
30 April 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Fostering resilient execution of multi-agent plans through self-organisation

Publisher:

Published version:

DOI:10.1109/ACSOS-C52956.2021.00076

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

IEEE

This is a pre print version of the following article:

This version is available http://hdl.handle.net/2318/1823415 since 2023-06-03T07:42:59Z

Fostering resilient execution of multi-agent plans
through self-organisation

Giorgio Audrito
Dipartimento di Informatica

Università di Torino
Torino, Italy

0000-0002-2319-0375

Roberto Casadei
Department of Computer Science and Engineering

Università di Bologna
Bologna, Italy

0000-0001-9149-949X

Gianluca Torta
Dipartimento di Informatica

Università di Torino
Torino, Italy

0000-0002-4276-7213

Abstract—Traditional multi-agent planning addresses the coor-
dination of multiple agents towards common goals, by producing
an integrated plan of actions for each of those agents. For systems
made of large numbers of cooperating agents, however, the execu-
tion and monitoring of a plan should enhance its high-level steps,
possibly involving entire sub-teams, with a flexible and adaptable
lower-level behaviour of the individual agents. In order to achieve
such a goal, we need to integrate the behaviour dictated by a
multi-agent plan with self-organizing, swarm-based approaches,
capable of automatically adapting their behaviour based on the
contingent situation, departing from the predetermined plan
whenever needed. Moreover, in order to deal with multiple
domains and unpredictable situations, the system should, as far as
possible, exhibit such capabilities without hard-coding the agents
behaviour and interactions. In this paper, we investigate the
relationship between multi-agent planning and self-organisation
through the combination of two representative approaches both
enjoying declarativity. We consider a functional approach to self-
organising systems development, called Aggregate Programming
(AP), and propose to exploit collective adaptive behaviour to
carry out plan revisions. We describe preliminary results in this
direction on a case study of execution monitoring and repair of
a Multi-Agent PDDL plan.

Index Terms—Multi-agent systems, Robust plan execution,
Aggregate computing

I. INTRODUCTION

The task of Multi-Agent Planning (MAP) consists of co-
ordinating the actions of multiple agents in a Multi-Agent
System (MAS) towards common goals. Traditionally, planning
addresses both the assignment of tasks/actions to individual
agents, as well as the coordination among different agents in
terms of causal links and concurrent actions [1]. For large-
scale systems of cooperating agents, however, plans can hardly
capture, fully and in advance, the behaviour and interactions of
each individual agent towards desired global state-of-affairs.
Rather, high-level plans should be specified and dynamically
refined to define both team- and individual-level behaviour in
a flexible and adaptable fashion.

The vision presented in this paper aims at achieving such
a goal by combining and integrating two approaches to MAS
implementation that have followed distinct research paths up to
now. On the one hand, there are self-organizing, swarm-based
approaches, capable of automatically adapting MAS behaviour
based on the contingent situation, departing from the predeter-
mined behaviour whenever needed. Such approaches can be

very effective in dealing with small, specific uncertainties in
the operating environment, but are usually not suited to the
execution of complex plans made of several phases, in which
groups of agents and individual agents must be able to exhibit
very different behaviours and coordination capabilities. On the
other hand, there are more traditional systems that are able (at
least in principle) to interpret and execute any plan expressed
in a suitably standardized language, such as the Multi-Agent-
Planning Domain Definition Language (MA-PDDL) [2], but
do not have built-in capabilities to exhibit flexible lower-level
behaviour and coordination with other agents.

In other words, we aim at investigating the integration
between multi-agent plans and self-organisation, where the
former are necessary to achieve complex goals that require
possibly long sequences of agents’ actions; and the latter are
necessary to deal with the uncertainties and complexities of
the execution environment through low-level flexibility.

A fundamental requirement of our investigation is that both
of these ingredients should be based as far as possible on
declarative solutions: the high-level plans should not be hard-
coded in the system, but represented in a suitable language;
and also the self-organization and flexible behaviour capa-
bilities of the agents should be expressible by programming
at a high level, abstracting from low-level details such as
inter-agent communications. For the latter goal, we consider
a functional approach to self-organising systems development,
called Aggregate Programming (AP) [3], that makes it possible
to express collective adaptive behaviour to carry out plan
execution and revision. As we shall review, AP is formalised
through the Field Calculus (FC) [4] and implemented by full
programming languages such as ScaFi [5].

We make a preliminary test of our vision on a case study
of execution monitoring and repair of a MA-PDDL plan.
In particular, we present the architecture of an actor-based
(simulated) system for joint execution of MAP and AP pro-
grams. The system takes a MA-PDDL plan and simulates its
execution, possibly with failures preventing the achievement
of the plan goals. As the plan is executed, an AP program
written in ScaFi (collectively run by the actors, as we shall
see) monitors the status of the system, and in case of failure
triggers a distributed repair process involving not only the
agents executing the plan, but possibly also additional nodes

in the geographic environment where the MAP is executed.
The paper is organised as follows. Section II provides

background on MAP, AP and self-organization hinting at
the gaps that motivate our proposal. Section III describes
a preliminary investigation of combining MAP with self-
organisation. Finally, Section IV wraps up the paper with a
discussion and perspectives for further research.

II. BACKGROUND AND MOTIVATION

A. Multi-Agent Planning (MAP)

MAP evolves from one of the oldest AI problems: auto-
mated planning of the actions that an agent has to execute
in order to reach a goal state from starting in an initial
state. In 2012, the standard language for expressing planning
domains and problems (PDDL) has been extended to the
MA-PDDL language, which can handle multiple agents [2].
Currently, several planners directly support MAP [6], both as
a centralized and as a decentralized process. As an alternative
to using such planners, it is possible to automatically convert
a MA-PDDL problem to a single-agent problem [7] that can
then be solved with one of the many single-agent planners.

A potential issue with the execution of a MA-PDDL plan
is that, if errors occur, it is left unspecified how the single
agents and the MAS as a whole should react. Some work has
been done in the AI community to address monitoring and
repair of Multi-Agent Plans (MAPs) [8]–[11], however, such
approaches only address the monitoring/diagnosis task, assume
a centralized monitoring/repair process, or require full/perfect
communication between the agents in the team.

It is worth mentioning that the multi-agent community has
also followed a somewhat different approach to the MAP
problem. More specifically, it has identified a number of
problem types that are particularly relevant in practice, such
as the path-planning problem, the covering problem (i.e.,
observe a set of areas) and the pickup-and-delivery problem
(i.e., move a set of items from sources to destinations). Such
problem types have then been investigated separately, leading
to specialized solutions that are often partially hardcoded in
the agents behaviours [12], [13].

The main shortcoming of the mentioned approaches is that
they usually lack the capability to capture flexible, reactive
collective behaviour of agents in the presence of uncertainty
and unforeseen events. This is true, even if to a lesser extent,
also for the solutions to specific types of problems.

B. Aggregate Programming (AP) and the Field Calculus (FC)

AP [3], [14] is an approach for designing resilient dis-
tributed systems by abstracting away from individual devices
behaviour and focusing on the global, aggregate behaviour of
the collection of all devices. The AP approach provides smooth
composition of distributed adaptive behaviour, allowing for
the development of highly reusable “building block” operators
capturing common coordination patterns [15], [16]. Most
importantly, AP assumes only local communication between
neighbour agents, and is robust with respect to devices join-
ing/leaving the network, or failing.

AP is formally backed by FC [3], [4], tiny functional lan-
guage for expressing aggregate programs (see [4] for a detailed
account), which is implemented by full-fledged languages like
the Scala-internal ScaFi (Scala Fields) [5] and the C++ internal
FCPP [17]. A summary of the syntax of FC is as follows:

P ::= F e program

F ::= def d(x) {e} function declaration

e ::= x
∣∣ v ∣∣ (x)=>e

∣∣ e(e)
∣∣ expression

let x = e in e
∣∣ if(e){e}{e}

∣∣
rep(e){(x)=>e}

∣∣ nbr{e} ∣∣ spawn(e, e, e)

In FC, the main expression e evaluates to a possibly different
value v on each device δ, which may depend on the state of δ
(sensor readings, information received from neighbours, etc.).
Thus, expressions e induce a computational field Φ, which can
be represented as a time-varying map δ1 7→ v1, . . . , δn 7→ vn,
assigning a value vi to each device δi in a network. Each
device δ updates its value (by evaluating e) in asynchronous
computational rounds, and values can be either local (of
any recursive data type), or neighbouring values φ (maps
from neighbour devices δ′ to local values). Besides standard
constructs of functional languages (function declaration, let-
binding, function call, anonymous functions and branching),
the syntax of expressions comprises three peculiar constructs:

• rep(e1){(x)=>e2} (state evolution), which on a device δ
evaluates e2 substituting x with the value calculated for
the whole rep-expression at the previous round on δ (in
the first round, with the value of e1);

• nbr{e} (neighbourhood observation), which produces a
neighbouring value representing an “observation map”
of neighbour’s values for expression e, i.e., a map from
neighbours to their latest evaluation of e.

• spawn(e0, e1, e2) (dynamic process generation and exe-
cution [18]), spawning an aggregate process correspond-
ing to e0 for every key contained in the set given by e1,
passing the value of e2 as further input to each of them.
The aggregate process e0 must be a function taking as
argument a key and a value, and returning a pair of a
result and a status, which may be either: OUTPUT (make
the result available to the calling FC program), BUBBLE
(no result returned, device takes part in the process),
EXTERNAL (the device does not participate in the process
this round), TERMINATED (the whole process should ter-
minate). Once spawned, a process expands from devices
in BUBBLE or OUTPUT status to corresponding neigh-
bour nodes, until it somewhere returns TERMINATED.
We shall clarify spawn through examples in Section III-C
(see [18] for a detailed account).

As syntactic sugar, in this paper we use binary operators in
infix notation and the notation [e1, . . . , en] for tuples. We shall
use several built-in functions, whose meaning will be mostly
self-explanatory. Among them, we shall use the multiplexer
built-in function mux(e0, e1, e2), which returns its second
or third argument depending on the Boolean value of the
first, and the foldhood(e0, e1, e2) function which aggregates

neighbouring field e2 together with a starting value e0 and a
binary aggregation operator e1.

C. Multi-Agent Planning and Self-Organisation

Self-organisation refers to the process whereby a system au-
tonomously (i.e., without external control) seeks and sustains
its order or structures [19]. It is often meant as a bottom-
up decentralised process where macro-level structures emerge
from micro-level activities and interactions. Engineering self-
organising software-based systems [20] typically leverages
mechanisms inspired by nature (e.g., chemistry, physics, ani-
mals, insects). However, few programming approaches tailored
to self-organising systems exist, with AP being the most
developed [3], to the best of our knowledge.

Our vision is that self-organisation can be profitable com-
bined with complementary approaches to multi-agent co-
ordination. The general idea itself is not novel: for in-
stance, research on organic computing proposes to balance
“creative self-organized bottom-up processes” and “top-down
control” [21]. Research on organisational paradigms for
MASs [22] also distinguishes between problem-driven or-
ganisations achieved by task planning, which have issues
in dynamic environments, and self-organising organisational
approaches, which can better deal with continuous pertur-
bations and unpredictable situations but are usually limited
in scope. In [23], a comprehensive view of organisations
in MASs is depicted through two dimensions: organisational
awareness (aware, unaware) and centrality (agent-centred vs.
organisation-centred)— where self-organisation is classified as
agent-centred and organisation-unaware.

Our contribution has intersections with the aforementioned
threads, but also a distinct focus: supporting the execution of
MAPs, i.e., possibly long and complex sequences of actions
that have to be performed by the MAS. In particular:
• we consider the plan (together with declarative models

of the actions) as the main force used to drive the
(dynamic) structure of a self-organising MAS, by defining
workflows and actions to “steer” the self-organisation;

• we advocate that MAPs declarative representations
should be developed that comprise both collective actions
performed by teams of agents, as well as actions to be
performed by individual agents, as required by PDDL
extensions;

• we consider the full execution cycle (including monitor-
ing and repair of the plans), which requires both robust
and flexible plan execution, and incremental (partial-to-
full) re-planning when strictly necessary.

We provide preliminary results in the following section. In
particular, self-organisation can be a key mechanism for ad-
dressing continual planning [24]. An architectural solution
leveraging planning and self-organisation in robotic ensembles
has also been proposed in [25]. Their goal has some similari-
ties with ours, however they ignore the fundamental role that
a suitable representation of the plan can have in automatically
generating the code for monitoring its correct execution and
possible repair. Our vision, instead, implies a strong focus on

Fig. 1. A sample map for the taxi domain.

(:action drive
:agent ?t - taxi
:parameters (?from - location ?to - location)
:precondition (and (at ?t ?from)

(directly-connected ?from ?to)
(free ?to)

)
:effect (and (not (at ?t ?from))

(not (free ?to))
(at ?t ?to)
(free ?from)

)
)

Fig. 2. The drive action for the Taxi PDDL domain.

a declarative representation of the plan (especially the action
models) as well as of the monitoring and repair processes
(c.f. Section IV). We believe that declarativity is essential
for decoupling the system specification from execution and
deployment issues, as well as for enabling formal analysis
including static and dynamic verification.

III. PRELIMINARY INVESTIGATION: PLAN REPAIR

A. Domain: Taxis and Passengers

We take the taxi MA-PDDL domain from the CoDMAP
competition [26] as our running example, which defines two
types of agents: taxis and passengers. Taxis can move from
one location to another in a graph-based map, can carry one
passenger at a time, and have the goal to reach a final location
at the end of the execution. Passengers can enter and leave
taxis, and have the goal to reach a destination at the end of
the execution. The domain is quite simple, but exhibits a basic
form of collaboration among agents: a passenger cannot reach
her destination without the help of a taxi. Figure 1 shows an
example problem with 9 locations (labeled circles), 3 taxis
(T1, . . . , T3) and 7 passengers (P1, . . . , P7).

In our prototype, we automatically translate a MA-PDDL
problem to PDDL 2.1 [27], which allows durative actions,
while the currently available MA-PDDL planners only allow
for atomic actions. Plans to be fed into our simulator have
then been generated with the POPF2 planner [28].

Figure 2 shows the definition of the drive action within the
PDDL specification for the Taxi domain. What is important to

<<actor>>

Simulator

MA-PDDL
plan

SCAFI
aggregate programproblem /

environment
PDDL description

<<actor>>

Agent
Environment

Element

<<actor>>
Aggregate Computing

Node

neighbour

<<actor>>
Passenger

<<actor>>
Taxi

<<actor>>
Location

Fig. 3. Actor-based architecture of the system. Inputs are shown in yellow,
domain-specific entities are shown in blue.

note for the purpose of our paper, is that such a definition con-
stitutes a declarative model of the action, with pre-conditions
and effects on the environment. Such a model can be exploited
not only for the generation of a plan, but also for simulating
and monitoring the plan execution. We can think of a plan,
together with the action models, as a formal specification of
the runtime behaviour of the MAS that executes it.

B. Actor-based System Architecture

In this section, we describe the architecture of a system
for the execution and repair of MA-PDDL multi-agent plans.
The proposed system simulates in software the execution of
actions by the agents, and does not address specific hardware
agents. However, it is intended to model quite closely a
possible software architecture of a system deployed on real
software/hardware agents.

The overall architecture is based on actors that implement
both the agents of the MAS and the nodes of a network for
the execution of aggregate programs [29]. Figure 3 shows the
architecture of the simulation system, including the domain-
specific actors (cf. Section III-A) involved in the execution of
a simple plan. Generic entities of the solution (implemented
in Scala exploiting the AKKA framework [30]) include:

1) (discrete-event) simulator:
a) creates a future event list (FEL) with start/end

action events from the plan and failure events from
the simulation configuration, sending correspond-
ing messages to agent-actors;

b) implements the communication and sensor infras-
tructure needed by FC, i.e., sending to the node-
actors current sensor values and context;

2) agent actors: model active domain entities and have
associated aggregate computing nodes;

3) aggregate computing nodes:
a) have a FC/ScaFi aggregate program to run, a

state (output of their last execution round), a set
of neighbours and their most recent export (i.e.,

a collection of values produced by nbr and rep
constructs to be shared with neighbours [4]);

b) can perform actions get-context (retrieving
the current state, neighbours’ exports, and sensor
data), compute (running the aggregate program
against the current context), and act (performing
actuations).

Domain-specific entities include the following:
1) taxi agent actors:

a) have a location and may be serving one pas-
senger;

b) can perform action drive (for moving a taxi and
the corresponding passenger, if any, from a location
to another one);

2) passenger agent actors:
a) have a location, a target destination, and may

be in a taxi;
b) can perform actions enter (to get into a taxi),

exit (to get off a taxi);
3) location agent actors:

a) have a set of connected locations that can be
directly reached by a taxi performing a drive
action;

b) are assumed to host a computational element, pro-
viding storage and computing services for a given
location.

All the entities (taxis, passengers, and locations) are also
nodes of an aggregate computing system, where we assume
that passengers have a smartphone or another wearable device
for computation, and locations have an associated smart-city
device. Devices corresponding to taxis and passengers in a
same location are all connected together and with the smart-
city device of the location. Additionally, location devices are
also connected to the devices of neighbour locations.

The simulator exploits the plan and the problem description
to determine a list of events (FEL) driving the simulation. For
each event, a corresponding message is sent to the involved
actors, which perform planned actions and reply back with
results so that new events can be scheduled affecting the
environment or other entities.

C. Aggregate Plan Repair

Monitoring and repair have been implemented in the AP
nodes with the Scala-internal ScaFi language [5]. However,
for ease of explanation, in this section we shall describe the
repair algorithm using the syntax of FC described in section
II. The FC program that monitors the plan execution and
triggers a distributed repair when an error occurs is shown
in Figure 4. We highlight keywords in blue, general built-in
functions in violet, values and functions accessing plan and
model information in red, comments in green. For simplicity,
we assume that the only error that can happen is that a taxi
breaks and can no longer serve its assigned passengers.

Firstly, FC nodes keep an up-to-date set brokenTaxis of
currently broken taxis. Taxi nodes whose taxiBroken sensor

let brokenTaxis = rep (emptyset()) { old => foldhood(if (taxiBroken) {singleton(mid)} {emptyset()}, union, nbr{old}) } in
let repairNeeded = !hasTaxi and contains(brokenTaxis, myTaxi) in
// INPUT: key = [passenger, location, location], exec OUTPUT: [[time, taxi], STATUS]
let evaluateTaxi = (key, exec) => {
let myOffer = mux(isTaxi, tuple(timeForLocationAfterPlan(2nd(key)) + 1st(route(2nd(key), 3rd(key))), mid), tuple(infinity, null)) in
let status = mux(1st(key) == mid, mux(exec, OUTPUT, TERMINATED), BUBBLE) in

tuple(gossipMin(myOffer), status)
} in
let fallbackTaxi = rep (none) { old =>
let callProcess = (old == none) and repairNeeded in
let spawnKeys = mux(callProcess, singleton(tuple(mid, curLoc, trgLoc)), emptyset()) in
let bestTaxi = get(spawn(evaluateTaxi, spawnKeys, callProcess), mid) in
let timeSinceImprove = 1st(rep (tuple(0, infinity)) { old =>
mux(bestTaxi == none,

tuple(0, infinity),
tuple(mux(1st(bestTaxi) < 2nd(old), 0, 1st(old) + 1), 1st(bestTaxi)))

} in mux(timeSinceImprove > THRESHOLD, 2nd(bestTaxi), old)
} in
// INPUT: key = [passenger, taxi, location, location] args = unit OUTPUT: [unit, STATUS]
let callTaxi = (key, args) => { mux(2nd(key) == mid, (addToPlan(1st(key), 3rd(key), 4th(key)); TERMINATED), BUBBLE) } in
let spawnKeys = mux(fallbackTaxi == none, emptyset(), singleton(tuple(mid, fallbackTaxi, curLoc, trgLoc))) in
spawn(callTaxi, spawnKeys, unit()) // spawns a process instance with logic ’callTaxi’ for each (new) key in ’spawnKeys’

Fig. 4. Field Calculus code for handling broken taxis.

indicates a failure increase this set by adding their unique
node ID mid to the set. At the same time, each passenger
node determines whether she needs a repair of her plan
(repairNeeded), which happens when she is waiting for a taxi
(hasTaxi) that is in the brokenTaxis set.

When a passenger node needs a plan repair, it tries to find
a fallbackTaxi by spawning a FC process based on function
evaluateTaxi. Let us consider in some detail the rep expression
used to set variable fallbackTaxi. Flag callProcess is set to true
iff in the previous rounds no fallback taxi had been identified
(old variable is none) and the code is evaluated on a passenger
node with repairNeeded equal to true. When callProcess is
true, the key (identifier) spawnKeys of the spawned process
is the singleton set of a 3-tuple containing the ID mid of the
node and its current and target locations.

A new process based on function evaluateTaxi is then
spawned. Note that processes are spawned only at the nodes
of passengers needing a plan repair. However, the semantics
of spawn is such that, after the generation of a process, at each
round the active partecipants propagate it to their neighbours.
The process function evaluateTaxi computes a value (a pair
of a time and the ID of the suggested taxi node) and a
status; when executed on the passenger node that spawned
the process, the status is either OUTPUT or TERMINATED,
based on parameter exec which is set with the value of flag
callProcess; for all other nodes, the status is BUBBLE. The
computed value (which is returned only with the OUTPUT
status) is determined through an aggregate computation in-
volving all the nodes, and contains the estimated time that
will take to the suggested taxi to serve the passenger. Since
the spawned process takes several rounds before converging
to a final value with an (estimated) optimal suggestion, it is
kept alive until it does not improve its output for more than a
THRESHOLD number of rounds. When that happens, the taxi
suggested by evaluateTaxi becomes the chosen fallbackTaxi
for the passenger, causing the process to terminate.

Finally, the passenger must let the chosen taxi know her de-

cision. This task is also performed by spawning a process, this
time based on the callTaxi function. The process is spawned
by the passenger nodes and, when its propagation reaches the
fallbackTaxi node, callTaxi updates the MAP according to the
chosen fix.

IV. DISCUSSION AND RESEARCH ROADMAP

The work described in the previous section is a preliminary
step in integrating the execution of a MAP with the collective
behaviour generated by AP. These early results have several
important limitations, most notably:
• the plan is expressed in MA-PDDL, which is not suitable

to express collective, high-level actions such as those
needed when (possibly large) teams of agents carry plan
actions that often involve entire sub-teams;

• consequently, the execution of the plan does not exhibit
any flexibility (e.g. how many and which agents should
perform a collective action?), unless a failure occurs;

• the monitoring assumes full observability of the relevant
information needed to detect failures (that may not be
true especially for the outcomes of aggregate actions);

• the repair of the plan is a hard-coded AP process written
for a specific domain and kind of failure.

The list above shows that there is still a long way to achieve
our vision. However, we already have some ideas about the
needed steps and techniques that may be helpful.
• A fundamental step would be the development of a lan-

guage for expressing MAPs. A first step in this direction
has been presented in [31], where the authors propose
the notion of aggregate plan to capture the kind of plans
suitable for teams performing collective actions. We still
need to formalize a language to express aggregate plans,
and the models of the actions involved (in terms, e.g., of
pre-conditions, nominal and faulty post-conditions).

• Given an aggregate plan, its execution must be flexible
enough. This will require to define a layer exploiting the

expressive power of FC to induce such flexible collective
behavior in a fully distributed, self-organizing way.

• The properties to be monitored may require more com-
plex mechanisms than just direct observation by individ-
ual agents, such as those investigated in existing work
on Runtime Monitoring of complex spatial and temporal
properties with FC [32]. Furthermore, these properties
should be automatically derived from the plan and the
actions model, instead of manually specified.

• Finally, we envision a layer for the repair of failures
that goes beyond the flexibility directly exhibited by the
execution layer. The characteristics of FC and of the
systems we address seem to suggest that also such a layer
should be an FC process. In order to avoid hardcoding
the repair actions, the layer should exploit knowledge
of the plan and of the actions (failure) models in order
to update the plan itself. In this way, we will probably
start by diagnosing (i.e. assessing) the situation (e.g.,
several observed delays are due to a congestion) and
subsequently finding the minimal plan change required
to put the execution back on track.

The practical long-term goal of our proposal is to achieve
a unified approach to diverse applications that are currently
addressed by specific solutions that are either swarm-based
(e.g., search-and-rescue, crowd safety) or plan-based (e.g.
pickup-and-delivery, area covering, etc.). This should open the
way to address hybrid scenarios requiring the execution of
complex plans that involve, at least partially, swarms of agents.
We believe that a declarative, high-level specification of the
goals, actions and single agents behaviors will help making
the implementation of such systems feasible.

REFERENCES

[1] C. Boutilier and R. I. Brafman, “Partial-order planning with concurrent
interacting actions,” Journal of Artificial Intelligence Research, vol. 14,
pp. 105–136, 2001.

[2] D. L. Kovács, “A multi-agent extension of PDDL3.1,” in International
Planning Competition (IPC), 2012.

[3] M. Viroli, J. Beal, F. Damiani, G. Audrito, R. Casadei, and D. Pianini,
“From distributed coordination to field calculus and aggregate comput-
ing,” J. Log. Algebraic Methods Program., vol. 109, 2019.

[4] G. Audrito, M. Viroli, F. Damiani, D. Pianini, and J. Beal, “A higher-
order calculus of computational fields,” ACM Trans. Comput. Log.,
vol. 20, no. 1, pp. 5:1–5:55, 2019.

[5] R. Casadei, M. Viroli, G. Audrito, and F. Damiani, “Fscafi : A core
calculus for collective adaptive systems programming,” in ISoLA (2),
ser. Lecture Notes in Computer Science, vol. 12477. Springer, 2020,
pp. 344–360.

[6] A. Torreno, E. Onaindia, A. Komenda, and M. Štolba, “Cooperative
multi-agent planning: a survey,” ACM Computing Surveys (CSUR),
vol. 50, no. 6, pp. 1–32, 2017.

[7] M. Crosby and R. Petrick, “Temporal multiagent planning with concur-
rent action constraints,” in ICAPS workshop on distributed and multi-
agent planning (DMAP), 2014.

[8] F. de Jonge, N. Roos, and C. Witteveen, “Primary and secondary
diagnosis of multi-agent plan execution,” Journal of Autonomous Agent
and Multiagent Systems, vol. 18, pp. 267–294, 2009.

[9] M. Kalech, “Diagnosis of coordination failures: A matrix-based ap-
proach,” Journal of Autonomous Agents and Multiagent Systems, vol. 24,
no. 1, pp. 69–103, 2012.

[10] R. Micalizio, “Action failure recovery via model-based diagnosis and
conformant planning,” Computational Intelligence, vol. 29, no. 2, pp.
233–280, 2013.

[11] R. Micalizio and P. Torasso, “Cooperative Monitoring to Diagnose
Multiagent Plans,” Journal of Artificial Intelligence Research, vol. 51,
pp. 1–70, 2014.

[12] M. Liu, H. Ma, J. Li, and S. Koenig, “Task and path planning for multi-
agent pickup and delivery,” in Proceedings of the International Joint
Conference on Autonomous Agents and Multiagent Systems (AAMAS),
2019.

[13] O. Salzman and R. Stern, “Research challenges and opportunities in
multi-agent path finding and multi-agent pickup and delivery problems,”
in Proceedings of the 19th International Conference on Autonomous
Agents and MultiAgent Systems, 2020, pp. 1711–1715.

[14] J. Beal, D. Pianini, and M. Viroli, “Aggregate programming for the
Internet of Things,” IEEE Computer, vol. 48, no. 9, pp. 22–30, 2015.

[15] M. Viroli, G. Audrito, J. Beal, F. Damiani, and D. Pianini, “Engineering
resilient collective adaptive systems by self-stabilisation,” ACM Trans-
actions on Modelling and Computer Simulation, vol. 28, no. 2, pp. 16:1–
16:28, 2018.

[16] R. Casadei, D. Pianini, M. Viroli, and A. Natali, “Self-organising coor-
dination regions: A pattern for edge computing,” in COORDINATION,
ser. Lecture Notes in Computer Science, vol. 11533. Springer, 2019,
pp. 182–199.

[17] G. Audrito, “FCPP: an efficient and extensible field calculus frame-
work,” in International Conference on Autonomic Computing and Self-
Organizing Systems (ACSOS). IEEE, 2020, pp. 153–159.

[18] R. Casadei, M. Viroli, G. Audrito, D. Pianini, and F. Damiani, “Ag-
gregate processes in field calculus,” in International Conference on
Coordination Languages and Models. Springer, 2019, pp. 200–217.

[19] T. De Wolf and T. Holvoet, “Emergence versus self-organisation: Dif-
ferent concepts but promising when combined,” in Engineering Self-
Organising Systems, Methodologies and Applications (ESOA workshop,
AAMAS conference), ser. Lecture Notes in Computer Science, S. Brueck-
ner, G. D. M. Serugendo, A. Karageorgos, and R. Nagpal, Eds., vol.
3464. Springer, 2004, pp. 1–15.

[20] H. V. D. Parunak and S. A. Brueckner, “Software engineering for self-
organizing systems,” Knowl. Eng. Rev., vol. 30, no. 4, pp. 419–434,
2015.

[21] J. Branke, M. Mnif, C. Müller-Schloer, H. Prothmann, U. Richter,
F. Rochner, and H. Schmeck, “Organic computing - addressing com-
plexity by controlled self-organization,” in Leveraging Applications of
Formal Methods (ISoLA). IEEE Computer Society, 2006, pp. 185–191.

[22] C. J. Amaral and J. F. Hübner, “From goals to organisations: Automated
organisation generator for MAS,” in Engineering Multi-Agent Systems
(EMAS), ser. Lecture Notes in Computer Science, vol. 12058. Springer,
2019, pp. 25–42.

[23] G. Picard, J. F. Hübner, O. Boissier, and M.-P. Gleizes, “Reorganisa-
tion and self-organisation in multi-agent systems,” in 1st International
Workshop on Organizational Modeling, ORGMOD, 2009, pp. 66–80.

[24] M. Brenner and B. Nebel, “Continual planning and acting in dynamic
multiagent environments,” Autonomous Agents and Multi Agent Systems,
vol. 19, no. 3, pp. 297–331, 2009.

[25] O. Kosak, C. Wanninger, A. Hoffmann, H. Ponsar, and W. Reif,
“Multipotent systems: Combining planning, self-organization, and re-
configuration in modular robot ensembles,” Sensors, vol. 19, no. 1, p. 17,
2019.

[26] “Competition of Distributed and Multiagent Planners (CoDMAP),”
http://agents.fel.cvut.cz/codmap, accessed: 2021-02-12.

[27] M. Fox and D. Long, “PDDL2. 1: An extension to PDDL for expressing
temporal planning domains,” Journal of artificial intelligence research,
vol. 20, pp. 61–124, 2003.

[28] A. Coles, A. Coles, M. Fox, and D. Long, “POPF2: A forward-chaining
partial order planner,” The 2011 International Planning Competition,
vol. 65, 2011.

[29] R. Casadei and M. Viroli, “Programming actor-based collective adaptive
systems,” in Programming with Actors. Springer, 2018, pp. 94–122.

[30] “Build powerful reactive, concurrent, and distributed applications in Java
and Scala (AKKA),” https://akka.io, accessed: 2021-02-12.

[31] M. Viroli, D. Pianini, A. Ricci, and A. Croatti, “Aggregate plans for
multiagent systems,” International Journal of Agent-Oriented Software
Engineering, vol. 5, no. 4, pp. 336–365, 2017.

[32] G. Audrito, R. Casadei, F. Damiani, V. Stolz, and M. Viroli, “Adaptive
distributed monitors of spatial properties for cyber-physical systems,”
Journal of Systems and Software, vol. 175, 2021.

