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Abstract—The trade-off between the quality and timeliness
of adaptation is a multi-faceted challenge in engineering self-
adaptive systems. Obtaining adaptation plans that fulfill system
objectives with high utility and in a timely manner is the holy
grail, however, as recent research revealed, it is not trivial. Hybrid
planning is concerned with resolving the time and quality trade-
off via dynamically combining multiple planners that individually
aim to perform either timely or with high quality. The choice
of the most fitting planner is steered based on assessments of
runtime information. A hybrid planner for a self-adaptive system
requires (i) a decision-making mechanism that utilizes (ii) system-
level as well as (iii) feedback control-level information at runtime.

In this paper, we present HYPEZON, a hybrid planner for
self-adaptive systems. Inspired by model predictive control,
HYPEZON leverages receding horizon control to utilize runtime
information during its decision-making. Moreover, we propose to
engineer HYPEZON for self-adaptive systems via two alternative
designs that conform to meta-self-aware architectures. Meta-
self-awareness allows for obtaining knowledge and reasoning
about own awareness via adding a higher-level reasoning entity.
HYPEZON aims to address the problem of hybrid planning by
considering it as a case for meta-self-awareness.

Index Terms—meta-self-awareness, self-adaptive systems, hy-
brid planning, receding horizon control, coordinating, model
predictive control

I. INTRODUCTION

Rapidly changing requirements, highly dynamic environments,
and unpredictable operating conditions demand for runtime
adaptation of software systems. Providing timely and high
quality adaptation plans is the ultimate goal of an adaptation
manager. However, constructing a single automated adaptation
policy that satisfies both of these conflicting requirements
is challenging [12]. Proactive optimization-based policies of-
ten require an exhaustive search in the possible adaptation
space which renders attaining optimal adaptation plans time-
intensive [27]. Additionally, while reactive condition-based
solutions for adaptation deliver adaptation plans timely, they
often fail to find the optimal solutions [10].

Hybrid planning employs control mechanisms where mul-
tiple adaptation policies are orchestrated to jointly carry out
timely and optimal adaptations [5], [25]. A hybrid planner for
a self-adaptive system (SAS) implements the ability to reason
about different available adaptation policies, varying in the
quality and timeliness of their plans, based on the runtime
conditions. Time-critical operation conditions that demand
timely rather than optimal adaptations benefit from employing
cost-effective adaptation policies with short planning time.
Under less time-sensitive operation conditions, optimization-
based policies may provide high quality adaptation plans.

While Control Theory has established mathematically
grounded and practical frameworks for managing complex
systems [1], [13], it restricts the scope of the controllers to cal-
culating set-points and prescribing required changes in the sys-
tem input parameters [12]. The black-box-oriented scheme of
the Control Theory further extends towards adaptive control,
where the controller may change its own control regime [22].
This requires the controllers to have adjustable parameters.
In the realm of self-adaptive systems, adaptive control is
perceived as reasoning about the adaptation logic [26]. The
reasoning requires observing the behavior of the control loop
in terms of effectiveness and performance, realizing the need
for change, and prescribing the necessary decisions to steer the
controller towards the desired behavior. Meta-self-awareness,
a notion surfacing only recently, captures the requirements
for equipping self-aware systems with advanced self-reflective
properties [7]. As a result, systems with meta-awareness
properties can reason about changing trade-offs during their
lifetime [23]. The control design and architecture of a meta-
self-aware system builds on Control Theory as a prominent
base, however, it extends the involvement scope of the higher-
level control loops in the lower-level entities.

There exists various research efforts in combining multiple
adaptation solutions to fulfill the contradicting trade-offs in
SAS [20], [31]. [5] proposes a hybrid approach that combines
control theory principles with AI techniques to optimize the
adaptation process. [30] presents a hierarchical hybrid planner
where a learning-based policy adapts a rule-based policy to
improve its decisions. The hybrid planning approach in [24]
operates an optimization-based planner in the background
while a deterministic policy adapts the system. Before each
adaptation, the hybrid planner checks if the optimization-based
policy can provide a plan. [32] presents a concurrent approach
for self-adaptation in which a model of SAS is synchronized
with multiple views on that model and each partial model
has its own adaptation mechanism. Condition-based rules are
used in [4], [21] to construct reactive hybrid planners. The
main focus in providing hybrid solution for SAS so far has
been set on developing individual adaptation policies such
that, in coordination together, they cover a large spectrum of
the solution space for SAS. In this paper, we focus on the
orchestrating entity, i.e., the realization of the decision-making
mechanism within the hybrid planner. Our proposed solution
has the characteristics of a generic hybrid planner since it
considers the employed adaptation policies as a black-box,
thus, can coordinate arbitrary adaptation policies.
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We address the problem of hybrid planning by considering
it as a case for meta-self-awareness. We present HYPEZON,
a hybrid planner for self-adaptive systems. HYPEZON imple-
ments the planning phase as a controller conforming to the
scheme of model predictive control, thus, leverages receding
horizon to utilize runtime information and adjust its control
parameters at runtime. To engineer HYPEZON for SAS, we
propose two alternative designs, external and internal, that
conform to meta-self-aware architectures. The designs build
on the framework for realizing meta-self-awareness in the
architecture from our earlier work [19].

We study the effectiveness of the designs for hybrid
planning by answering the following Research Questions
(RQ). RQ1 how do internal and external designs for meta-
self-awareness affect HYPEZON? RQ2 how does HYPEZON
perform in comparison to a deterministic hybrid planner?
RQ3 what are the effects of hybrid planning on the quality and
timeliness of the adaptation? We show that meta-awareness
capabilities, realized either by the external or internal design,
are beneficial for hybrid planning as they provide extended
control flexibility at runtime.

Section II discusses the prerequisites. A motivating example
is presented in Section III. Section IV presents HYPEZON
and Section V presents the design and application of HY-
PEZON as a case for meta-self-awareness. The RQs are
investigated in Section VI and Section VII concludes the paper.

II. PREREQUISITES

A. Self-adaptive Systems

The execution of an adaptation action a ∈ A with A the
set of available actions, results in adapting the SAS from state
s to s′ with s and s′ ∈ S and S the state space of the SAS.
A policy is generally defined as a set of control decisions that
map states to actions [27]. An adaptation policy π represents
an encapsulation of the system’s adaptive behavior governing
the choice of adaptation actions when applicable. For each
state s, π(s) indicates the adaptation action a to be executed,
i.e., π(s) = a. EU(s) represents the expected utility of s i.e.,
a scalar value as a quality metric that identifies the degree to
which system goals and requirements are satisfied in s. For all
the applicable adaptation actions a ∈ A in state s, an optimal
π(s) chooses the action that maximizes the expected utility of
the subsequent state s′, i.e., EU(s′).

The utility of a system can be defined as a function of the
system quality dimensions. A common practice to obtain a
representative utility function is via the system’s Service Level
Agreements (SLA’s) where the business preferences define
the system objectives. A multi-objective utility function is an
aggregation of multiple quality dimensions where each dimen-
sion represents a business objective. Utility sub-functions are
employed to assign values to the dimensions [33].

A static adaptation policy maps an action a to state s based
on design-time estimates for the resulting state s′. Therefore,
the estimations for EU(s′) are agnostic to using any runtime
observation. In contrast, a dynamic adaptation policy leverages
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Fig. 1. Block diagram of a feedback control system. The gray box extends
the controller to illustrate a model predictive controller.

runtime observations, available during system execution, to
compute expected utility values for the applicable actions.

B. Hybrid Planning for SAS

Hybrid planning for SAS in general refers to combing
two or more adaptation policies to adapt the system. More
specifically, a Coordinating Hybrid Planner (CHP) combines
adaptation policies that (i) target the same SAS and (ii) the
same planning problem but (iii) keeps their planning phases
separate. The planning phase of a SAS employing a CHP
can be subdivided into the original planning phases from
the combined policies [31]. An adaptation issue refers to a
deviation from the desired state and indicates that the system,
in its current state s, requires an adaptation. A planning
problem is a set of adaptation issues that simultaneously affect
the SAS. For a planning problem, a plan is an ordered list
of adaptation actions that each action resolves at least one of
the adaptation issues in the planning problem. The look-ahead
horizon is the time steps into the future that are considered
during planning. A planning horizon Φ is a prefix of the look-
ahead horizon that is planned for. A planning horizon of size
|Φ| ≤ l with l the size of the look-ahead horizon, only plans
for |Φ| out of l adaptation issues in the look-ahead horizon.
An infinite planning horizon allows for considering the entire
look-ahead horizon for planning. The utility of plan is the
expected utility of the target system state after the execution
of the adaptation actions constituting the plan.

A CHP is concerned with two aspects of the available
policies: quality and timeliness. For a given planning problem,
the quality of a policy πi is quantified as the expected utility
of the plan provided by πi, i.e., EU(plani). For timeliness,
an estimation of the time required by πi to provide a plan,
i.e., ET (plani), is required [25]. Such estimations can be
obtained via theoretical modeling such as employing worst-
case time models [24] or based on empirical profiling.

C. Feedback Control for SAS

A control feedback loop that governs a SAS observes
the system output in sampling intervals I and adapts the
system towards its set-points to prevent violation of the system
requirements and goals over a prediction horizon. The target
system, i.e., SAS is controlled via the control actions from the
controller–see Fig. 1. The reference input is the desired value
of the system’s measured output. The goal is that, despite the
disturbance affecting the target system, the measured output
is sufficiently close to the reference. For this purpose, the
difference between the measurement and the reference, i.e.,



the error is fed back to the controller to determine the control
actions required to achieve the reference value.

Model Predictive Control (MPC) is a technique that for-
mulates a multi-variable optimization function, e.g., a utility
function, to generate set-points. Set points define the target
values for control calculations. Control calculations determine
a sequence of M control actions, i.e., control horizon, such
that the predicted output moves towards the set-points over a
finite prediction horizon P [18]. The number of the predictions
P is referred to as the prediction horizon while the number
of the control actions M is called control horizon. The MPC
receding horizon control suggests that although a sequence of
M control actions is calculated at each time point, only the
first action is executed. A new sequence is calculated after new
observations become available. Employing a receding horizon
of size one supports the case where the variables available
for the control calculations change from one execution time
to the next. If the control structure changes from one control
execution time to another, but the MPC controller does not
recalculate the parameters, the subsequent control calculations
may become ill-conditioned [29]. For a SAS, before each
adaptation, the adaptation policy π optimizes an objective
function to select the adaptation actions that maximize the
said function. MPC has been proven effective in formulating
the optimization problem where the control actions represent
adaptation actions and the targets are the system states with
maximum EU [2].

D. Self-awareness and Meta-self-awareness

A self-aware system is identified by two main character-
istics. First, the ability to learn models capturing knowledge
about the system, its context, and its goals on an ongoing
basis. Second, reasoning based on the models for analysis and
planning concerns. Computational self-awareness is achieved
via a Model-based Learning, Reasoning, and Acting loop
(LRA-M loop). There can be multiple variations to Acting,
e.g., explaining, reporting, suggesting, and adapting. Self-
adaptation, realized via a MAPE-K feedback loop, is one of
the advanced characteristic of the self-aware systems where
the scope of Acting is set to Adapting [23]. As a result, a
system realizing MAPE-K loop becomes aware of itself and
its context. The object of the awareness is the entity being
reasoned upon. The subject of the awareness is the entity
performing the reasoning. In the following, we target self-
aware systems with adaptation capabilities.

A meta-self-aware system can obtain knowledge about its
own awareness and how it is exercised. A higher-level self-
aware entity, e.g., a MAPE-K control loop, reflects on the
benefits and costs of maintaining increased awareness as well
as the capacities for it [7]. Meta-self-awareness is concerned
with two classes of objects; The elements of the lower-level
awareness loop, e.g., a learning process or an adaptation logic,
and the output of these elements, i.e., the models or specifi-
cations produced by the object being reasoned upon [23]. In
order to explicitly capture the meta-self-awareness properties
in the architectural design, meta-self-awareness can be realized
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Fig. 2. Znn.com architecture. Dashed lines represent available but inactive
elements.

either as a built-in capability or as an external meta-awareness
layer [19]–similar to the internal and external approaches for
engineering systems with self-adaptation properties [9].

III. MOTIVATING EXAMPLE

As a running example we employ Znn.com [8] that simulates
a news service website. Clients make content requests to one
of the servers. A load balancer distributes requests across
a server pool. The size of the pool can be dynamically
adjusted to balance the server utilization against the ser-
vice response time. Znn.com is a web-based client-server
system conforming to an N-tier style–see Fig. 2. Certain
system and client information such as server load, request
response time, and the connection bandwidth can be mon-
itored. The goal of Znn.com is to provide short response
times to the clients while keeping the cost of the server pool
within the budget. Four types of adaptation issues may affect
Znn.com: latency in the response times, overBudget
cost of adding servers to the pool, underUtilized
servers, and lowQuality contents. There are four adap-
tation actions applicable to modify the configuration
of Znn.com: Discharge-server, Enlist-server,
Increase-quality, and Reduce-quality of the con-
tent. Response time, content quality, server utilization, and
budget are the four objectives of Znn.com. These objectives
are captured by four quality dimensions respectively. Each
dimension is represented by a utility sub-function as described
in Table I–see Section II-A.
RT in Table I is the estimated client response time and

RTmax is set to 90 seconds, that is when Znn.com throws
a request timeout exception and ends the session. A server in
Znn.com can transfer content with three different qualities
that are quantified as: (low, 0), (medium, 0.5), and (high, 1).
Therefore, Server.quality can have one of the 0, 0.5, or 1
values. Server.utilization is the percentage of the server ca-
pacity that is in-use, and finally, Server.cost is the operational
cost of the server which can vary for different providers.

Uznn(s) =
∑
client

wruR +
∑

server

(wquQ +wuuU −wcuC) (1)

Similarly to [8], we define the overall utility of the system
as a weighted sum of the utility sub-functions. The weights wi

in Table I are extracted from [8]. For each state s, the overall
utility of Znn.com is defined according to (1). For each target

TABLE I
UTILITY SUB-FUNCTIONS FOR ZNN.COM

ID Quality Dimension Utility Sub-function wi

uR Response time uR = 1− RT
RTmax

0.4
uQ Content quality uQ = Server.quality 0.2
uU Server utilization uU = Server.utilization 0.1
uC Cost uC = Server.cost 0.3
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state s′, the expected utility of the state is an estimation of (1),
i.e., EU(s′) = Ûznn(s′).

IV. HYBRID PLANNING WITH RECEDING HORIZON

In this section, we present HYPEZON, a coordinating HYbrid
PlannEr for SAS employing receding horiZON control. HY-
PEZON aims to address the planning problem in a SAS
at runtime by considering multiple adaptation policies and
selecting based on the time and quality objectives. HYPEZON
implements the planning phase of a MAPE-K loop. During an
adaptation cycle, once the analysis phase has detected the need
to plan an adaptation, i.e., there exists a planning problem–
see Section II-B–HYPEZON takes the system state, the set of
available adaptation polices, and estimations of EU(plan) and
ET (plan) for the available policies. Then, the planner decides
which policy best suits the current operation condition.

HYPEZON implements the planning phase as a controller
conforming to the scheme of model predictive control with
receding horizon. The MPC-based planner, at each sampling
instance I, makes new measurements, and based on the
operation condition, decides if a policy switch is required. The
process of resolving a set of adaptation issues via selecting
a set of adaptation actions that maximize a utility function
is formulated as an MPC receding horizon control problem.
HYPEZON implements a hybrid planner as an MPC controller
via mapping the look-ahead and planning horizons of the
planner to the prediction and control horizons of an MPC
controller respectively–see Section II-C.

HYPEZON extends the notion of MPC receding horizon of
size one to an execution horizon Hn with adjustable size n.
Fig. 3 shows an example of a look-ahead horizon, planning
horizon, and execution horizon in HYPEZON–see Section II-B.
As explained in Section II-C, in MPC, the control horizon is
a list of all the actions that are planned during an adaptation
cycle. This is captured as the planning horizon Φ in HYPE-
ZON. As stated by Pandey et al. [25], it is difficult to verify
the compatibility between the plans of different policies, how
to choose the planning horizon, and when to stop using one
plan and switch to another policy for planning. In the follow-
ing, we describe how HYPEZON addresses these challenges.
HYPEZON uses runtime information such as the planning time
of the adaptation policies, system load, number and type of
the adaptation issues, and the cost of switching between the
policies to decide on the size of the planning and execution
horizons. Employing planning and execution horizons with ad-
justable size provides for runtime flexibility. Before choosing
a policy, HYPEZON adjusts the size of the planning horizon Φ
with respect to its estimation of the policy planning time, i.e.,
ET (plan). For example, if Znn.com is affected by large
numbers of latency issues as well as lowQuality issues,
HYPEZON may restrict the planning horizon to first consider

the more critical issues, i.e., latency. This way, HYPEZON
reduces the expected planning time by reducing the size of Φ,
thus, the latency issues are resolved relatively faster.

An execution horizon Hn only considers the first n adapta-
tion actions in the planning horizon for execution in the current
adaptation cycle. After executing the n adaptation actions,
HYPEZON stops the execution of the plan and the remaining
unresolved issues are considered together with the newly
observed issues in a subsequent adaptation cycle as a new plan-
ning problem. Employing execution horizon of small size in
HYPEZON results in utilizing the most recent adaptation issues
immediately. In contrast, large execution horizons ignore the
recent observations until all the actions in the planning horizon
are executed–see Fig. 3. Small sizes for Hn demand more
frequent planning. Moreover, the execution of the actions that
are in the planning horizon and not in the execution horizon
is postponed to the subsequent adaptation cycle(s). In cases
where the planning phase of the adaptation policy has a large
overhead, frequent planning might affect the adaptation time
negatively. When HYPEZON switches the adaptation policy,
the employed policy plans for the remaining adaptation issues
whose corresponding adaptation actions in the planning hori-
zon were not included in the execution horizon. Moreover, the
employed policy also considers the newly detected adaptation
issues. Consequently, after each policy switch, the planning
problem is considered anew during the control calculation in
HYPEZON. This way, HYPEZON guarantees that after a policy
switch, the active policy calculates the plan according to the
most recently observed conditions while taking into account
the already existing issues.

In order to guarantee the compatibility between a plan and
the planning problem, HYPEZON only executes one policy at
a time and avoids concurrent executions of multiple policies.
As a result, a planning problem that is assigned to a policy
remains unchanged during the planning time. This way, once
the plan is ready, HYPEZON does not check if the plan is
still applicable to the current planning problem. This feature
in HYPEZON avoids the runtime overhead that is caused
by compatibility analysis between the planners. However,
concurrent executions of planners may reduce the time that
the hybrid planner has to wait until a plan is ready.

V. HYPEZON: DESIGN AND APPLICATION

In this section, we argue that equipping a SAS with hybrid
planning should be realized as a meta-self-awareness property.
To this end, building on our previous study towards making
meta-self-awareness visible in the architecture [19], we pro-
pose two designs to engineer a SAS with meta-self-awareness
properties and show how the two designs are realized in
HYPEZON. The self-awareness capabilities are realized via
MAPE-K loop–see Section II-D.

A. Meta-self-aware Designs Realizing Hybrid Planning

External design In order to explicitly separate the awareness
and meta-awareness levels, as depicted in Fig. 4-(a), two
MAPE-K loops are employed. The loop at the meta-awareness
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level implements the CHP. The higher-level loop observes the
awareness level in combination with the system and context,
reasons about them, and adapts them accordingly.

The external design operates the CHP on a different
timescale than the lower-level MAPE-K loop. The lower-
level loop is executed more frequently to guarantee timely
adaptation concerning the part of the system under its direct
control. The meta-awareness loop however, operates at a
relatively larger timescale since it is inherently concerned with
relatively more sparse phenomena to react upon [11].
Internal design An internal realization of the meta-self-
awareness properties is possible via employing an awareness
self-loop–see Fig. 4-(b). In this design, the MAPE-K loop
observes and affects itself. The subject and object of meta-
awareness are not architecturally separated, consequently, one
element, i.e., the MAPE-K loop, performs both the reasoning
and being reasoned about parts of the meta-awareness. In the
internal design, the awareness level is also aware of itself.

The internal design implements the awareness and the meta-
awareness properties in an intertwined manner and keeps the
subject of the meta-awareness close to the object. In this
design, the meta-awareness self-loop, hence the CHP, operates
at the same timescale as the awareness loop.

In the proposed designs, the focus is on the functional
aspects enabled by each design rather than the architectural
aspects. However, the architectural decision of separating
the awareness and the meta-awareness loops in the external
design and combining them in the internal design steers the
decisions relevant to the functional aspect, i.e., the sampling
and execution intervals of the CHP in each design.

B. Application

HYPEZON is realized as a meta-awareness subject via both
external and internal designs. The variants are called HZe and
HZi respectively. The external design, thus, HZe operates
the meta-awareness loop in coarser time intervals compared
to the awareness loop. Consequently, compared to HZi, the
MPC controller in HZe has larger sampling intervals (I)–
see Section II-B. Algorithm 1 shows a high-level description
of HYPEZON.

HYPEZON is concerned with (i) control parameter tuning,
i.e., tuning the size of the planning and execution horizons,
and (ii) policy switch. As depicted in Algorithm 1, HYPEZON
requires system state s and the set of available adaptation
polices Π. Π also includes estimations of EU(plan) and
ET (plan) for the available policies. The planning horizon Φ
is initially set to fully include the look-ahead horizon, i.e.,

Algorithm 1 Hybrid Planning with HYPEZON

Require: s, Π, RTI
1: Φ← look-ahead horizon
2: if RTI optimal then
3: πcurr = πi ∈ Π 3 i = argmax

i
EU(plani)

4: Hn ←∞
5: else if RTI inRange then
6: for all πj ∈ Π do
7: if ccurr,j + ET (planj) + RTI inRange AND j =

argmax
j

EU(planj) then

8: πcurr = πj

9: adjust(Hn)
10: if πcurr = null then
11: adjust(Φ)
12: Go to 3
13: else if RTI high then
14: |Φ| ← 1
15: Hn ← 1
16: πcurr = πj ∈ Π 3 j = argmin

j
ET (planj)

17: List of Actions ← πcurr(s)
return List of Actions , Hn

all the the existing adaptation issues–see Fig. 3. In addition
to the information available as system state s, e.g., current
system load and utility, HYPEZON also maintains the average
response time of the SAS during the sampling interval I,
i.e., RTI . Based on the specific business objectives of SAS,
HYPEZON defines three ranges for the average response time:
optimal, i.e., RTI is below a minimal threshold, inRange,
i.e., RTI is within the acceptable range, and high, i.e., RTI is
higher than the permitted upper bound. These thresholds are
subject to change at runtime to reflect the changing goals and
requirements.
Control parameter tuning For a given planning problem,
both HYPEZON variants employ the method adjust–line 9 and
11 in Algorithm 1–to tune their control parameters at runtime.
The method uses estimations of the EU(plan) and ET (plan)
for the policies, the current and estimated system load, and the
number as well as the type of the adaptation issues.
Policy switch Switching between policies has a cost as it
requires deploying specific settings for the new policy, e.g., ini-
tializing a constraint solver or loading prediction models. The
switch from policy πi to πj is charged with a cost cij that
is subtracted from the system utility. HYPEZON reasons about
the trade-off between cost and benefit of the switch at runtime–
line 2, 5, and 13 in Algorithm 1. If RTI is optimal, HYPEZON
switches to the policy with highest expected plan utility and
executes the full plan–line 2-4 (index curr represents the
current choice). If RTI is inRange, HYPEZON searches for
a policy with the highest EU(plan) such that the sum of the
policy switch cost, ET (plan), and RTI is still inRange–line 5-
8. HYPEZON uses RTI as an estimate for RT during the next
interval. In case HYPEZON does not find a match, the size of
the planning horizon is reduced until HYPEZON finds a match–
line 10-12. Finally, if RTI is high, HYPEZON sets the size of
the planning and execution horizons to one and searches for



a policy with the minimum planning time–line 13-16.
In both variants, decisions for tuning the control parameters

and policy switch is made based on the average values over
a sampling interval I. Therefore, HZe makes estimates of the
EU(plan), ET (plan), and system load based on the average
values of observations over a longer monitoring period com-
pared to HZi. Thus, HZe collects accumulated observations of
system executions that can be used to estimate the operation
condition during the next interval. HZi however, operates
more frequently and decides based on the observations over a
relatively smaller I.

VI. EVALUATION

In this section, we evaluate the application of the HYPEZON
variants on Znn.com. The experiments are designed to an-
swer the three Research Questions. RQ1 how do internal and
external designs for meta-self-awareness affect HYPEZON?
RQ2 how does HYPEZON perform in comparison to a deter-
ministic hybrid planner? RQ3 what are the effects of hybrid
planning on the quality and timeliness of the adaptation?
A. Case Study and Deterministic Hybrid Planner
Case study The employed case study is Znn.com from
Section III. The request arrival traces are generated based
on the commonly used (e.g., [6]) web traffic logs of FIFA
98 world cup site [3] and are employed as the input traffic
for Znn.com. We consider three different traces (TRi)–
available in [14]. The traces include clients web content
requests from the web servers over the course of 24 hours
on three different days. The average number of requests per
minute is 10, 796. However, the content requests are not
uniformly distributed over time, and demonstrate the slashdot
effect, i.e., sudden and relatively temporary surges in traffic.
As a result of the slashdot effect, the response time of the
servers increases above the acceptable threshold and causes
latency issues for the affected clients. The employed adap-
tion policy π addresses latency via Enlist-server or
Reduce-quality actions. The two actions however could
cause overBudget, underUtilized, and lowQuality
issues which are dealt with once the slashdot effect wears off
via Discharge-server and Increase-quality.
Deterministic hybrid planner We implemented a determinis-
tic coordinating hybrid planner that uses predefined thresholds
on quality attributes of interest, e.g., response time, as con-
straints. The proposed hybrid planner, CHPdtr henceforth, does
not support runtime adjustments of its control parameters and
considers look-ahead, planning, and execution horizons with
deterministic and predefined sizes and, as a result, exhibits
smaller planning overhead at runtime. CHPdtr takes current
state s, set of available policies Π, current response time
RTcurr, and response time threshold RTthr as inputs. If
RTcurr exceeds RTthr, CHPdtr switches to a policy with a
smaller ET (plan), otherwise, a more time-intensive policy
obtaining higher quality is employed.
B. Experiments
Policies The employed hybrid planners combine a static pol-
icy (πS) and a dynamic policy (πD) from [17] to equip the

TABLE II
NAU OVER 24 HOURS

Trace HZi HZe CHPdtr πD πS

TR1 0.79 1 0.81 0.51 0.33
TR2 0.55 0.83 1 0.49 0.38
TR3 0.76 1 0.85 0.55 0.42

target system with self-adaptation capabilities. The policies
conform to the definition of the static and dynamic adapta-
tion policies in Section II-A respectively and use the utility
function Uznn as their objective function. πS uses design-
time estimations for EU–see Section III. Therefore, at each
state s, for each applicable a, the expected effect on EU
is predetermined. We have shown in [16] that this policy is
sub-optimal in terms of overall utility but fast in terms of
adaptation time. πD uses the IBM ILOG CPLEX constraint
solver for selecting actions that optimize the utility. We have
shown in [16] that while this policy finds the optimal target
state at each adaptation step, it can exhibit long planning times.
Runtime conditions trigger a switch between πS and πD. For
example, during surges of client traffic in Znn.com where
more adaptation issues such as latency occur, employing
πS that provides timely rather than optimal adaptation plans
is beneficial. However, once the traffic surge calms down, the
utilization of the servers can be optimized via switching to
πD. The switch from policy πD to πS is charged with a
cost cDS = 2 and cSD = 200 applies to the switch in the
opposite direction. The considered costs are independent of
the runtime conditions and are defined relatively and based on
the measurements of the policy deployment times.
Setting The experiments are repeated and averaged over 1000
simulation runs. The reported utility values are Normalized
Accumulated Utility (NAU ) with NAU = Uznn − cij . We
executed CHPdtr with RTthr = 1 sec. The same is set as the
initial value to define the high range for RTI in the HYPEZON
variants. RTmin = 0.1 sec is used as the initial value for the
optimal range and the RTI values in between are considered
as inRange–see Algorithm 1. Note that the threshold values in
the HYPEZON variants are not deterministic and may change
at runtime. The size of the look-ahead, planning, and execution
horizons in CHPdtr is set to ∞, thus, CHPdtr plans for all the
existing issues and executes the complete plan.
Znn.com is equipped with self-adaptive properties via

adding a MAPE-K loop, henceforth adaptation loop, to the
system. HZe is realized in an additional loop that is added
on top of the adaptation loop–see Fig. 4-(a). HZi implements
the internal design for meta-self-awareness–see Fig. 4-(b). The
sampling interval I for HZe indicates that the meta-awareness
loop in the HZe is executed once for every I executions of
the adaptation loop. In HZi however, I = 1 as the hybrid
planner is embedded in the adaptation loop and is executed at
the same frequency as the adaptation loop–see Section V-A.
Results Table II shows NAU during 24 hours of the input
traces for Znn.com. πD and πS exhibit basic planning for
SAS and do not employ any hybrid planning, therefore,
cij = 0. HZe is executed with I = 5. Table III presents
results of sensitivity analysis for NAU obtained by HZe with



TABLE III
NAU OF HZe WITH DIFFERENT I OVER 24 HOURS

I = 1 I = 2 I = 3 I = 4 I = 5 I = 10 I = 15

Znn.com - TR1 0.79 0.81 0.85 0.92 1 0.43 0.25

different execution intervals I. Note that HZe with I = 1 is
identical to HZi.

RQ1 how do internal and external designs for meta-
self-awareness affect HYPEZON? As shown in Table II,
in two out of the three experiments, HZe achieves higher
accumulated utility compared to HZi. The reason is that
HZe has relatively larger sampling intervals, i.e., execution
timescale, that provides an extended monitoring period. HZi

holds a localized view of the system load that is limited to its
relatively small monitoring period, i.e., since the last execution
of the adaptation loop, and sets its control parameters and
switches the employed policies accordingly. The results in
Table II suggest that the relatively small execution timescale
of the meta-awareness loop in HZi may lead to pre-mature
decisions due to insufficient and localized information and, as
a result, the hybrid planner is likely to demonstrate nervous
and volatile behavior regarding policy switch. The results in
Table II and III suggest that the utility of the hybrid planners
is affected by the characteristics of the input traces. Moreover,
as confirmed by Table III, larger values for execution intervals
of HZe result in sub-optimal adaptations; HZe with I = 15
achieves only 25% of the optimal utility for TR1.

RQ2 how does HYPEZON perform in comparison to
a deterministic hybrid planner? Table II shows that for
TR2 in Znn.com, CHPdtr obtains higher accumulated utility
compared to the HYPEZON variants. Analysis of the TR2
characteristics revealed that the request arrival rate in TR2
is only 20% of the one in TR1 and 36% of TR3. The results
together with the analysis of the input trace characteristics
confirm the fact that runtime conditions, i.e., characteristics of
the input traces significantly affect the utility of the adaptation.
The results of Table II show that in two out of the three
experiments, HZe outperformed HZi and CHPdtr. For the
trace with less extreme characteristics, i.e., TR2, the predefined
values of the control parameters and thresholds in CHPdtr are
beneficial and outperform the HYPEZON variants. Overall,
results suggest that HZe suits best the volatile operation
conditions, e.g., input traces with more extreme characteristics.

Fig. 5 presents average request response times for clients
in Znn.com over 60 min. HZe is executed with I = 5.
Each measurement at sampling interval j shows the average
response times (bullets) as well as the maximum and minimum
response times (vertical bars) during the last 5 min. Note
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Fig. 5. Average-max-min request response time (sec) in Znn.com.

TABLE IV
NAU OVER 60 MIN FOR ZNN.COM

HZi HZe CHPdtr πD πS

0.79 1 0.65 0.59 0.51

that the hybrid planning overhead also affects the response
time values. Table IV shows the corresponding NAU of the
planners at the end of 60 min. CHPdtr uses predefined and
deterministic values for the control parameters, thus, compared
to the HYPEZON variants, has a smaller planning overhead
and exhibits smaller response times. In addition to the three
hybrid planners, Fig. 5 also includes response times for their
constituting individual adaptation policies, i.e., πD and πS .
πS has similar response times to CHPdtr. This is due to
the deterministic decision-making in CHPdtr that as soon as
response time raises above 1 sec, CHPdtr switches to the static
policy for planning. Compared to CHPdtr, HZe has slightly
higher average response times. However, as shown in Table IV,
HZe obtains 35% higher accumulated utility over 60 min in
the same experiment. Response time values for HZi are higher
than HZe and CHPdtr. Despite its higher response times,
Table IV shows that HZi obtains 14% higher accumulated
utility compared to CHPdtr.

RQ3 what are the effects of hybrid planning on the
quality and timeliness of the adaptation? The NAU values
in Table II suggest that employing hybrid planning improves
the utility of a SAS compared to their individual constituting
policies. πD in Fig. 5 exhibits the highest response time, it
also has significantly high maximum response time values,
i.e., 10 sec. In case of other planners, the maximum response
time does not exceed 5 sec. While results in Fig. 5 show
relatively low response times for πS , it obtains only 51% of
the optimal accumulated utility in Table IV .

The baseline solutions that employ a single planner are
likely to exhibit sub-optimal behavior caused by the changing
operation condition. We have shown in [15] that the choice
of the adaptation policy in a SAS should be steered with
respect to the characteristics of the input trace, otherwise, the
employed policy may render sub-optimal at runtime. Thus,
as also confirmed by our experiments, employing a hybrid
planner, utilizing either deterministic or adjustable parameters,
results in improvements of the utility (Table II and IV) as well
as the timeliness (Fig. 5) of the adaptation.

C. Discussion

There exist various ways to provide the hybrid planner
in a SAS with history of the system past executions and
observations to enable more informed decisions, i.e., history-
aware self-adaptation schemes, e.g., [28]. Considering hy-
brid planning as a case for meta-awareness has the follow-
ing advantages and limitation; the external design provides
for a global view on the target system and the adaptation
process. This allows for observing phenomena with global
scope that are not observable at the awareness level. HZe

supports explicit separation of concerns at the architecture
level and allows for re-usability, easier maintenance, and
independent evolution of each level. Consequently, separate



and independent mechanisms for observing, analyzing, and
reasoning logic may be employed by each level. The internal
design in HZi limits the controller in the meta-awareness
subject to a localized view of its object. In this design, the
meta-awareness logic is dispersed throughout the awareness
level. The intertwined realization of the awareness and meta-
awareness together with the embedded and dispersed meta-
awareness logic makes it challenging to reason about the
outcome of the meta-awareness, making composability and
re-usability difficult to achieve.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented HYPEZON, a solution for hybrid
planning in SAS. HYPEZON leverages receding horizon con-
trol to utilize runtime information for decision-making. We
proposed two alternative designs conforming to the meta-
self-aware architectures to engineer HYPEZON for SAS. We
showed that hybrid planning, realized either as meta-awareness
capabilities, or as a basic deterministic heuristic, is beneficial
for SAS as it provides extended control flexibility at runtime.
Our experiments suggest that, compared to the deterministic
alternative, hybrid planners that utilize runtime information to
dynamically adjust their decision-making are more beneficial
in copping with the volatile operation conditions. Moreover,
HYPEZON has the characteristics of a generic hybrid plan-
ner and considers the adaptation policies as black-box and
can coordinate arbitrary adaptation policies. Investigating the
concurrent execution of adaptation policies in HYPEZON is a
subject of future work. Moreover, in addition to the functional
aspects, we plan to study the architectural aspects of realizing
hybrid planning as a meta-self-awareness property in SAS.
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