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Abstract—Relational order structures are used to describe
and investigate properties of concurrent systems. To reduce the
complexity of order structures, one typically considers only their
essential components, which, in the case of partial orders, leads
to the notion of Hasse diagrams. We lift this notion to the level of
generalised mutex order structures, which are used to model not
only causal dependencies but also weak causality and mutual ex-
clusion. We provide a new and more concise axiomatic definition
of these structures, investigate their important properties, and
present efficient algorithms for computing their reduction and
closure. The algorithms are implemented in a publicly available
software tool with graphical user interface.

I. INTRODUCTION

The interleaving semantics of concurrent systems is often
represented by a set of equivalent runs in the system. Analysis
of these sets often requires processing of a large number of
sequences that have a lot in common. By adopting the non-
interleaving semantics, it is possible to extract concurrency-
related similarities from sets of equivalent runs, thereby sim-
plifying the representation and reducing the analysis time.
In the ideal scenario, this results in a single order structure,
common for all equivalent runs. Such a structure, focusing on
causal dependencies, has a form of an acyclic binary relation.
This relation can be transformed into a partially ordered set
using the transitive closure algorithm. The real benefit (from
the point of view of the size of the representation) is achieved
by the transitive reduction, instead of closure, of the relation
on events to the smallest possible form that keeps all essential
dependencies (not necessary in a direct form). Such a reduced
partially ordered set is called the Hasse diagram.

In some distributed systems, the equivalence of possible
sequences of single events is often inadequate and one needs
to operate on sequences of sets of events that occur simultan-
eously. One example is clocked hardware circuits, where sets
of events may occur simultaneously within a single subsystem,
yet still be partially ordered between different subsystems
whose clock signals are independent. A model of observable
runs for describing such systems was studied in [4], where
the paradigms of concurrency theory based on step sequences
as observations were proposed. In the same paper, one of
less expressive paradigms was equipped with a model of
combined traces together with their structures called combined
partially ordered sets (or stratified order structures using the
nomenclature of [2]). The most general paradigm was given
by generalised traces, represented by generalised mutex-order
structures [2]. Since generalised mutex-order structures are in
this case counterparts of partially ordered sets, it is natural to
ask the question about their closure and reduction operations.

As already pointed out in [5], in the reduction of stratified
order structures we need to face some problems, which were
not present in the case of partially ordered sets. In particular,
it is not trivial to achieve the uniqueness of the reduction.
One possible approach is to use the concept of indivisible
sets of events and folded structures, as proposed in [5]. In this
paper we introduce algorithms for computing the reduction and
closure of a consistent order structure in the time complexity
quadratically dependent on the size of the structure. The
algorithms have been implemented in a software tool that is
publicly available at [6].

The main contributions of this paper are as follows.
• We formally define order structures and present a new

concise axiomatic definition of generalised mutex-order
structures in Section II.

• A decomposition of the mutual exclusion relation into
aligned and crossing mutexes is discussed in Section III.
The decomposition is an essential component of the
formal definitions of the closure, folding, integration
and reduction operations on order structures, that are
introduced in Sections IV-VII.

• We present algorithms for the reduction and closure of
order structures in Section VIII.

II. ORDER STRUCTURES

A reflexive order structure (ros) S = (X,
,@) is a
relational structure satisfying the following conditions:
• 
 is irreflexive and symmetric.
• @ is reflexive
• 
 and @ are separable, that is:(

@∗ ∩ (@−1)∗ ∩ 

)

= ∅.

Relations 
 and @ stand for mutual exclusion (mutex) and
weak causality between pairs of events from X . Intuitively,

and @ have meanings similar to that of 6= and ≤ in arithmetic,
however, the set of events X is not necessarily totally ordered.
The separability condition prohibits the situation when two
events are both simultaneous (because they belong to a cycle
in @) and mutually exclusive (because of
) at the same time.

We also define the containment relationship of relational
structures over the same signature. Let S1 = (X,
1,@1)
and S2 = (X,
2,@2) be two relational structures. We say
that S1 is contained in S2 (or S2 extends S1) if
• 
1 ⊆
2,
• @1 ⊆ @2,

and denote it by S1 / S2.
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Figure 1. An example of reflexive order structure S.

Example 1. Let S = (X,
,@) be as in Figure 1 (solid
edges denote relation 
, dashed arcs denote relation @,
solid arcs stand for 
 ∩ @). For readability reasons, in all
figures depicting relational structures we do not draw loops
associated with the reflexivity of relations @.

A. Generalised mutex order structures

Let G = (X,
,@) be a relational structure satisfying the
following axioms for all a, b, c, d ∈ X:

G1: a
 b =⇒ b
 a.
G2: a @ a ∧ a 6
 a.
G3: a @ b @ c =⇒ a @ c.
G4: a @ b @ a ∧ a
 c =⇒ b
 c.
G5: a @ b @ d ∧ a @ c @ d ∧ b
 c =⇒ a
 d.

Then G is called (reflexive) generalised mutex order structure
(gmos)1, while the set of all generalised mutex order structures
is denoted by GMOS. Note that every gmos is a reflexive order
structure, in particular the separability condition follows from
axioms G2 and G4.

Note that above definitions of ros and gmos differ from
previous definitions in that the weak causality relation is
reflexive (as opposed to being irreflexive as, e.g., in [2]). In our
experience, this change significantly simplifies the theory, in
particular it makes some previously required axioms redundant
as will be demonstrated below. With the help of the ALG
tool [1] we have checked that reflexive and irreflexive theories
have the same number of models, which confirms that there is
a one-to-one correspondence between reflexive and irreflexive
order structures. We have also checked the minimality (with
respect to the number of axioms) of the previous axiomatic
definition of gmos as well as of the above definition, thereby
proving that the reduction in the number of axioms is a
consequence of the reflexivity choice.

Consider the following theorem:

T1: a @ b @ c ∧ (a
 b ∨ b
 c) =⇒ a
 c.

This theorem was an axiom in [2], but we can now prove it
from G5, reflexivity and transitivity. Indeed, by instantiating

1A structure satisfying axioms G1, G3-G5 and G2’:a 6@ a∧a 6
 a in place
of G2 is called in [2] generalised mutex order structure. In [3], referring to [4],
another name for such structures was proposed – invariant order structures.
Since we do not discuss in this paper invariants of concurrent systems, we
use the former name.
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Figure 2. An example of generalised mutex order structure G.

G5 with a = b we can derive the following:

a @ a @ d ∧ a @ c @ d ∧ a
 c =
a @ d ∧ a @ c @ d ∧ a
 c =

a @ c @ d ∧ a
 c =⇒
a
 d.

This proves one half of T1 corresponding to the first disjunc-
tion term. To prove the other half, G5 needs to be instantiated
with b = d.

According to the remark below, one can also eliminate G1.
Remark 2. By changing axiom G4 into

a @ b @ a ∧ a
 c =⇒ c
 b

(mind the order of events in the last term), one can make axiom
G1 redundant. Indeed, b 
 a follows directly from a 
 b,
a @ a (axiom G2) and modified G4.

Example 3. Recall the reflexive order structure S from Fig-
ure 1 and let G = (X,
,@) be as in Figure 2. Then G
satisfies axioms G1 to G5 (hence it is a generalised mutex
order structure) and S / G (i.e., S is contained in G).

III. DECOMPOSING THE MUTEX RELATION

We can decompose the mutex relation 
 into relations ≺
and �� as follows:

• ≺ df
= @ ∩
.

• ��
df
= 
 \(≺ ∪ ≺ −1).

Proposition 4. For every gmos, (X,≺) is a strict partial order.

Proof. A strict partial order relation must be transitive (that is,
a ≺ b ≺ c⇒ a ≺ c) and irreflexive (a 6≺ a). The irreflexivity
directly follows from axiom G2. The transitivity can be proved
by using axioms G2, G3 and G5. If a ≺ b ≺ c then, by the
above definition, both a @ b @ c and a 
 b 
 c hold. G2
states that a @ a, and from G3 we immediately have a @ c.
Now, combining a @ a @ c, a @ b @ c, and a 
 b yields
a
 c via G5. Hence, a ≺ c holds as required.

We further call ≺ and �� aligned and crossing mutexes,
respectively. Intuitively, mutexes in ≺ are aligned with the
weak causality relation @, while mutexes in �� cross it.
This classification of mutexes is useful for derivation of the
reduction of generalised mutex order structure. In particular,
according to axiom G5, crossing mutexes can induce aligned
ones, but not vice versa. Therefore, all crossing mutexes must



belong to the reduction of a structure, while the aligned
mutexes induced by them can be dropped without ambiguity.
Remark 5. Another important distinction between aligned and
crossing mutexes of generalised mutex order structures is that
the latter lead to arbitration: for a �� b a non-monotonic
decision needs to be made on whether a occurs before b (that
is, a ≺ b) or vice versa (b ≺ a).

For any crossing mutex m = (x, y) we can define the set
α(m) of all aligned mutexes G5-induced by m as follows:

α(m) = (•x ∩ •y)× (x• ∩ y•),

where •x = {z | z @ x} and x• = {z | x @ z} are the preset
and the postset of an event x with respect to @. For a given
set of crossing mutexes C ⊆ (X×X)\ Id, the corresponding
set of G5-induced aligned mutexes will be denoted as α(C) ⊆
X ×X with α(C) =

⋃
m∈C α(m).

For a single crossing mutex m we can compute the set α(m)
according to definition in time O(|@ |). Hence, α(��) can be
computed in time O(|@ | · |�� |).

On the other hand, for every aligned mutex m = (a, b) we
also consider the corresponding set of G5-induced aligned mu-
texes and denote it by β(m). The set β(m) can be represented
as follows:

β(m) = •a× b• \ {(a, b)},

We can extend it to any set of aligned mutexes A ⊆ X×X by
β(A) =

⋃
m∈A β(m). For a single aligned mutex m we can

compute the set β(m) according to definition in time O(|≺|).
Hence, β(≺) can be computed in time O(|≺|2).

Example 6. Recall the reflexive order structure S from
Figure 1 and the generalised mutex order structure G from
Figure 2.

In the case of the former structure we can observe three
crossing mutexes (i.e. C = {(a, c), (e, f), (g, h)}) and two
aligned mutexes (i.e. A = {(h, i), (h, j)}).

In the case of the structure G we have four crossing mutexes
and eleven aligned mutexes. Moreover, α(C) = {f} × {i, j}
with two implied aligned mutexes, while β(A) = {f, h} ×
{j} ∪ (f, i) imply three aligned mutexes (and include α(C)).
Note that the aligned mutex (f, j) is implied by the crossing
mutex (g, h) as well as by any of four other aligned mutex
(namely (f, i), (h, i), (g, j) or (h, j)).

We now formulate a proposition describing relationships
between the sets of mutexes induced by other mutexes.

Proposition 7. Let G = (X,
,@) be a generalised mutex
order structure and let m1 = (a, b),m2 = (c, d) ∈ X ×X .
• If m1 ∈�� and m2 ∈ α(m1) then m2 ∈≺ and β(m2) ⊆
α(m1).

• If m1 ∈≺ and m2 ∈ β(m1) then m2 ∈≺ and β(m2) ⊆
(β(m1) ∪ {m1}).

Proof. Let us assume (a, b) ∈��. By the definition of α, we
have c ∈ •a ∩ •b and d ∈ a• ∩b•. Hence, c @ a @ d and
c @ b @ d. By axiom G5, c
 d, while by axiom G3, c @ d,
therefore (c, d) ∈≺, as required.

Let (e, f) ∈ β((c, d)). Then, by definition of β, e ∈ •c and
f ∈ d•. Hence, e @ c @ a @ d @ f and e @ c @ b @ d @ f .
Therefore, by axiom G3, e @ a @ f and e @ b @ f , and so
(e, f) ∈ α((a, b)).

Assume now that (a, b) ∈≺. By the definition of β, c ∈ •a
and d ∈ b•. Hence, c @ a @ b @ d, and so c @ a @ d and
c @ b @ d. By axiom G5, c
 d, while by axiom G3, c @ d,
therefore (c, d) ∈≺, as required.

Let (e, f) ∈ β((c, d)). Then, by definition of β, e ∈ •c and
f ∈ d•. Hence, e @ c @ a and b @ d @ f . Therefore, by axiom
G3, e @ a and b @ f , and so (e, f) ∈ (β((a, b))∪{(a, b)}) (it
does not matter whether (a, b) is equal to (e, f) or not).

Remark 8. One can notice that in principle it is possible to
completely eliminate aligned mutexes as follows. Let a ≺ b
be an aligned mutex which is not induced by any crossing
mutex. Then one can create two auxiliary elements x 
 y
and embed them in the order structure so that a @ x @ b
and a @ y @ b. Now, a ≺ b is G5-induced from the crossing
mutex x 
 y. This procedure can be used to eliminate all
aligned mutexes from a given order structure, which shows
that crossing mutexes are more fundamental than aligned ones.
We believe that this is an important observation and that it
deserves further study, however such a study is outside of the
scope of this paper.

IV. CLOSURE

A reflexive order structure S = (X,
,@) can be closed
to produce a uniquely defined generalised mutex order struc-
ture Sc = (X,
c,@c) so that the following conditions are
met:
• S / Sc.
• S1 / S2 ∈ GMOS =⇒ Sc

1 / S2 (Sc is the smallest closed
order structure extending S).

The intent of the closure operation is similar to that of the
transitive closure of a relation R into a transitive relation R+:
we add a minimal number of new elements into S so that the
result Sc conforms to the axioms of generalised mutex order
structures presented in Section II. Note that we drop the word
‘transitive’, because the concept of transitivity is not defined
for the mutex relation 
.

The uniqueness of the above (in the case of irreflexive
relation @) is proven in [3], while the precise definition of the
closure (also in the irreflexive case) is given in [2]. Adapted to
the notation used in this paper, the definition can be expressed
as:
• a
c b ⇐⇒ a @~ ◦(
 ∪∇sym)◦ @~ b.
• a @c b ⇐⇒ a @∗ b,

where a∇b ⇐⇒ ∃c, d, a @∗ c @∗ b∧ a @∗ d @∗ b∧ c
 d,
and a @~ b ⇐⇒ a @∗ b @∗ a.

We define an equivalence relation ≡gmos on order structures,
relating those that have the same closure. Formally, we say that
S ≡gmos T ⇐⇒ Sc = T c and denote the equivalence class
of a structure S by [S]gmos.
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Figure 3. The closure of the structure S from Figure 1.

Example 9. Recall S from Figure 1 and G from Figure 2.
Note that despite S / G, the structure G is not a closure of
the structure S. The reason is the ineligible mutex (g, j). The
proper closure Sc is depicted in Figure 3.

V. FOLDING

A reflexive order structure S = (X,
,@) can be folded
into a more compact one by contracting the maximal equi-
valence classes induced by strongly connected components
of @ (we denote this maximal equivalence relation by ≡f ).
The folded structure will be denoted as Sf = (Xf ,
f ,@f )
where Xf denotes the set of equivalence classes, while rela-
tions
f and @f are lifted versions of
 and @, respectively.
More formally, for all x, y ∈ Xf the following holds:
• x
f y ⇐⇒ ∃a ∈ x, b ∈ y, a
 b.
• x @f y ⇐⇒ ∃a ∈ x, b ∈ y, a @ b.

The above can be reformulated in the case of generalised
mutex order structures as follows:
• a ≡f b ⇐⇒ a @ b @ a.
• Xf = X/≡f

.
• [a]
f [b] ⇐⇒ a
 b.
• [a] @f [b] ⇐⇒ a @ b.

Example 10. Recall the structure S from Figure 1. In this case
we have two non-trivial (of size greater than one) equivalence
classes of the relation ≡f - namely [a]f = {a, b} and
[c]f = {c, d, e}. The folding Sf of the structure S is depicted
in Figure 4.

Proposition 11. Let G = (X,
,@) be a generalised mutex
order structure. Then (Xf ,@f ) and (Xf ,≺f ) are a weak and
a strict partial orders, respectively.

Proof. Recall that a weak partial order is a reflexive, transitive
and antisymmetric relation, whereas a strict partial order is a
irreflexive and transitive relation.

By the definition of folding, axioms G2 and G3, relation
@f is both reflexive and transitive. To prove its antisymmetry
(for all x, y: x @ y ∧ y @ x ⇒ x = y) let us suppose that
[x]f @f [y]f and [y]f @f [x]f . Hence, x @ y @ x and so
x ≡f y, which gives [x]f = [y]f .

Let x ≺ y ≺ z. By G3, x @ z, while by G5, with a = x,
b = y, c = d = z, x
 z. Hence by the definition of folding
≺f is transitive.

Suppose that [x]f ≺f [x]f . Then there exist y, z ∈ [x]f such
that y 
 z and x @ y @ x and x @ z @ x. Using G4 twice
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Figure 4. The folding of the structure S from Figure 1.

we get x
 x, which is in contradiction with G2. Hence ≺f

is irreflexive.

An important property of folding is that it commutes with
closure. We precede the corresponding proposition by three
technical lemmas.

Lemma 12. Let S = (X,
,@) be a reflexive order structure.
Then @∗=@c= (@c)∗ and the following are equivalent:

• a ≡f b
• a @∗ b @∗ a
• a @c b @c a
• a @~ b @~ a

Proof. The equalities @∗=@c= (@c)∗ follows directly from
the definition of closure and idempotence of the star operation
(i.e. (@∗)∗ = @∗).

If a ≡f b then, by the definition of folding, a and b are in
the same strongly connected component of @, hence a @∗ b
and b @∗ a.

Moreover a @∗ b @∗ a, is by the definition of closure,
equivalent to a @c b @c a and by the definition of ~ with
a @~ b (and b @~ a).

As a result we argued the equivalence of a @∗ b @∗ a with
all other formulations.

Lemma 13. Let S = (X,
,@) be a reflexive order structure.
Then a @∗ b is equivalent to [a]f (@f )∗[b]f .

Proof. Let a @∗ b. Then there exist a sequence {ci}ni=1 of
elements from X such that a @ c1 @ c2 @ . . . @ cn @ b.
Hence, [a]f @f [c1]f @f [c2]f @f . . . @f [cn]f @f [b]f , and
so [a]f @f∗ [b]f .

On the other hand, let [a]f @f∗ [b]f . Then there ex-
ist a sequence {[ci]f}ni=1 of elements from Xf such that
[a]f @f [c1]f @f [c2]f @f . . . @f [cn]f @f [b]f . Hence,
by Lemma 12, there exist two sequences {cini }ni=1, {couti }ni=1

and aout and bin such that

• cini , c
out
i ∈ [ci]f , aout ∈ [a]f , bin ∈ [b]f

• couti @ cini+1, aout @ cin1 , coutn @ bin

Hence, a @∗ aout @ cin1 @
∗ c1 @∗ cout1 @ cin2 @

∗ c2 @∗

cout2 @ . . . @ cinn @
∗ cn @∗ coutn @ bin @∗ b, which concludes

the proof.



Lemma 14. Let S = (X,
,@) be a reflexive order structure
and a, b ∈ X . Then

∃c,d a @∗ c @∗ b ∧ a @∗ d @∗ b ∧ [c]f 

f [d]f

⇐⇒
∃x,y a @∗ x @∗ b ∧ a @∗ y @∗ b ∧ x
 y.

Proof. Let c, d be such that a @∗ c @∗ b ∧ a @∗ d @∗ b ∧
[c]f 
f [d]f Then, by the definition of folding, there exists
cout ∈ [c]f and din ∈ [d]f , such that c 
 d. By Lemma 12,
we get c @∗ cout @∗ c and d @∗ din @∗ d, so a @∗ c @∗

cout @∗ c @∗ b∧ a @∗ d @∗ din @∗ d @∗ b and a @∗ cout @∗

b∧ a @∗ din @∗ b. Hence we can take x = cout and y = din.
On the other hand, let x, y be such that a @∗ x @∗ b∧a @∗

y @∗ b ∧ x 
 y. By the definition of folding, [x]f 
f [y]f ,
hence we can take a = x and b = y.

Proposition 15. The folding and closure operations commute,
that is (Sc)f = (Sf )c.

Proof. Let S = (X,
,@) be an order structure. Let Scf =
(Xcf ,
cf ,@cf ) be the folded closure of S, while Sfc =
(Xfc,
fc,@fc) be the closure of its folding. Note that the
elements of Scf and Sfc are equivalence classes of elements
from the set X and, by Lemma 12, the equivalence relations
that induce those classes are identical (since @∗= (@c)∗ it
does not matter if we initially close a structure).

In order to show the equality of Sfc and Scf we shall prove
that:
• [a]f @cf [b]f ⇐⇒ [a]f @fc [b]f
• [a]f 
cf [b]f ⇐⇒ [a]f 
fc [b]f

We start from the first equivalence. By Lemma 12, [a]f @fc

[b]f is equivalent to [a]f (@f )∗[b]f , which, by Lemma 13, is
equivalent to a @∗ b, which, by Lemma 12, is equivalent
to a @c b. By the definition of folding for GMOS this
is equivalent to [a]f (@c)f [b]f , which concludes this part of
proof.

A bit more complex is the situation with mutexes. Let
[a]f 
fc [b]f . By the definition of closure it is equivalent
to [a]f (@f )~ ◦ (
f ∪∇sym

f ) ◦ (@f )~[b]f where

[[a]f∇f [b]f ⇐⇒
∃c,d [a]f (@

f )∗[c]f (@
f )∗[b]f∧

[a]f (@
f )∗[d]f (@

f )∗[b]f ∧ [c]f 

f [d]f ,

which, by Lemma 13 and Lemma 12 can be reduced to an
equivalent formulation: [a]f 
f [b]f or ∃c,da @∗ c @∗ b ∧
a @∗ d @∗ b ∧ [c]f 
f [d]f or ∃c,db @∗ c @∗ a ∧ b @∗
d @∗ a ∧ [c]f 
f [d]f . By Lemma 14, this is equivalent to
[a]f 
f [b]f or ∃c,da @∗ c @∗ b ∧ a @∗ d @∗ b ∧ c 
 d or
∃c,db @∗ c @∗ a ∧ b @∗ d @∗ a ∧ c
 d. By the definition of
folding, this is equivalent to ∃a′∈[a]f ,b′∈[b]f a

′ 
 b′ or ∃c,da @∗
c @∗ b∧a @∗ d @∗ b∧c
 d or ∃c,db @∗ c @∗ a∧b @∗ d @∗
a∧ c
 d, which can be reformulated in an equivalent way to
a @~ ◦
 ◦ @~ b or a @~ ◦∇sym◦ @~ b. By the definition
of closure, this is equivalent to a
c b, which by the definition

of folding for GMOS is equivalent to [a]f 
cf [b]f , and this
concludes the proof.

Folding can be computed using classical algorithms for
finding strongly connected components, nominating represent-
atives and erasing one by one connections between vertices
that are not representatives. The required computation time is
O(|@ | + |X|) (for strongly connected components, see [7]),
plus O(| @ | + |
 |) (in order to transfer both relations to
the folding). In the case of generalised mutex order structures,
this can be simplified to browsing all vertices and for every
visited x dropping each y for which y @ x @ y.

Note that the existence of a relationship between two equi-
valence classes of events requires corresponding relationship
between two events from those classes. Hence, |
f | ≤ |
 |
and |@f | ≤ |@ |.

Proposition 16. Let G = (X,
,@) be a generalised mutex
order structure, Gf = (Xf ,
f ,@f ) be its folding, and m1 =
(a, b),m2 = (c, d) ∈ Xf ×Xf .
• If m1 ∈��f and m2 ∈ α(m1) then m2 ∈≺f and β(m2) ⊆
α(m1).

• If m1 ∈≺f and m2 ∈ β(m1) then m2 ∈≺f and β(m2) ⊆
β(m1).

Proof. The first part follows directly by Proposition 7 and
the definition of folding for GMOS. For similar reasons it is
enough to prove that m1 /∈ β(m2). Indeed, suppose that m1 ∈
β(m2). Then there exist x, y, p, q ∈ X such that [x]f = a,
[y]f = b, [p]f = c, and [q]f = d. Moreover, x ≺ y and p @ x
and y @ q. On the other hand, we know that m2 ∈ β(m1),
hence x @ p and q @ y. Summing up, p @ x @ p and
q @ y @ q, which means that [p]f = [x]f and [q]f = [y]f .
By definition of β, [p]f 6= [x]f or [q]f 6= [y]f , which is a
contradiction. Hence, our supposition does not hold and this
completes the proof.

Lemma 17. Let S = (X,
,@) be a reflexive order structure,
Sf = (Xf ,
f ,@f ) be its folding, Sc = (X,
c,@c) its
closure and a, b ∈ X such that a 
c b but [a]f 6
f [b]f .
Then there exists c, d ∈ X such that (c, d) ∈��c ∧([a]f , [b]f ) ∈
α(([c]f , [d]f )) or (c, d) ∈≺c ∧([a]f , [b]f ) ∈ β(([c]f , [d]f )).

Proof. Let a 
c b but [a]f 6
f [b]f . Then, naturally,
[a]f 6
fc [b]f and so [a]f (@f )~ ◦ (
f ∪∇f )◦ (@f )~[b]f . By
Lemma 12 we can simplify this by reducing compositions with
(@f )~ obtaining [a]f (
f ∪∇f )[b]f and, since [a]f 6
f [b]f
we can reduce it further to [a]f∇f [b]f . Hence, by the definition
of ∇, we get that ∃[c]f ,[d]f [a]f (@f )∗[c]f (@f )∗[b]f ∧ [a]f (@f

)∗[d]f (@f )∗[b]f ∧ [c]f 
f [d]f . By Lemma 14 we can choose
c, d in such a way that c
 d. Moreover, by Lemma 12, a @c c
and a @c d and c @c b and d @c b. As a result a ∈ •c, a ∈ •d,
b ∈ c• and b ∈ d• in Gc. And so [a]f ∈ •[c]f , [a]f ∈ •[d]f ,
[b]f ∈ [c]f• and [b]f ∈ [d]f• in Gfc.

Since c 
 d and [a]f 6
f [b]f , we have ([c]f , [d]f ) ∈��fc
or ([c]f , [d]f ) ∈≺fc and ([c]f , [d]f ) 6= ([a]f , [b]f ). In the first
case ([a]f , [b]f ) ∈ α(([c]f , [d]f )), while in the second case
([a]f , [b]f ) ∈ β(([c]f , [d]f )), which concludes the proof.
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Figure 5. The folding of the structure Sc from Figure 3 equal to the closure
of the structure Sf from Figure 4.

Lemma 18. Let S = (X,
,@) be a reflexive order structure,
Sf = (Xf ,
f ,@f ) be its folding, Sc = (X,
c,@c) its
closure and a, b, c, d ∈ X . Then
• (a, b) ∈��c implies [a]f 
f [b]f ;
• (a, b), (c, d) ∈≺c ∧([a]f , [b]f ) ∈ β(([c]f , [d]f )) implies

([c]f , [d]f ) /∈ β(([a]f , [b]f )).

Proof. Let a 
c b and a 6@c b. Then naturally [a]f 
cf [b]f
and [a]f 6@cf [b]f , hence by Proposition 23, [a]f 
fc [b]f and
[a]f 6@fc [b]f and, by Lemmas 12 and 13, a 6@∗ b. Suppose that
[a]f 6
f [b]f . Then [a]f (@f )~ ◦ (
f ∪∇f ) ◦ (@f )~[b]f . By
Lemma 12 we can simplify this by reducing compositions with
(@f )~ obtaining [a]f (
f ∪∇f )[b]f and, since [a]f 6
f [b]f
we can reduce it further to [a]f∇f [b]f . Hence, by the definition
of ∇, we get that ∃[c]f ,[d]f [a]f (@f )∗[c]f (@f )∗[b]f ∧ [a]f (@f

)∗[d]f (@f )∗[b]f∧[c]f 
f [d]f . But, by the definition of ∗, this
means that [a]f (@f )∗[b]f which gives an obvious contradiction
with the initial assumption, hence the supposition that [a]f 6
f

[b]f cannot hold and [a]f 
f [b]f indeed.
Suppose now that (a, b), (c, d) ∈≺c ∧([a]f , [b]f ) ∈

β(([c]f , [d]f )) ∧ ([c]f , [d]f ) ∈ β(([a]f , [b]f )). Note that we
are considering ≺c, hence we can assume that order structure
under consideration is Gc. By Proposition 16, β(([a]f , [b]f )) =
β(([c]f , [d]f )), hence ([a]f , [b]f ) ∈ β(([a]f , [b]f )), which
is in contradiction with the definition of β. Therefore,
(a, b), (c, d) ∈≺c ∧([a]f , [b]f ) ∈ β(([c]f , [d]f )) implies
([c]f , [d]f ) /∈ β(([a]f , [b]f )), which concludes the proof.

Lemma 19. Let S = (X,
,@) be a reflexive order structure
and a, b ∈ X . If a @∗ b then there exists a sequence {[cj ]f}nj=1

of elements from Xf such that [a]f = [c1]f , [cn]f = [b]f and
[cj ]f @f [cj+1]f and [cj+1]f 6@f [cj ]f .

Proof. By the definition of transitive closure there exits a
sequence {dk}mk=1 which satisfies a = d1, dm = b and
dk @ dk+1, hence naturally [a]f = [d1]f , [dm]f = [b]f and
[dk]f @f [dk+1]f .

Note that if [dk+1]f @f [dk]f then, by Lemmas 12 and 13,
[dk]f = [dk+1]f . Hence we can drop redundant elements
from {dk}mk=1 obtaining required {[cj ]f}nj=1 with additional
property [cj+1]f 6@f [cj ]f .

Example 20. Recall the structure S from Figure 1, its closure
Sc from Figure 3 and folding Sf from Figure 4. The closure
of Sf equal to the folding of Sc is depicted in Figure 5.

Remark 21. Folding is an essential step for the reduction op-
eration defined in Section VII, as it ensures the uniqueness of
the result. An unfolded structure can have multiple candidates
for a minimal structure with the same closure as demonstrated
by the following example:
• X = {a, b, c}.
• a
 c
 b.
• a @ b @ a.

Here, there are two candidates for a minimal structure with
the same closure: one containing mutex a
 c, and the other
containing mutex b 
 c (since existence of one of them
implies the other). If we fold this structure events a and b
will fall into one equivalence class {a, b} and the reduction
will contain mutex {a, b} 
 {c}. Note that folding is not
required for finding the closure as the latter is always unique.

VI. INTEGRATION

Let S = (X,
,@) be a reflexive order structure and Sf =
(Xf ,
f ,@f ) be its folding. The integration will be denoted
by Si = (X,
i,@i), where:
• a
i b if [a]f 
f [b]f .
• a @i b if [a]f @f [b]f .
Note that for a generalised mutex order structure G we have

Gi = G, and that any integration satisfies axioms G1, G2 (as
any order structure) and G4.

We formulate the following two propositions to characterise
the integration operation. The first one formalises the relation-
ship between closure and integration (which can be considered
a partial closure): the closures of S, Si and Sc are equal (the
last one is due to the idempotence of the closure).

Proposition 22. Sc ∈ [S]gmos and Si ∈ [S]gmos.

Proof. The first part bases on results already proved in [3] in
the case of irreflexive traces. Hence it is sufficient to prove
that S / Si / Sc.

Assume first that a @ b (a
 b). Then, by the definition of
folding [a]f @f [b]f ([a]f 
f [b]f respectively), and so, by
the definition of integration, a @i b (a
i b respectively).

Let a @i b. Then, by the definition of integration, [a]f @f

[b]f , and so there exist x ∈ [a]f and y ∈ [b]f such that x @ y.
Hence, by Lemma 12, a @∗ x @ y @∗ b and so (also by
Lemma 12) a @c b.

Finally, assume that a 
i b. Then, by the definition of
integration, [a]f 
f [b]f , and so there exist x ∈ [a]f and
y ∈ [b]f such that x
 y. By Lemma 12, a @~ x and y @~ b,
hence a @~ ◦
 ◦ @~ b and so a
c b, which concludes the
proof.

We also prove that one can intersect integrations of two
structures with the same closure without losing any essential
information. This is a fundamental property for the discussion
conducted in this paper.

Proposition 23. If T ∈ [S]gmos then (Si ∩ T i) ∈ [S]gmos.

Proof. Let Si = (X,
i
S ,@

i
S), T

i = (X,
i
T ,@

i
T ), (Si ∩

T i) = (X,
∩,@∩), and Sc = T c = (X,
c,@c). Note that



it is sufficient to prove that Si is included in the closure of
(Si∩T i) (since the proof for similar inclusion with T i instead
of Si may be conducted analogously).

Let us focus on foldings Sf and T f , which by the definition
of integration are compact versions of Si and T i respectively.
We argue that every element of Sf is included in the closure
of Sf ∩ T f . Assume that a @i

S b (equivalently [a]f @
f
S [b]f )

but a 6@∩ b. Since a @c b we get that a @∗T and so
[a]f (@

f
T )
∗[b]f . Hence, by Lemma 19 there exist a sequence

{[cj ]f}nj=1 of elements from Xf such that [a]f = [c1]f ,
[cn]f = [b]f and [cj ]f @

f
T [cj+1]f and [cj+1]f 6@f

T [cj ]f .
If for all i = 1 · · ·n − 1 we have [cj ]f @

f
S [cj+1]f , we

are done. Otherwise we proceed in the same way with any
[cj ]f 6@f

S [cj+1]f (searching for another sequences). Note
that all new elements in those sequences need to be distinct,
since otherwise all elements between them would be equal
and we obtain a contradiction with Lemma 19. Finally, we
cannot proceed infinitely, since X is finite and in each step
we engage new elements from X , so at the end we construct
a sequence {[dk]f}mk=1 such that [a]f = [d1]f , [dm]f = [b]f
and dk @∩ dk+1.

Let a
i
S b but a 6
i

T b (hence also [a]f 6
f
T [b]f ). Then, by

Lemma 17, there exists [c]f 

f
S [d]f such that ([a]f , [b]f ) ∈

α(([c]f , [d]f )) or ([a]f , [b]f ) ∈ β(([c]f , [d]f )). In the first case,
c 
∩ d and by the definition of α, a 
c

∩ b and we are
done. In the second case, if [c]f 


f
T [d]f we got c 
∩ d

and using the definition of β obtain a 
c
∩ b. However, it

might happen that c 6
 d. Since c 
c d, we can repeat the
procedure. Since X is finite and by Lemma 18, we cannot
continue infinitely getting at the end x 
∩ y such that (by
multiple use of Proposition 16) ([a]f , [b]f ) ∈ β(([x]f , [y]f )).
This proves that a
c

∩ b and concludes the proof.

As an immediate corollary, we can think about integration
as a partial closure and simplify the closure operator for
structures S = Si in the following way:
• a @c b⇐⇒ a @∗ b,
• a
c b⇐⇒ a(
 ∪∇sym)b.
Having a relational structure S = (X,
,@) and its folding

Sf = (Xf ,
f ,@f ) one can compute the integration Si in
time O(|X|2) (browsing all possible pairs of events u, v ∈
X and setting relations between them according to relations
between [u]f and [v]f ).

Example 24. Recall the reflexive order structure S from
Figure 1. The integration Si of S is depicted in Figure 6.

Remark 25. Note that Proposition 23 does not hold for
arbitrary structures. Consider the following example already
introduced in Remark 21:
• S1 = (X,
1,@), S2 = (X,
2,@).
• X = {a, b, c}.
• a
1 c, c
2 b.
• a @ b @ a.

Here, the closures of both S1 and S2 are equal (containing
a
c c
c b), while the relation 
 of the intersection of S1

and S2 is empty.

•a

•
b

•c

•d

•
e

•f

•
g

•
h

•i • j

Figure 6. The integration of the structure S from Figure 1.

VII. REDUCTION

The most important condition that has to be met by the
reduction can be formulated as follows:

The reduction is a unique effect of a simplifying
procedure that is an invariant for all structures
with equal closure.

In other words, we want the equality of the reduction of two
structures to be equivalent with the equality of their closures.
Moreover, the reduction of Sf should be contained in Sf .
Intuitively, the purpose of the reduction operation is similar to
that of the Hasse diagram of a partial order: it is a canonical
and concise representation of a structure, and can often be
easier for visualization and reasoning.

The reduction of a reflexive order structure S is denoted as
Sr = (X,
r,@r) and is formally defined as the folding of⋂

T i where T ∈ [S]gmos.

However, on the base of the direct relationship between
integration and folding, it is reasonable to consider (and
more efficient to store and compute) folded reduction Sfr =
(Xf ,
fr,@fr).

Alternatively, the folded reduction of a generalised mutex
order structure G (denoted by Gfr = (Xf ,
fr,@fr)) may
be formally defined as:

• 
fr df
= ��f ∪ ≺d ∪(≺d)−1.

• @fr df
= @f \((@f \IdXf ) ◦ (@f \IdXf )).

The folded structure Gf = (Xf ,
f ,@f ) is as in Section V.
Pair (≺f , ��f ) is obtained by decomposing 
f as explained
in Section III. Reduced relation ≺d is derived from ≺f by
dropping all G5-induced mutexes α(��f ) and β(≺f ):

≺d df
= ≺f \

(
β(≺f ) ∪ α(��f )

)
.

The time and space complexity of the reduction is dom-
inated by computation of α(��f ), and β(≺f ) which takes
O(|��f | · |≺f |) and O(|≺f |2), respectively.

Example 26. Recall the reflexive order structure S from
Figure 1. The reduction Sr of S is depicted in Figure 7.

VIII. ALGORITHM

In this section we present the details of the algorithm for
folded reduction of order structures. After that we describe
necessary changes to obtain the algorithm for closure.
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Figure 7. The folded reduction of the structure S from Figure 1.

Algorithm 1: Reduction algorithm
O(|S|+ |Xf | · |@f |+ |
f | · |
f ∩ @fc |)

Input: An order structure S = (X,
,@)
Output: The folded reduction Sfr = (Xf ,
fr,@fr)

// Compute the folding of S (Sf = (Xf ,
f ,@f ))

1 Compute Xf using Tarjan’s algorithm /* O(|X|+ |@ |) */

/* O(|
 |) */2 foreach (x, y) ∈
 do
3 Add ([x]f , [y]f ) to 
f

/* O(|@ |) */4 foreach (x, y) ∈@ do
5 Add ([x]f , [y]f ) to @f

// Compute he folded transitive closure @fc

// and folded transitive reduction @fr

/* O(|Xf | · |@f |) */6 foreach x ∈ Xf do
7 foreach y ∈ Xf visited during BFS of the graph (Xf ,@f ) do
8 add (x, y) to @fc

/* O(|Xf | · |@f |) */9 foreach (x, y) ∈@f do
10 if ∀z∈Xf\{x,y} (x, z) /∈@f or(z, y) /∈@f then
11 Add (x, y) to @fr

// Precompute (
f ∩ @fc)

/* O(|
f |) */12 foreach (x, y) ∈
f do
13 if (x, y) ∈@fc then
14 Add (x, y) to 
f ∩ @fc

// Compute the mutex reduction

15 Initialize 
fr as 
f /* O(|
f |) */
/*O(|
f |·|
f∩@fc|)*/16 foreach mutex (u, v) ∈
f do

17 foreach aligned mutex (x, y) ∈
f ∩ @fc do
18 if (u, v) ∈ @fc // (u, v) is aligned
19 then
20 if x @fc u ∧ v @fc y ∧ (u, v) 6= (x, y) then
21 remove (x, y) from 
fr

22 else
23 if x@fcu∧x@fc v∧u @cf y∧v @fc y then
24 remove (x, y) from 
fr

The algorithm for the reduction procedure directly follows
the theory presented in previous sections. We start from
computing equivalence classes of folding relation ≡f . Using
Tarjan’s algorithm [7], this can be done in time complexity
O(|X| + | @ |). Next we recompute the mutual exclusion
and weak causality of the folded structure (in fact construct-

ing the condensation graph). The complexity of this step is
O(|
 |+ |@ |).

Having obtained Sf = (Xf ,
f ,@f ) we need to compute
the transitive closure and transitive reduction of @f , namely,
@fc and @fr. This can be done in O(|Xf | · |@f |) time.

In order to distinguish crossing and aligned mutexes we
compute 
f ∩ @fc in time complexity O(|
f |).

The last and the most important part is the computation of
the reduced set of folded mutexes. We do it by processing
each aligned mutex from 
f ∩ @fc and checking whether
there exists a different mutex inducing it. Making a test
we distinguish between crossing and aligned mutexes. The
complexity of this final stage is O(|
f | · |
f ∩ @fc |),
giving the total time complexity of the reduction algorithm
O(|X|+ |
 |+ |@ |+ |Xf | · |@f |+ |
f | · |
f ∩ @fc |).

Note that a part of the reduction algorithm is the com-
putation of Xf and its closure Xfc. This is the large part
of the folded version of the closure. In order to compute
the remaining part (
fc) it is sufficient to change a bit the
presented reduction algorithm. The range of the loop from the
line 17 shall be changed from
f ∩ @fc to @fc and adding to

fc positively verified relationships instead of removing them
from 
fr. Thus, the time complexity of the whole procedure
increases to O(|S|+ |Xf | · |@f |+ |
f | · |@fc |).

IX. SUMMARY AND FUTURE WORK

In the paper we discussed an analogue of transitive reduction
for order structures. At the first glance a surprising phe-
nomenon is the possible enlargement of the structure during
the reduction procedure. The main cause of this effect is,
in contrast to partial orders, the lack of determinism in the
choice of redundant relationships between events. We address
this issue by transferring the problem to the realm of folded
structures, which can be seen as compact versions of the
original order structures. The causal part of the folded order
structure becomes a partial order, restoring the uniqueness.
In addition, it is impossible to enlarge an object during the
reduction of a folded structure.

We discuss a new (compared to partial orders) type of
relationships between events – the mutual exclusion. We
distinguish the pure mutual exclusion (named crossing mutex)
and prove that it is irreducible at the level of folded structures.
After that, we discuss conditions under which the other type
of mutual exclusion (named aligned mutex) may be reduced.
We also propose an algorithm which utilises the distinction
between crossing and aligned mutexes to restrict the number of
objects to be compared by the reduction procedure. In this way
we obtain an algorithm with the time complexity quadratic
with respect to the size of the original structure.

The paper is supported by a software tool with a graphical
user interface providing the implementation of the presented
algorithms together with the visualization of the closure and
reduction of order structures [6].

Our future work includes optimisation of the proposed
reduction algorithm, as well as a further investigation of
properties of generalised mutex order structures. In particular,



it is interesting to study the distinction between aligned and
crossing mutexes, which can lead to new axiomatic character-
isations of generalised mutex order structures.
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