract models (e.g. time-average or
stochastic) make use of approximation and lose precision and
accuracy, but can be small and fast and achieve better scaling.
Designing a good abstraction, however, can be challenging.

This paper describes a flexible modelling framework,
ArchOn, which may be used to target the study of a specific
aspect of a system as well as used to study systems in their

entirety. Based on the representation of resources and their
dependencies, ArchOn is also flexible in the sense that it may
be used at any level of abstraction. In addition, an ArchOn
study may include parts of systems represented in detail
(e.g. logic gates and software instructions) and other parts
represented by highly abstract models (e.g. entire computers
and application software).

ArchOn supports the study of extra-functional properties,
such as power, performance, and reliability via deterministic
or stochastic simulations. The framework includes front-end
tools for quickly specifying new (non-existent) HW and SW,
from ISA-agnostic models to ISA-specific.

These features are demonstrated using an NoC case study.
A number of connectivity configurations have been simulated
for performance and power and compared with each other, as
well as a bus interconnect. The example systems are simulated
with a convolution filter benchmark software model.

The paper is organised as follows. Section II overviews
the related research and state-of-the-art tools. Section III
describes the developed framework and underlying formalism.
Section IV presents the case study with details on modelling
and simulation results. Section V concludes the paper.

II. RELATED WORK

Computation system simulation is a well-researched area
with a large number of available methods and tools. For
instance Transaction Level Modelling (TLM) is a well estab-
lished paradigm which seeks to divide the overall problem
into communication and computation. Helped by the widely-
used language SystemC [4] allows models to be developed
at different levels of abstraction, and simulations to be run
at various levels to trade accuracy for cost and speed. In
general, widely-used tools such as gem5 [1] tend to focus on
a specific level of abstraction for each use case, for instance
cycle-accuracy, instruction-set accuracy, etc. Mixing levels
of abstraction in the same analysis is usually not directly
supported, and require significant user effort.

One method of reducing the simulation burden is to make
use of stochastic methods. This allows system behaviour
to be viewed as probabilistic, avoiding having to compute
deterministic behaviours in detail. Formalisms for modelling
stochastic behaviour exist and many of them also have good
tool support [11], but these also tend not to directly support
the mixing of abstraction levels in the same analysis, requiring

the user to invest considerable effort in the modelling process
outside the formalisms and tools.

If a targeted type of system is known, one can often find a
plethora of tools for modelling functional and extra-functional
properties. For instance, in the area of NoC, a large number of
simulation tools have been developed, often based on SystemC
TLM methods [13], [7], [6], [5], [8].

III. ARCHON FRAMEWORK

In this work, we attempt to address the simulation prob-
lem with a general method that can analyse both software
and hardware without targeting any specific architecture. The
method will also provide direct support within itself for mixing
different levels of abstraction in the same analysis, and support
the general representation of components at all levels of detail,
from logic gates up to entire computers on the hardware side
and from instructions up to entire applications to executions
of multiple parallel applications on the software side.

The framework is based on the concepts of resource-driven
modelling [9] and selective abstraction [10], briefly described
in this section.

A. Resource Graphs

The central subject of our method is the study of a com-
putational platform comprising a number of diverse resources
and the way resources may be handled in order to realise a
computation. A resource is in this case an indivisible element
required by the system in order to change its state, and it
is defined by its function and availability in relation to this
transition. With the word “resources” we make the point that
we do not exclude computation, communication, or other
facilities, e.g. energy and time.

In [9] we proposed to represent a system with a relation
graph, consisting of a set of vertices and a set of edges. Each
vertex represents a single resource and each edge represents
a dependency between two resources. Platform architecture is
formally defined as a labelled directed graph of all platform
resources, and all possible (allowed) dependencies between
them. During the lifetime of an architecture instance we
can observe the switching of resources, dependencies, and
labelling. A configuration is understood to be an instantaneous
sub-graph, representing a current allocation of the resources
and active dependencies between them. Resource graph evol-
ution is a top level transition system that works on resource
dependency graphs. This can be considered as an FSM where
graphs represent states. Each resources is allowed to have an
internal state, which changes according to its function and the
state of adjacent resource nodes.

Example 1. Let’s consider Euclid’s algorithm for computing
the greatest common divisor (GCD) of two numbers (a and b):
if (a>b), then a :=a—>b; if (a <), then b :=b— a; repeat
this until (a = b), which will be the result. Its implementation
in ArchOn is shown in Figure 1. In this case, the resources
are concrete hardware units: registers reg_a, reg_b, and
two ALUs: cmp and sub. Resource states represent data,
and the resource dependencies represent data transfer between
the nodes. A register is an identity function that copies its

Resource graph GO:

Resource graph evolution:

reg_a
cmp

reg_b

y

Resource graph G1:

Initial resource state:
(a, b are given parameters)

. reg_a|reg_b|cmp’
a b ?

* cmp state can be one of {lt, eq, gt}

Resource graph GZ:
reg_a
sub

reg_b

Figure 1. Simulating Euclid’s algorithm for GCD(a,b). In this example,
resources are hardware units with data dependencies between them. Allowed
graph configurations Go, G1, and G2 are shown on the right. Allowed
transitions between these configurations are called Resource graph evolution.

pre-set state. Comparator cmp compares two inputs z, y and
stores the result in its state, encoded egq, I/t, or gt for “equal
to”, “less than”, and ‘“‘greater than” respectively. Subtraction
sub is a stateless combinational logic element: the result is
propagated to the output (post-set) node. The system starts in
the configuration Gy and then propagates into either G; or G
depending on the state of cmp, then comes back to Gy. The
cycle continues until the state of cmp becomes egq.

This level of detail allows modelling for cycle-accurate
simulations. The next section describes how levels of abstrac-
tion can be managed in ArchOn in order to deal with this
complexity and achieve scalability.

B. Selective Abstraction and Incremental Modelling

Selective abstraction is the idea of allowing the concepts
from different levels of abstraction to interact within the same
model. It imposes extra challenges for the designer: 1) there
is no straightforward way to connect these concepts, 2) the
choice of the level of detail must be done individually per
model element. These problems can be addressed systematic-
ally using Order Graphs [10], or the choice of abstraction can
be driven by the workflow.

1) Order Graphs: An Order Graph describes the hierarch-
ical system structure that is known during simulation time.
Mixed abstraction models are obtained dynamically as so-
called cross-layer cuts in this structure. The choice of the cut
is driven by a metric, which attempts to minimise the model
error via balancing the values of the estimated extra-functional
property across the elements in the cut.

2) Incremental Modelling: An example of workflow-driven
selective abstraction is the concept of working incrementally
from the detailed models of small sub-systems to large com-
pound models with selectively abstracted components. The

Detail Modelling

Abstract Modelling Execution modes instead of

individual instructions

or real platform experiments

\

ArchOn simulation
ISA-level Abstract
app model app model
Estimated Estimated
rates/rewards, rates/rewards,
Core Model i.e. energy and Complex (New) i.e. energy and
performance Platform Model performance
monitors monitors
ALU Core1 Core2 Core100
registers . "
Simplified core
Bl representation
Detailed Comm. model
etc... P .
Detail simulations, Replaceable

G)etailed Memory modeD

detailed models
(nested simulations)

J

Figure 2. The concept of incremental abstraction in a modelling workflow.

Table I
SOME COMMANDS OF GRAPH ASSEMBLY LANGUAGE
[command [description |
a— Db set a dependency between resources a and b
a>b set a labelled dependency between resources
a—» b unset a dependency
G=10 clear all dependencies
go! “execute™: fire all resource state transitions
go to X continue assembly from label X (jump)
if cond go to X | conditional jump

results of detailed simulations are used to build higher level
models. This workflow is illustrated in Figure 2 in the context
of HW-SW co-simulation.

Abstraction allows simulating hundreds of cores, however
an abstract application model cannot execute individual in-
structions. Instead, it models different modes of operation: ini-
tialisation, processing, output, etc. Coupled with the simplified
core models, it provides time-averaged resource access count
(e.g., ALU instructions, memory accesses, etc.). Transitions
between the modes can be deterministic or stochastic with
defined probabilities. Another way to obtain an abstract applic-
ation model is to use a stochastic instruction pool, described
in Section IV-A.

Important parts of the system, like communication and
memory, can be modelled in greater detail for better accuracy,
or remain abstract for quick prototyping. ArchOn provides
modularity, hence all component models can be developed
independently and replaced when needed.

C. Tool description

The ArchOn framework is a set of tools and libraries written
in Java. The core of the tool implements the infrastructure for
resource graph representation and the simulation of resource
graph evolutions.

Resource behaviours are implemented using Java classes.
At the moment the ArchOn library already includes ISA-level
resources for ARMv7-M and MC8051 instruction sets, as well
as an abstract app-core scheduling model and the transaction-
level NoC interconnect presented in this paper. The input for
the simulator is given in a low-level domain-specific language

Algorithm 1 GCD(a, b) in graph assembly language
GO:
reg_a — reg_a;
reg_a - cmp;
go! G=10
if U [cmp] = "eq" stop
if U [cmp] = "gt" go to G1
if U [cmp] = "It" go to G2

reg_b — reg_b
reg_b N cmp

Gl:
sub — reg_a; reg b —reg b
reg_a = sub; reg_b Y sub
go! G=10
go to GO

G2:
reg_a — reg_a; sub —reg b
reg_a N sub; reg_b 5 sub
go! G=10
go to GO

called Graph Assembly Language (GAL). Table I shows some
commands for step-by-step graph configurations as well as
explicit invocations of resource state transitions. This way
the specification is more compact than the traditionally used
adjacency matrices when applied to sparsely connected graphs
with many vertices. GCD example from Figure 1 written in
GAL is shown in Algorithm 1.

Editing large models directly in GAL is not very practical.
Previously, for ISA-level simulations, we used automated
conversion from ARM or MC8051 assembly. In this work, we
designed a GUI front-end, which can be used for convenient
editing of NoC meshes by “painting” the node types over a
2D mesh of an arbitrary size.

IV. USE CASE EXAMPLE

In order to demonstrate the scalability of HW-SW co-
simulation in ArchOn, we selected NoC as the case study. In
this use case we limit NoC to 4-way connected 2D meshes.
And to show tool’s flexibility and platform-independence, we
also added an example system with blocking communication
(bus interconnect).

In our earlier work on cycle-accurate simulations [9], we
used convolution filter as an application benchmark. The
results of that work has been used to characterise our new

bus

slave
node : o4

master

node mem

cache

core
instr req

app

master
app core cache “node
(a)
NoC mesh
a core cache .
PP instr req send -

router

link

router

mem : -

(b)

Figure 3. Mixed-abstraction platform model of a many-core system with
(a) bus connectivity and (b) NoC.

high-level application models to support the incremental work-
flow, proposed in Section III-B. The benchmark is a typical
application, not tailored for NoC: it needs access to a shared
memory and does not employ peer-to-peer communication
between cores. Private memory of the cores is functioning
as an L1 cache.

We don’t have an actual NoC platform to experiment with,
hence the analysis of our simulation results is limited to scaling
and precision, and does not evaluate the accuracy. This is a
subject for future work.

A. High Level Application Model

The convolution filter application has a relatively uniform
workload distribution: it performs similar processing for each
image pixel. Modelling this application using modes has no
real benefit, hence we choose a different approach.

In this model, application behaviour is defined as an un-
ordered set of instructions. A random instruction is issued from
this pool and passed to the core. Once the core completes the
instruction, it sends a request for another. This approach allows
time-averaged estimation of the extra-functional properties
without actual data calculation. Another benefit of using this
method is that the total number of instructions can be tuned to
balance the precision versus simulation time. We classify all
instructions into three types: computation (CPU), memory read
and memory write. For the convolution filter benchmark, from
the previous studies we know that the number of instructions
are distributed as follows: 4.72 - 10° (79.12%) computation,
1.18 - 10°% (19.78%) memory reads, and 0.07 - 105 (1.10%)
memory writes.

B. Connectivity Model

Figure 3 shows the chain of dependencies across all re-
sources, starting from the application. The resources are

Figure 4. Example NoC configurations.

connected via request/done dependencies, which help track
resource usage and timing. The direction of a dependency does
not reflect the direction of the data transfer. For instance, the
link arc in Figure 3(a) shows that the interaction is always
initiated by a master node, however the data is exchanged in
both directions.

The NoC platform model uses a similar dependency stack
having the bus part replaced with router resources. Each router
links with up to 4 adjacent routers and has send/receive
dependencies with its core or memory node. In our study, we
implemented X-first-then-Y routing strategy, however ArchOn
framework is not generally restricted to that and allows arbit-
rary connectivity functions. Since it is impractical to edit NoCs
manually using GAL, we developed an auxiliary graphical
editor. In addition to core and memory nodes, it is possible to
place router-only nodes (depicted as a dot) and breaks in the
mesh (depicted using a cross mark).

Example topologies used for simulations are shown in Fig-
ure 4. Each topology can be scaled to an arbitrary N x N
number of cores. Example (a) has only one memory node
in the north-west corner of the mesh; example (b) consists of
4 memory nodes, one in each corner, regardless of the number
of cores; example (c) has a single row of N memory nodes;
example (d) has 4N memory nodes, one row on each side.

C. Model Characterisation

Table II shows the model characterisation parameters.
Cortex-A7 power and performance models has been used
for the core nodes. Computation latency, cpuDelay, has
been calculated from 1000MHz CPU frequency and 0.787
average CPI experimentally measured from ARM performance
counters using Odroid XU3 board [2]. Active power has
been measured at 70mW, which for the same frequency
gives the corresponding energy per instruction. Cache and
memory characteristics have been taken from ARM white

speedup

average power, mWy

0 10 20 30 40 50 60 70 80 90

6000

5000

0

Speedup, cache miss rate: 0.05

~—bus
NoC(a)
~— NoC(b)
— NoC{c)
NoC(d)

100

cores

Power, cache miss rate: 0.05

—— bus

NoC(a)
NoC(b)
—— NoC(c)
NoC(d)

10 20 30 40 50 60 70 80 90 100

cores

Figure 5. Power and performance results for different interconnect configurations.

time

speedup

Performance, bus

5 00E+09
4 50E+09
cache miss
4 00E+09 e
3.50E+09 \ 0
3.00E+09 005
2 50E+09 01
2 00E+09 —015
1.50E+09 —02
1.00E+09 025
5 00E+08
0.00E+00
0 10 20 30 40 50 60 70 80 90 100
cores
Speedup, bus
3
25
cache miss
rate:
2
—0.05
15 01
——0.15
1 —0.2
0.25
0.5
0
0 10 20 30 40 50 60 70 8O 90 100

cores

time

speedup

Speedup, cache miss rate: 0.2

7
6
5
L 4 ~—bus
3 NoC(a)
2 3 —— NoC(b)
o —— NoC(c)
2 NoG(d)
1
0
0 10 20 30 40 50 60 70 80 90 100
cores
Power, cache miss rate: 0.2
6000
5000
£ 4000
E ——bus
g 3000 NoC(a)
o = NoC(b)
g 2000 —— NoC(c)
H NoC(d)
1000
0
0 10 20 30 40 50 60 70 80 90 100
cores
Performance, NoC (b)
5.00E+09
4.50E+09
cache miss
4.00E+09 rate
3 50E+09 0
3.00E+09 0.05
2 50E+09 01
2.00E+09 ——0.15
1.50E+09 —02
1.00E+09 0.25
5.00E+08
0.00E+00
0 10 20 30 40 50 60 70 80 90 100
cores
Speedup, NoC (b)
7
6
cache miss
5 rate:
4 0.05
01
3 —015
—02
2 0.25
1
0
0 10 20 30 40 50 60 70 80 90 100

cores

Figure 6. Performance results for different cache miss rates for bus interconnect (on the left) and NoC(b) interconnect (on the right).

Table II
RESOURCE CHARACTERISATION PARAMETERS

Table IIT
SIMULATION TIME AND PRECISION

[resource | parameter [value [unit | total 16 cores NoC(b) 256 cores NoC(b)
core (Cortex-A7) delayCpu 1270 ps workload sim. perf. pWI. sim. perf. pwr.
ene rgycpu 88889 pJ time var. var. time var. var.
static 19 | mW 64 -102 | 0.010s | 5.84% | 0.20% | 0.012s | 6.65% | 0.16%
cache (LT in Cortex-A7) delayHip 4000 ps 64-103 | 0.066s | 2.81% | 0.11% | 0.068s | 3.46% | 0.09%
energyHit 35.000 | pJ 64107 | 0.583s | 2.53% | 0.09% | 0.588s | 3.34% | 0.09%
static 2 | mW 64-10° | 5.775s | 2.54% | 0.10% | 5.758s | 3.88% | 0.10%
memory (LPDDR3e) delayRead 100000 ps
delayWrite 100000 ps
energyRead 39.750 J .
energgwnte 99.000 EJ allows the user to directly trade off accuracy for cost of ana-
static 60 | mW lysis through selective abstraction. System analysis with mixed
comm delayHop 1333 ps levels of abstraction in the same study is directly provided
energyHop 20.000 pJ . . R .
static 4 | mw and the method is architecture-agnostic and abstraction level-

papers [12], but haven’t been experimentally confirmed yet.
Communication delay and energy are educated guesses, which
is still acceptable for a relative comparison within our use
case examples. For the purpose of cross-platform comparison,
we use the same delay and energy values for a single bus
master/slave resource node as well as for a single router
resource node (named comm in the table).

D. Simulation results

Platforms shown in Figure 4 have been simulated for
different numbers of cores and a range of cache miss rates.
FIFO size of 64 was empirically found to be acceptable if
the number of cores stays below 256. Beyond this, it often
caused network stalls. Performance results in terms of the total
execution time in ps, the speedup and the estimated power are
shown in Figures 5 and 6. NoC(a) and the bus show similar
performance characteristics due to the bottleneck in the single
memory node, however NoC power consumption is higher
due to area overheads. NoC(d) mesh is estimated to have the
highest performance and power consumption. NoC(b) shows
surprisingly good performance scalability, considering it has
a constant number of memory nodes, which also results in a
relatively low power consumption.

Table III shows the simulation time and precision for
NoC(b) example with a 0.2 cache miss rate, averaged over
200 simulation runs on a 2.9GHz Intel i7-3520M. Precision
is represented with square root of variance shown as a per-
centage of the mean value. Because the total workload is
evenly distributed between the cores, the number of cores
has a negligible impact on the simulation time, however
larger systems suffer reduced precision. This still proves the
scalability of the method, as even large systems can be
simulated with acceptable precision in a matter of seconds.
Small power variation can be explained with the fact that the
cores are predominantly idle waiting for memory response and
the memory is constantly busy. For example, for 100 core
NoC(b), the total delay for the memory access is 287.8ns on
average, which is 226.6 times slower than a single computation
instruction.

V. CONCLUSIONS

The ArchOn framework has been developed to support the
holistic and specific study of systems through simulations. It

agnostic with a high flexibility in modelling. Based on the
concept of resources and their dependencies, ArchOn is espe-
cially useful for studying extra-functional properties such as
performance and power, and yet it does not preclude functional
modelling and analysis. The features of ArchOn has been
demonstrated with the comparative study of multiple NoC
topologies and a bus structure as a case study. The immediate
future work includes the further development of the NoC
models and comparing them with real system experiments
and/or existing NoC simulators.

Acknowledgement This work is supported by EPSRC as a
part of PRiME project EP/K034448/1.

REFERENCES

[1] The gem5 simulator system. http://www.mSsim.org.

[2] A. Aalsaud et al. Power-aware performance adaptation of concurrent
applications in heterogeneous many-core systems. In Proceedings to
ISLPED, pages 368-373. ACM, 2016.

[3] J. R. Andrews. Chapter 4 - hardware/software co-verification. In J. R.
Andrews, editor, Co-verification of Hardware and Software for {ARM}
SoC Design, pages 119 — 163. Newnes, Burlington, 2005.

[4] L. Cai and D. Gajski. Transaction level modeling: an overview. In
First IEEE/ACM/IFIP International Conference on Hardware/ Software
Codesign and Systems Synthesis (IEEE Cat. No.O3THS8721), pages 19—
24, Oct 2003.

[5] V. Catania, A. Mineo, S. Monteleone, M. Palesi, and D. Patti. Noxim: An
open, extensible and cycle-accurate network on chip simulator. In 2075
IEEE 26th International Conference on Application-specific Systems,
Architectures and Processors (ASAP), pages 162—163, July 2015.

[6] L. S. Indrusiak, J. Harbin, and O. M. Dos Santos. Fast simulation of
networks-on-chip with priority-preemptive arbitration. ACM Trans. Des.
Autom. Electron. Syst., 20(4):56:1-56:22, Sept. 2015.

[71 N. Jiang, D. U. Becker, G. Michelogiannakis, J. D. Balfour, B. Towles,
D. E. Shaw, J. Kim, and W. J. Dally. A detailed and flexible cycle-
accurate network-on-chip simulator. In ISPASS, pages 86-96. IEEE
Computer Society, 2013.

[8] A. B. Kahng, B. Lin, and S. Nath. ORION3.0: a comprehensive NoC
router estimation tool. IEEE Embedded Systems Letters, 7(2):41-45,
June 2015.

[9]1 A. Rafiev et al. Studying the interplay of concurrency, performance,

energy and reliability with ArchOn — an architecture-open resource-

driven cross-layer modelling framework. In Proc. to ACSD, 2014.

A. Rafiev et al. Selective abstraction and stochastic methods for scalable

power modelling of heterogeneous systems. In Proc. to FDL, Sept. 2016.

W. Sanders and J. Meyer. Lectures on Formal Methods and Perform-

ance Analysis, volume LNCS2090, chapter Introduction to Generalized

Stochastic Petri Nets, pages 315-343. Springer, 2001.

A. Stevens. Introduction to AMBA 4 ACE and big. LITTLE processing

technology. Technical report, ARM, 2011-2013.

C. Sun, C. H. O. Chen, G. Kurian, L. Wei, J. Miller, A. Agarwal, L. S.

Peh, and V. Stojanovic. DSENT - a tool connecting emerging photonics

with electronics for opto-electronic networks-on-chip modeling. In 2072

IEEE/ACM Sixth International Symposium on Networks-on-Chip, pages

201-210, May 2012.

[10]

(11]

[12]

[13]

