
Generalised Asynchronous Arbiter

Stanislavs Golubcovs, Andrey Mokhov, Alex Bystrov, Danil Sokolov, Alex Yakovlev
School of Engineering, Newcastle University, UK

Abstract—The paper presents the design of a generalised asyn-
chronous arbiter with a two-stage architecture that efficiently
handles requests from multiple concurrent channels. The first
stage of the arbiter monitors the incoming requests and locks
their state as soon as one or more requests are detected. The
second stage performs arbitration based on the locked state
of the requests and produces the corresponding grant signals.
The separation of the two stages is crucial for reducing the
complexity of the arbitration logic, which allows us to obtain
practical implementations for complex arbitration protocols.

Several application examples of the generalised arbiter are
proposed and evaluated in terms of scalability with respect to
the growing number of request channels. The presented designs
are verified to have no hazards or deadlocks using methods
based on circuit Petri nets.

1. Motivation

In electronic systems arbiters are circuits that control
access to one or more shared resources such as memory,
various data processors or communication channels. Arbiters
make discrete grant decisions based on the order and/or
combination of requests from several independent sources.
A basic example: two transmitters need to send data over a
shared channel. They cannot use the channel simultaneously,
therefore they request a dedicated arbiter to grant access to
the shared resource. The arbiter in its turn guarantees that
the resource is available before granting anyone access.

In synchronous systems, an arbiter works with the
clocked input signals, whose grant logic is a regular syn-
chronous automaton, and its implementation can be derived
by the standard electronic computer-aided design (ECAD)
tools. With the reducing transistor size, larger scale designs
consist of multiple communicating systems (or cores) on
a single chip. In such systems it becomes an increasingly
complicated task to drive multiple individual cores by a
single clock, which has led to the design of cores that are
asynchronous with respect to each other. The communica-
tion between the cores in such systems can be done via a
network of connections. Without special assumptions such a
communication medium becomes a shared resource between
the mutually concurrent asynchronous subsystems.

This shift from a discrete to continuous-time paradigm
has a profound effect on the design of arbiters, particu-
larly affecting their parts that compare the arrival time of
input signals. It was discovered that such continuous-time
decision-making circuits may produce malformed glitch

pulses due to the phenomenon of metastability [1]. It was
also shown that the metastability may cause unbounded
delay in response of circuits [2], the effect which was gener-
alised as a manifestation of a very old philosophical problem
of “Buridan’s Ass” attributed to the French philosopher of
14th century Jean Buridan. This fundamental problem of
choice is formulated as the following principle: “A discrete
decision based upon an input having a continuous range of
values cannot be made within a bounded length of time” [3].

Since the discovery of metastability, dozens of asyn-
chronous arbiters/synchronizers have been published [4].
The most notable designs are, probably, a cascaded serial
synchronizer [5] and two-way asynchronous arbiter [6], [7],
[8]. A particular case of the former is a two-flop design
widely used in interfaces to synchronous circuits. It uses
the clock to form a sufficiently long time interval to let
the unstable meta-state to resolve itself. The latter is a set-
reset asynchronous latch with an added analogue circuit
suppressing propagation of the meta-state voltage to the
outputs. The former is slow, as it delays propagation of
signals by at least two clock cycles, and the latter has an
unbounded latency, which limits its use to self-timed designs
unsupported by mainstream ECAD (Electronic Computer-
Aided Design) tools.

In this paper we take advantage of the low latency prop-
erty of asynchronous arbiters and address the issue of lack of
design flow for complex asynchronous arbitration systems
adequate for modern on-chip communication structures,
such as complex buses and networks on a chip (NoC) [9].
We use a standard architecture of a synchronous arbiter and
map it into the asynchronous domain, thus enabling ex-
tremes of complexity and arriving to universal solutions. We
demonstrate the flexibility of the logic design by showing
the implementations of the m-of-n, priority, and "nacking"
arbiters, and a general event processor.

More specifically, our contributions are as follows:
• Novel generalised arbiter with a scalable two-stage

architecture and event-driven operation.
• Formal modelling and verification of the generalised

arbiter using circuit Petri nets.
• Exploration of design trade-offs for latency, through-

put and area by pipelining synchronisation and ar-
bitration stages.

2. Baseline

A generic structure of an arbiter in a globally syn-
chronous system is shown in Figure 1a. It is a standard

...

Clock

FSM

block
Priority

Sync. g
ra

n
ts

sy
n
c.

 r
eq

u
es

ts

(a) Interface.

D

Clk

D

Clk

... ...

...as
y
n

c.
 r

eq
u
es

ts

sy
n

c.
 r

eq
u
es

ts Priority
block

Sync.
FSM

Clock

(b) Synchronizing asynchronous signals.

latency (depends on setup time violation)

Clock

sync. request

async. request

(c) Latency of synchronizers.

Figure 1: Synchronous arbiter.

synchronous automaton which takes the bus access requests
coming from the master devices on a bus and, in the next
clock cycle, computes the outputs, which are grant signals.
Note that such a circuit can implement any computable
priority function, with an arbitrary number of requests and
arbitrary number of simultaneous grants (the case of m-of-n
arbitration). The complexity and scalability of the priority
function are the major advantages of synchronous arbiters
in comparison to the majority of existing asynchronous
solutions. If a synchronous arbiter has to be used with an
asynchronous bus, for example VME IEEE-1014 or any
other, it needs to have its asynchronous inputs synchronised
to the internal clock, as shown in Figure 1b. The synchro-
nizers, effectively, lock the input request signals and enable
its processing by standard synchronous circuits. For a slow
external bus and fast internal clock it is a valid solution.
However, for an SoC with fast on-chip communication fabric
this solution can be viewed as a slow option, because the
two-flop synchronizers add a delay of two or three clock
periods to the latency, see Figure 1c.

The severity of the two-flop synchronizer latency prob-
lem is easy to illustrate. For example, for a typical 90nm
process the metastability resolution constant τ [10], [11]
is approximately 50ps [12], which means the time needed
for reliable metastability resolution should be chosen as
Tmin ≈ 40τ = 2ns, thus leading to the minimum synchro-
nizer latency of 4ns (two clock cycles) and minimum 6ns
latency of the whole arbiter in Figure 1b. In our approach
the two-flop synchronizers are replaced with asynchronous
arbiters equipped with metastability filters [7], which do not
include the worst-case delay into every synchronisation cy-
cle, completely eliminate the risk of synchronization failures
(whilst the two-flop synchronizers only reduce the failure
probability to an acceptable level), and have a reasonably
short average propagation delay. This leads to a significant
latency reduction, as demonstrated in Section 4.4, where
an asynchronous arbiter has approximately 1ns latency.
Such a dramatic improvement, however, comes at a price.

2−way
arb.

2−way
arb.

2−way
arb.

Request Locking

Control Block

Asynchronous

wrapper

P
ri

o
ri

ty
 b

lo
ck

S
el

f−
ti

m
ed

 l
o
g

ic

as
y

n
ch

ro
n
o

u
s

re
q
u

es
ts

g
ra

n
ts

Figure 2: Asynchronous priority arbiter.

Switching to an asynchronous design methodology means
difficulties with proving correctness of the design due to
aspect of concurrent behaviour inherent in it. This explains
this paper’s emphasis on formal modelling and verification.

In the earlier work [13] an architecture of an asyn-
chronous priority arbiter (PA) was developed in order to
bridge the gap between the synchronous and asynchronous
arbiter solutions. The PA utilises low-latency asynchronous
arbiters as synchronizers clocked by a specially formed
asynchronous locking signal and is capable to implement
almost any priority function. The idea of separating the
request capture mechanism from the priority function re-
sembles synchronous arbiters with input synchronizers, and
leads to an opportunity of implementing very complex pri-
ority functions. The architecture of PA is shown in Figure 2,
where one can see a register of simple 2-way arbiters,
each processing the corresponding input in a way similar
to the synchronizers in Figure 1b. A disadvantage of this
architecture is the use of self-timed design methodology,
which at the time of publication did not support circuits with
arbitration. As a result, the design examples were crafted
by hand, certain timing assumptions were used, the whole
design was not formally verified, and advanced priority
disciplines, such as m-of-n arbitration, were not explored.

Development of two-stage asynchronous arbiters be-
yond the earlier published PA was held back by lack of
verification tools capable to handle this class of circuits.
An actively developed synthesis and verification toolkit
WORKCRAFT https://workcraft.org/ supports them, thus be-
coming an enabler for a new generation of complex arbiters.

In this paper we use WORKCRAFT to verify the design
of PA and the new arbiters. In particular, the architecture of
the new arbiter supports m-of-n mode, “nacking” protocol,
wildcards in priority vectors and a number of extensions
outlined in Section 4.3. The most complex example in this
paper is the “event processor” – a low-latency asynchronous
device which receives data through several concurrent input
channels and produces computed data on one or several
outputs while ignoring any inactive inputs.

3. Generalised arbiter

3.1. Basic Structure

The basic structure of the Generalised Arbiter is in-
herited from the Priority Arbiter where the grant stage is
separated from the synchronization stage. The choice of
this structure is motivated by its good scalability because
additional request rows can be added without significant
latency increase. One can describe the behaviour of this
arbiter with the following steps:

1) Wait until there is a change on at least one of the
request lines.

2) Freeze (or lock) all input request states.
3) For the given stable set of requests, produce grants

according to some desired granting logic.
4) Release locked requests and return to step 1.

A high-level circuit model of the generalised arbiter
with the MUTEX elements separated from the rest of the
logic is presented in Figure 3. It is a simple example of an
arbiter with only two request signals req1 and req2 and two
grant signals grant1 and grant2 (for clarity, we replace the
number with j for referring to the j-th input channel).

Each of the request ports is restricted by the rule:
reqj = grantj , which is the 4-phase communication hand-
shake for the pair of signals reqj and grantj . The transitions
reqj+ and reqj− are used by the environment to request
and release a resource. The grantj+ signifies when the
resource was granted and grantj− returns the handshake
to the initial state and signals that the client is allowed to
start the next transaction.

The basic components of the arbiter are the input chan-
nels, the LOCKER, and the grant controller (Figure 3).
The input channels are used to store the state of each request
and synchronize these internal states with the environment
requests. The LOCKER component starts synchronization
when at least one of the input signals has changed its
DATAj state. The grant controller is then activated to
resolve the arbitration conflicts based on the request infor-
mation provided by the input channels.

3.2. Process of Arbitration

Consider client requests propagating through the design.
Initially, all of the circuit signals are low. The XOR gates
detect any changes on the input request signals and trigger
the new arbitration transaction by activating the MEj .r
lines.

Suppose the basic 1-of-2 arbitration is being im-
plemented and the req1+ was issued. This request
propagates through the MUTEX element: req1+ →
XOR1+ → ME1.w+ → LOCKER.lock+. At this
point, the LOCKER component starts synchronization
by locking all of the unlocked MUTEX components:
LOCKER.lock+ → ME2.l+. Then the internal request
state is updated on the DATA1 component. The DATA1

component will align its output DATA1.r with the current
value of req1 whenever both DATA1.lock and DATA1.w
are active:

DATA1.r =

{
↑ req · w · lock
↓ req · w · lock

(1)

After the alignment phase is complete, the XOR gate
inputs become equal and it hides the request from the MU-
TEX component, consequently letting the ME1.l+ transi-
tion to take place: LOCKER.lock+ → DATA1.r+ →
XOR1− →ME1.w− →ME1.l+.

For any number of input channels, the special state with
all the MUTEX elements holding their MEj .l signal active
will signify the end of synchronization. At this point, the
input signals r1, r2, and comp in the grant controller GC
will form a bundled data channel [14], where comp is the
request line, and r1, r2 are the data lines.

When GC.comp+ is triggered, the grant controller is
allowed to change the grant signals based on the data from
the input channels.

The design of the grant controller can be created by
modelling a finite state machine (FSM) that updates its state
whenever the comp input signal is raised. After all of the
grant signals have settled and are presenting the new FSM
state, the grant controller acknowledges with done+, which
eventually resets LOCKER.lock. This finishes the current
arbitration transaction, eventually leading to GC.comp−
and GC.done−.

The important thing to note is that both requests req1+
and req2+ may arrive simultaneously and both may prop-
agate as “win” through the column of MUTEX elements.
In this case, the grant controller will process both requests
within the same transaction and release grants according to
its implementation.

Another important situation is when new requests arrive
after the arbitration was started. These requests will be
blocked by MUTEX elements until the current transaction
is finished. However, once MUTEXes are released, all of
the pending requests will manage to propagate to the next
arbitration round.

According to the arbiter protocol, the release of a re-
source is eventually followed on the client side: req1+ →
grant1+ → req1−. The XOR1 element will see this
transition as a request for new arbitration, eventually ig-
niting ME1.w+. This allows implementing arbiters with
arbitration conflicts at the resource release phase, e.g., the
“Nacking arbiter” [15].

3.3. Decompositions

This section demonstrates two scalable decompositions
into simple logic gates that are commonly supported by stan-
dard cell libraries (such as TSMC). The first decomposition
is a conservative design implementing “broad” bundled data
communication with the grant controller module and using a
pair of D-latches to control request propagation (Figure 4a).
Here the signals comp and done are the bundled data

ME1

ME2

XOR1

LOCKER

GC

XOR2

DATA1

DATA2

COMPUTE

C

G
ra

n
t

c
o
n
tr

o
ll
e
r

Input channel 1

Input channel 2

req1 data r1 data

grant1 data

grant2 datar2 data......
req2 data ...

Figure 3: High-level arbiter structure.

data

req

ack

(a) Broad.

data

req

ack

(b) Early.

Figure 4: Bundled data protocols.

handshake, and the signals r1, . . . , rn form the data channel
wires. The second decomposition is optimised for higher
throughput by concurrent release of the req and the data
channel, as in “early” bundled data protocol (Figure 4b).

In broad data protocol, the data channel is bound to be
valid until the moment the party receiving the data releases
the acknowledgement. In the early bundled data, the data
channel is allowed to be reset right after the receiver has
acknowledged the initial request. So, the reset phase of the
four-phase handshake happens concurrently with setting up
data for the next communication, which makes the protocol
faster.

Broad bundled data decomposition. The broad bundled
data decomposition is shown in Figure 5. The j-th channel
has the signal LLOCKj (the “local lock” signal) which
connects to the SY NC_OR element. LLOCKj is a reset-
dominant latch. It is activated by MEj .w and holds active
until being reset by GC.done+.

The signal DATAj is implemented with the transparent
D-latch (DATAj is transparent when LLOCKj is active).

The second D-latch ENVj is needed in case the envi-
ronment reacts faster than the grant controller finishes its
computation. So, while the grant controller is in the state:
GC.comp = 1 and GC.done = 0, changes on the input
channels that have triggered current computation are blocked
(the latch ENVj is only transparent when LLOCKj is not
active).

The output signal LCOMPj (“local compute”) signifies
that the j-th input channel has finished synchronization
and DATAj is settled to a stable value. If MEj .l is ac-
tive, corresponding MUTEX element prevents the transition
MEj .w+, which is required to make DATAj transparent
and change its value.

Early bundled data decomposition. The input chan-
nel supporting early bundle data is presented in Fig-
ure 6. The signal LLOCKj is now implemented as a set-
dominant latch. It allows new requests propagating right
after MEj .l is released. Hence, the reset phase MEj .l− →
LCOMPj− → COMPUTE → GC.done− is concurrent
with the SY NC_OR’s setup for the next communication:
MEj .l− → MEj .w+ → SY NC_OR+. As soon as
the SY NC_OR is set and the GC.done is reset, the
LOCKER’s C-element immediately starts new transaction.

4. Arbitration strategies

One possible structure for the grant controller is shown
in Figure 7. It consists of the combinational logic block
AP (Arbitration policies), which computes the next state
of grant signals based on the current value of grants

ME2

XOR2

lock
C

COMPUTE

C

DATA2

LLOCK2

SYNC_OR

Input channel 1

Input channel 2

G
ra

n
t

c
o
n
tr

o
ll
e
r

LOCKER

GC

LCOMP2

ENV2

Figure 5: Broad bundled data decomposition into simple gates.

ME2

XOR2

LCOMP2

ENV2

DATA2

LLOCK2

CG2

LOCKER.lock

GC.done

req2

Figure 6: Early BD input channel.

A
rb

it
ra

ti
o
n

p
o
li
c
ie

s

AP

GC.done

requests

next state

grants

DEL

GC.comp

grants

FF

Figure 7: Grant controller structure.

(GC.grant1, . . .) and the current state of the request lines
(the signals GC.r1, . . .).

The positive edge delay element DEL receives the
signal GC.comp. The delay time is matched with the AP
module so that the “next state” values turn stable before the
flip-flops FF are clocked by GC.done.

4.1. Avoiding Deadlocks

The arbiter does not have deadlock states if the grant
controller is implemented correctly. By design, the request
signals are causally related to the state of the grant sig-
nals by obeying the 4-phase handshake protocol rules. This
means that each of the request states is only expected to
change, when its current value is equal to the value of the
corresponding grant signal.

Consider the implementation of a simple 2-input priority
arbiter. When the grant controller receives a request from
the second client req2+, it is consequently granted with
grant2+. While the resource is being used, the first client
may also initiate its request: req1+, which triggers the
next arbitration but is not granted because the resource is
busy. Eventually, the resource is released with req2−. The
sequential grant computation logic may have a flaw that
will result in ignoring grant1+ (because the resource is
still busy). At the same time, the arbiter might release the
resource with grant2−.

The arbiter now knows that the resource was released;
however, it still needs new transitions on the request lines
to begin the new arbitration. Because the first client has
already sent its request, it will be waiting for a response,
and the arbiter will be stalled until the next activity on the
req2 line. Therefore, to avoid stalling, the grant controller
must always provide all of the grant signals that became
possible because of the released resources within the same
arbitration translation. A safe way to implement the grant
controller would be to first release all the resources, and
only then compute client requests that will be granted.

4.2. Verification and Analysis

Analysis and verification of the asynchronous circuits is
automated in WORKCRAFT software that employs Petri nets
to unify the graph models of different abstraction levels in
a single toolkit [16].

Decomposition. The Petri net model is generated from
the decomposed circuit in Figure 5 as described in [17].
The grant controller is defined in a way that its outputs
GC.grant1, GC.grant2 may arbitrarily align with the in-
puts GC.r1, GC.r2 while the condition GC.comp·GC.done
is true:

GC.grant1, 2 =

{
↑ comp · done · r1, 2
↓ comp · done · r1, 2

(2)

In other words, any combination of grants is permitted
for any combination of requests. This creates a potential
deadlock state when both requests were ignored (r1 = 1,
r2 = 1, leaving grant1 = 0, grant2 = 0) or when both
resource releases were ignored (r1 = 0, r2 = 0, and
grant1 = 1, grant2 = 1).

The signal GC.done always aligns itself with the
GC.comp:

GC.done = GC.comp (3)

Its rising edge of signal GC.done can be constrained in
such a way that the deadlock is avoided:

GC.done ↑: (r1⊕ grant1) · (r2⊕ grant2) (4)

So, the GC.done+ transition is only allowed when at
least one grant signal is aligned with its input request, which
ensures more request activity eventually.

After applying these constraints, the automated verifica-
tion phase was successful, showing no deadlocks or hazards
found.

Scaling of request locking circuitry. There is no problem
while SY NC_OR is a single OR gate. However, under the
assumption of arbitrary gate delay, a hazard may occur when
SY NC_OR is split into a tree of OR gates.

Consider a decomposition shown in Figure 8. The sig-
nals LLOCK1 and LLOCK3 may activate simultaneously,
igniting the transition of the OR gates. It is sufficient for
LLOCK3 alone to be present in order to activate the lock
signal followed by the computation in the grant controller.
Now, assume the transition x+ is particularly slow and does
not happen up until GC.done+. As the GC.done+ fires, the
latches LLOCK1, LLOCK2, LLOCK3 are reset back to
0 while also disabling the unacknowledged transition x+.
This is a hazard condition, which might lead to a wrong
computation and hence must be avoided. In any practical
circuit the race between transitions x+ and GC.done+ is
easy to predict because done+ timing will be postponed
by the relatively slow COMPUTE signal and the grant
computation logic.

SYNC_OR

LLOCK1 LLOCK2
LLOCK3

x

Figure 8: SYNC_OR decomposition.

The following timing assumption avoids this hazard:

GC.done ↑: (LLOCK1 + LLOCK2) · x (5)

In other words, this assumption states that every path
LLOCKj → SY NC_OR→ LOCKER has to be shorter
than the path LLOCKj → DATAj → MUTEXj →
COMPUTE → GC → LOCKER, which in practice
should be easy to ensure.

Once the timing assumption is added, the circuit can be
verified to have no deadlocks or hazards. This is the only
timing assumption, that is required for the circuit to work,
otherwise it is not sensitive to arbitrarily slow gates and can
be considered speed-independent (SI).

Arbiter Scaling. Arbiter scaling up to N clients is straight-
forward because each of the input channels is a true tile [18].
Each true tile has a fixed communication interface that does
not change with the increased number of clients.

On contrary, with the increasing number of input
channels, the SY NC_OR and the COMPUTE compo-
nents (Figure 5) have to increase the number of inputs,
one input per each input channel. The C-element can be
safely composed as a tree of C-elements (or also it can
be built with AND and OR gate trees followed by a C-
element). The SY NC_OR is formed as a tree of OR gates.
Decomposing it into multiple OR gates requires adding a
timing assumption, which was described later in section
about circuit verification.

Latency. Because of significant synchronization overhead,
the arbitration latency may seem large for the occasional
requests arriving scattered over time. However, the arbiter
latency is expected not to change much when different
numbers or requests are processed. While the arbiter is
occupied processing one request, several scattered requests
may accumulate and become pending. The high performance
of the arbiter is achieved by the fact that all of the pending
requests are processed in a single arbitration transaction.
Hence, providing there are enough resources, the arbiter
issues grants concurrently to all clients.

The design of the grant controller is built within the
bundled data interface. This means that the grant controller
can be developed from a finite state machine specification,
where rising edge of the signal GC.comp activates FSM
state transition. At the same time this transition is only ac-
tivated when there is a candidate for computation, meaning
that the dynamic power consumption is minimised.

4.3. Possible Extensions

The flexibility of the generalised arbiter allows imple-
menting various extensions. Some of them are suggested in

this section.

Data Lines. The request lines can be bundled with data lines
to provide additional information for the arbitration logic.
One practical example would be implementing the priority-
based arbitration with dynamic priorities. The arbitration
policy could use the data lines to distinguish, which of the
requests is more important during current arbitration trans-
action. Alternatively, the data lines can be used to specify,
which service does the client need. With this information,
the arbiter may grant a compatible resource from a resource
pool as soon as it becomes available.

The data lines do not need to be arbitrated because
they are aligned with request lines. However, they would
still need to be latched by the signal MEj .w so that the
arbitration logic always works with stable input data.

Accumulate and Fire. The accumulate and fire [19] tactics
can be enforced by modifying the OR-gate tree in the
LOCKER component in order to ignore the request com-
binations that are not useful or interesting. For instance, the
arbiter may wait for at least a few requests arriving before
it actually starts the arbitration and does not waste energy
on lonely requests. This is also the case for the M × N
arbiter [20] that matches request pairs. It is impossible to
match a pair with only one request active, hence,no need to
begin the arbitration.

Another important aspect for accumulating requests is
that the grant controller may never receive certain combi-
nation of inputs, as a result, there will be additional “don’t
care” states, which may significantly simplify it’s logic.

Pipelining. Pipelining is a technique used in long wire inter-
connects to increase the throughput of a system [21], [22]. It
also increases throughput by splitting slow computation into
multiple fast computation stages. Similar approaches can be
used to improve the throughput of the arbiter by splitting
its synchronization and grant phases into separate pipeline
stages. The first stage only fulfils the synchronization and
forwards a set of stable requests to the next stage through
a handshake. As soon as the data is passed on, the new
synchronization may begin. The next pipeline stage only
computes grants signals based on the request state received
and has a higher throughput as a result.

Because the grant phase latency will be different for
the different versions of the arbiter, we use such a design
to estimate the performance of the synchronization phase
without the grant phase.

4.4. Application Examples

Implementing different arbitration policies is a straight-
forward task:

• Identify the rules that have to be followed and create
corresponding truth table.

• Synthesise circuit with any logic synthesis tool. In
our examples we used the LOGIC FRIDAY frontend
to ESPRESSO logic minimiser [23].

TABLE 1: Priority 1-of-3 arbiter

r1 g1 r2 g2 r3 g3 g1′ g2′ g3′

1 X X 0 X 0 1
1 X X X 0 1 1
1 X 0 X X 0 1
X X 1 1 X X 1
0 X 1 X 0 X 1
0 X 1 X X 0 1
X X X X 1 1 1
0 X 0 X 1 X 1

other combinations 0 0 0

TABLE 2: 1-of-3 with rotating priority

r1 g1 r2 g2 r3 g3 g1′ g2′ g3′

1 1 X X X X 1
1 X 0 X 0 X 1
1 X 1 0 X 0 1
1 X X X 0 1 1
X X 1 1 X X 1
0 X 1 X 0 X 1
0 X 1 X X 0 1
X X X X 1 1 1
0 X 0 X 1 X 1
X 0 0 X 1 X 1

other combinations 0 0 0

Priority 1-of-3 Arbitration. The first example demonstrates
the 1-of-3 priority arbitration. Here g1′, g2′, and g3′ are the
next state values for the current state of requests r1, . . . , r3,
and grants g1, . . . , g3.

Any requesting client gets a resource as long as no other
client is being currently granted. The second client only gets
a resource only if the first is not requesting and the third
is not being granted. The third client only gets a resource
if no other client is requesting it. Thus we have a simple
chain (linear order) of priority. The generated truth table is
shown in Table 1.

The equations implementing the circuit are as follows:

g1′ = r1 · (g3 · (g2 + r2) + r3 · g3)
g2′ = r2 · (r1 · (g3 + r3) + g2)
g3′ = r3 · (r1 · r2 + g3)

(6)

Note, that in this arbiter the third channel may starve,
i.e. never receive the grant signal, if each of the lower
two channels produces a new request immediately after the
corresponding grant is withdrawn. It is a good illustration
of the effect of arbitration priority on system properties. A
known method of avoiding starvation of clients is to “rotate”
the priorities, thus giving the highest priority to every client
at some point. Our generalised arbiter can implement such
a priority discipline, where r1 has a higher priority than r2,
r2 is higher than r3, and r3 is higher than r1. So, when a
resource is released, it is immediately granted to the next
client in the line, and the line is looped back as a circle. If
all three requests arrive simultaneously, then the g1 is issued
first.

g1′ = r1 · (r2 · g2 · g3 + r3 · (g3 + r2) + g1)
g2′ = r2 · (r1 · (g3 + r3) + g2)
g3′ = r3 · (r2 · (g1 + r1) + g3)

(7)

An example of specification of the priority logic function
is shown in Table 2 and equations (7). Please note that
not all input combinations of this function are used in
the arbiter; for example 111111 would have meant that all
three channels were in the process of granting the requests
simultaneously, which is not a reachable state of the system.

This arbiter was implemented with bundled-data priority
logic block. The latency (request to grant time, if the grant
is not blocked by the other channels) based on a CMOS
90nm implementation (including wire delays) of a request
propagating from the input port until receiving a grant signal
is between 900ps and 1000ps (depending on the request
vector). This is a significantly shorter latency than 6ns
in the synchronous design with two-flop synchronisers at
the request inputs shown in Figure 1b and discussed in
Section 2.

Priority 2-of-3 Arbitration. Another example is a 2-of-
3 arbiter. It acts similarly to the 1-of-3 priority arbiter,
favouring requests r1, r2, r3 in that order. However, it
is allowed to grant 2 resources at a time. This example
demonstrates implementing multi-resource arbitration (see
Table 3).

It is implementable with the following equations:

g1′ = r1 · r2 · g2 · r3 · g3
g2′ = r2 · (r1 · g3 · r3 + g2)
g3′ = r3 · (r1 · r2 + g3)

(8)

Nacking arbiter. A Nacking arbiter [24], [15] has two
types of acknowledgements. In each arbitration cycle it
either grants a resource or responds with “not granted”
signal indicating that the resource is not available. It allows
designers to build systems, where a client does not become
locked in a pending state while being “informed” that it can

TABLE 3: Priority 2-of-3 arbiter

r1 g1 r2 g2 r3 g3 g1′

1 X 0 X X X 1
1 X X 0 X X 1
1 X X X 0 X 1
1 X X X X 0 1

other combinations 0

r1 g1 r2 g2 r3 g3 g2′

0 X 1 X X X 1
X X 1 1 X X 1
X X 1 X 0 X 1
X X 1 X X 0 1

other combinations 0

r1 g1 r2 g2 r3 g3 g3′

0 X X X 1 X 1
X X 0 X 1 X 1
X X X X 1 1 1

other combinations 0

TABLE 4: Nacking arbiter

r1 g1 n1 r2 g2 n2 g1′ n1′ g2′ n2′

1 X X 0 X X 1
1 X X X 0 X 1
1 X X 1 1 X 1
0 X X 1 X X 1
X X X 1 1 X 1
1 X X 1 0 X 1

other combinations 0 0 0 0

do something else in this time. An example of the priority
function of a two-way nacking arbiter is constructed in Ta-
ble 4 and equations (9). Again, not all input combinations of
the logic function are reachable due to constraints imposed
by the protocol of operation.

g1′ = r1 · r2 · g2
n1′ = r1 · r2 · g2
g2′ = r2 · (r1 + g2)
n2′ = r1 · r2 · g2

(9)

Event processor. The generalised arbiter architecture can
be extended further by adding data buses to each of request
inputs; the same idea as the dynamic priority arbiter (DPA)
described in [13]. The beauty of this architecture is that it
only processes the data inputs selected by their respective
request signals, while ignoring the others. In the asyn-
chronous domain it is a non-trivial problem, because of the
possible race conditions on the inputs. The input data buses
can carry information about the priority of a request, thus
implementing the example from [13].

We develop further the idea of DPA in this paper by
adding data buses to each grant output, and call it an
event processor. An event processor receives data through
independent asynchronous channels, takes care of race con-
ditions and generates output data. It is important the request-
grant pairs form handshake interfaces for each input chan-
nel; while selection of the crossbar output is represented
as data associated with the grants. For example, the input
channel (req1, req1_data) may request the crossbar out-
put #2 by setting req1_data = 2; then the resource will
be granted by returning the signal on grant1 and setting
grant1_data = 2.

One may see that such an event processor is essentially
the earlier described generalised arbiter with added data
channels associated with each request and grant. Request-
grant pairs form handshakes controlling the corresponding
data channels. In our implementation we use a bundled
data approach. If compared to the earlier idea of DPA, this
design has additional output data channels, and its protocol
is extended to process the falling transitions on request lines.

In the following example we demonstrate the power of
the event processor architecture by implementing a decision-
making element of a NoC router node. For simplicity as-
sume that the node is 2x2 crossbar, where each of two
input channels may request any of the output two channels.
If both inputs request the same channel, only one request
will be granted. However, if the requesters aim at different

Priority logic inputs Priority logic outputs Cond. Comment
r1 w1 g1 d1 r2 w2 g2 d2 g′1 d′1 g′2 d′2
0 0 0 0 both requests removed
0 1 a 0 0 1 sel(a) r2 added

on
e

re
q.

0 1 1 a 0 1 a r1 removed
1 a 0 0 1 sel(a) 0 r1 added
1 1 a 0 1 a 0 r2 removed
1 01 0 1 01 0 1 01 0 conflict on resource

tw
o

ne
w

re
q-

s1 01 0 1 10 0 1 01 1 10 mutually exclusive wildcards
1 10 0 1 01 0 1 10 1 01 mutually exclusive wildcards
1 10 0 1 10 0 0 1 10 conflict on resource
1 11 0 1 01 0 1 10 1 01 one broad wildcard
1 11 0 1 10 0 1 01 1 10 one broad wildcard
1 01 0 1 11 0 1 01 1 10 one broad wildcard
1 10 0 1 11 0 1 10 1 01 one broad wildcard
1 11 0 1 11 0 1 sel(11), e.g.10 1 11\d′1, e.g. 01 both wildcards are broad
1 1 a 1 b 0 1 a 0 a = b conflict on resource

ne
w

&
ol

d

1 1 a 1 b 0 1 a 1 b\a a 6= b one broad wildcard
1 a 0 1 1 b 0 1 b a = b conflict on resource
1 a 0 1 1 b 1 a\b 1 b a 6= b one broad wildcard

TABLE 5: Event processor for a 2x2 crossbar controller.

0

0.001

0.002

0.003

0.004

0.005

2 4 8 16 32 48 64

A
re

a
 (

m
m

2)

Number of inputs

(a) Area.

0

0.2

0.4

0.6

0.8

1.0

2 4 8 16 32 48 64

La
te

nc
y

(n
s)

Number of inputs

(b) Latency.

0

10

20

30

40

2 4 8 16 32 48 64

0

0.2

0.4

0.6

0.8

To
ta

l t
hr

ou
gh

pu
t (

x1
0

9)

C
ha

nn
e

l t
hr

ou
gh

pu
t (

x1
0

9)

Number of inputs

50 1.0

(c) Throughput.

Figure 9: Pipelined arbiter performance.

outputs, then both will be connected simultaneously. To
make the design problem more interesting, the request data
may include wildcards, i.e. a channel may request any output
channel rather than a particular one. The logic function of
the grant controller is constructed in Table 5.

This table includes request signals ri arriving together
with the corresponding wildcards wi, which are two wire
buses, where each bit is allocated on the corresponding des-
tination. The outputs are grant signals g′i corresponding to
the requesting inputs, as in the previous designs. The grants
are accompanied with the allocated destination output data
d′i buses, which are the resolved corresponding wildcards.
As before, the apostrophe symbol means that these are the
next-state values. The previously generated current values
of the output are used in the calculation of the next state;
they are treated as inputs and denoted as gi and di. Several
entries in the truth table are conditional - this notation is
used to shorten the representation; many rows corresponding

to unreachable states of the system are not defined.

5. Performance Estimations

The estimated latency of a 2-of-3 priority arbiter is based
on a CMOS 90nm implementation (including wire delays)
of a request propagating from the input port until receiving
a grant signal is between 900ps and 1000ps (depending on
which requests were issued). The latency is still roughly the
same regardless of whether two requests are granted con-
currently or some request is granted while another released.

Analysis of the pipelined arbiter with a variable number
of input channels is detailed in Figure 9. All the measure-
ments are for the circuits implemented in 90nm technology.
As one would expect, the circuit area is linearly proportional
to the number of input channels, see Figure 9a.

The latency of the pipelined arbiter for a variable number
of inputs gives an idea on how fast the synchronization
phase is without the actual grant computation. As it would

be expected from the tree-like structure computing the
GC.comp signal, the latency increase is logarithmic with the
increased number of inputs. The additional input channels
occasionally add more layers to the trees of logic gates
communicating the input channels, thus slightly deviating
from the expected latency, see Figure 9b. The latency for
two inputs is 650ps on average. As the number of inputs
increases up until 64, the latency increases to approximately
950ps. This is still considerably faster than the 4ns latency
of a clocked synchronizer in Section 2.

The throughput is measured as the number of input chan-
nels multiplied by the number of transactions (measured in
millions per second) assuming that the grant controller is fast
and the synchronizer is the bottleneck of performance. With
the increased input count the total number of arbitrations
drops to about 576 million arbitrations per second while
the maximum number of requests processed increases to
576×64 = 36864 million requests per second, see Figure 9c.

6. Conclusions

The paper presents design of a new generalised arbiter,
which has a canonical architecture able to tackle a large va-
riety of arbitration problems. The generalised arbiter scales
well having logarithmic latency increase for the increased
number of inputs. All of the necessary timing assumptions
used are practically implementable even without dedicated
delay elements. The arbiter can support any priority dis-
cipline expressed as a combinational logic circuit. All of
the arbitration transactions are atomic, thus eliminating any
deadlocks that may occur in other examples with distributed
arbitration (such as the “Dining Philosophers” problem).

The grant controller is activated by the locally generated
signal similar to clock in synchronous designs. This allows
use of standard ECAD tools for building the priority logic.
At the same time, the arbiter operates only when there is a
need to do arbitration, meaning that no dynamic power is
wasted when input signals are idle. The arbiter also allows
pipelining, which splits synchronization and arbitration into
separate pipeline stages and improves the overall through-
put. In combination these properties enable flexibility in
choosing among various designs favouring either the smaller
latency or the reduced area on dice.

The generalised arbiter has been formally verified to be
free from deadlocks and hazards. However, the possibility of
stalling such an arbiter may still depend on the correctness of
the priority function. Further research is needed to estimate
arbiter performance in various practical applications. It is be-
lieved that such an arbiter can be useful in the asynchronous
NoC routers [9] and the asynchronous schedulers, where
sophisticated arbitration logic is needed for designing fast,
reliable and adaptive circuits operating in busy asynchronous
request environments.

Acknowledgements. EPSRC supported this work by grant
EP/N023641/1 STRATA; Layers for Structuring Trustworthy
Ambient Systems and IAA grant Waveform-based design
flow for A4A circuits.

References

[1] T. Chaney, S. Ornstein, and W. Littlefield, “Beware the synchronizer,”
in IEEE Compcon, 1972.

[2] M. Pechoucek, “Anomalous response times of input synchronizers,”
IEEE Transactions on Computers, vol. C-25, pp. 133–139, 1976.

[3] L. Lamport, “Buridan’s principle,” Foundations of Physics, vol. 42,
pp. 1056–1066, 2012.

[4] D. Kinniment, Synchronization and arbitration in digital systems.
John Wiley and Sons, 2008.

[5] L. Kellman and A. Cantoni, “Metastable behavior in digital systems,”
IEEE Design and Test of Computers, pp. 4–19, 1987.

[6] R. Pearce, J. Field, and W. Little, “Asynchronous arbiter module,”
IEEE Transactions on Computers, vol. 24, no. 9, pp. 931–932, 1975.

[7] C. Seitz, “Ideas about arbiters,” Lambda, vol. 1, pp. 10–14, 1980.
[8] A. Martin, “On Seitz’s arbiter,” Tech. Rep. 5212:TR:86, Caltech

Computer Science, 1986.
[9] R. Dobkin, R. Ginosar, and A. Kolodny, “QNoC asynchronous

router,” Integration, VLSI Journal, vol. 42, pp. 103–115, 2009.
[10] D. Kinniment and D. Edwards, “Circuit technology in a large com-

puter system,” in Conference on Computers–Systems and Technology,
pp. 441–450, 1972.

[11] D. Kinniment, A. Bystrov, and A. Yakovlev, “Synchronization circuit
performance,” IEEE Journal of Solid-State Circuits, vol. 37, no. 2,
2002.

[12] S. Beer, R. Ginosar, M. Priel, R. Dobkin, and A. Kolodny, “The
devolution of synchronizers,” in International Symposium on Asyn-
chronous Circuits and Systems (ASYNC), pp. 94–103, 2010.

[13] A. Bystrov, D. Kinniment, and A. Yakovlev, “Priority arbiters,”
in International Symposium on Asynchronous Circuits and Sys-
tems (ASYNC), pp. 128–137, 2000.

[14] J. Sparso and S. Furber, Principles of asynchronous circuit design.
Kluwer Academic Publishers, 2002.

[15] J. Cortadella, L. Lavagno, P. Vanbekbergen, and A. Yakovlev, “De-
signing asynchronous circuits from behavioural specifications with
internal conflicts,” in International Symposium on Asynchronous Cir-
cuits and Systems (ASYNC), pp. 106–115, 1994.

[16] D. Sokolov, V. Khomenko, and A. Mokhov, “Workcraft: Ten years
later,” in This asynchronous world. Essays dedicated to Alex Yakovlev
on the occasion of his 60th birthday (A. Mokhov, ed.), Newcastle
University, 2016. Available online http://async.org.uk/ay-festschrift/
paper25-Alex-Festschrift.pdf.

[17] I. Poliakov, A. Mokhov, A. Rafiev, D. Sokolov, and A. Yakovlev,
“Automated verification of asynchronous circuits using circuit Petri
nets,” in International Symposium on Asynchronous Circuits and
Systems (ASYNC), 2008.

[18] D. Shang, F. Xia, S. Golubcovs, and A. Yakovlev, “The magic rule
of tiles: Virtual delay insensitivity,” in Power and Timing Modeling,
Optimization and Simulation (PATMOS), pp. 286–296, 2009.

[19] Y. Chen, High level modelling and design of a low power event
processor. PhD thesis, Newcastle University, 2009.

[20] S. Golubcovs, D. Shang, F. Xia, A. Mokhov, and A. Yakovlev,
“Modular approach to multi-resource arbiter design,” in International
Symposium on Asynchronous Circuits and Systems (ASYNC), pp. 107–
116, 2009.

[21] J. Bainbridge and S. Furber, “CHAIN: A delay-insensitive chip area
interconnect,” IEEE Micro, vol. 22, pp. 16–23, 2002.

[22] R. Ho, J. Gainsley, and R. Drost, “Long wires and asynchronous
control,” in International Symposium on Asynchronous Circuits and
Systems (ASYNC), pp. 240–249, 2004.

[23] R. Brayton, A. Sangiovanni-Vincentelli, C. McMullen, and
G. Hachtel, Logic minimization algorithms for VLSI synthesis. Kluwer
Academic Publishers, 1984.

[24] S. Nowick and D. Dill, “Practicality of state-machine verification of
speed-independent circuits,” pp. 266–269, 1989.

