
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Adaptive Control of Data Center Cooling using Deep Reinforcement Learning

Heimerson, Albin; Sjölund, Johannes; Brännvall, Rickard; Gustafsson, Jonas; Eker, Johan

Published in:
2022 IEEE International Conference on Autonomic Computing and Self-Organizing Systems Companion
(ACSOS-C)

DOI:
10.1109/ACSOSC56246.2022.00018

2022

Link to publication

Citation for published version (APA):
Heimerson, A., Sjölund, J., Brännvall, R., Gustafsson, J., & Eker, J. (2022). Adaptive Control of Data Center
Cooling using Deep Reinforcement Learning. In 2022 IEEE International Conference on Autonomic Computing
and Self-Organizing Systems Companion (ACSOS-C) (pp. 1-6)
https://doi.org/10.1109/ACSOSC56246.2022.00018

Total number of authors:
5

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

Download date: 26. Apr. 2024

https://doi.org/10.1109/ACSOSC56246.2022.00018
https://portal.research.lu.se/en/publications/aa5642ed-9798-4451-bed3-465e0bea7edc
https://doi.org/10.1109/ACSOSC56246.2022.00018


Adaptive Control of Data Center Cooling using Deep Reinforcement
Learning

Albin Heimerson, Johannes Sjölund, Rickard Brännvall, Jonas Gustafsson, Johan Eker

March 21, 2023

Abstract

In this paper, we explore the use of Reinforcement Learn-
ing (RL) to improve the control of cooling equipment in
Data Centers (DCs). DCs are inherently complex sys-
tems, and thus challenging to model from first principles.
Machine learning offers a way to address this by instead
training a model to capture the thermal dynamics of a
DC. In RL, an agent learns to control a system through
trial-and-error. However, for systems such as DCs, an
interactive trial-and-error approach is not possible, and
instead, a high-fidelity model is needed. In this paper,
we develop a DC model using Computational Fluid Dy-
namics (CFD) based on the Lattice Boltzmann Method
(LBM) Bhatnagar-Gross-Krook (BGK) algorithm. The
model features transient boundary conditions for simulat-
ing the DC room, heat-generating servers, and Computer
Room Air Handlers (CRAHs) as well as rejection com-
ponents outside the server room such as heat exchangers,
compressors, and dry coolers. This model is used to train
a RL agent to control the cooling equipment. Evaluations
show that the RL agent can outperform traditional con-
trollers and also can adapt to changes in the environment,
such as equipment breaking down.

This work was supported by Vinnova grant ITEA3-
17002 (AutoDC).

1 Introduction

According to a 2021 study by Koot and Wijnhoven [1]
the total worldwide energy consumption of Data Centers
(DCs) is expected to grow from 286 TWh in 2016, mean-
ing around 1.15% of global energy consumption, to about
321 TWh or 1.86% in 2030. To describe how efficiently
a DC uses energy, a metric called Power Usage Effective-

ness (PUE) is commonly used, which is the ratio of total
facility energy usage over Information Technology (IT)
equipment energy. In a 2016 study by Ni and Bai [2]
where 100 DCs were examined, their PUEs were found
to range from 1.33 to 3.85, with an average of 2.13, thus
showing an overhead of more than 100%. The same study
also found that the air conditioning systems used on av-
erage 38% of the total energy, showing that optimization
of cooling systems is important for achieving more sus-
tainable DC operations.

The thermodynamic behavior of DC and the impact
of cloud services are extremely complex. Often, tradi-
tional air conditioning systems are tuned using heuristics
that may not capture the full dynamics of the systems.
This may result in inefficient operations and suboptimal
cooling end energy usage. In this paper, we propose an
adaptive air conditioning control strategy for DCs using
Reinforcement Learning (RL).

Reinforcement Learning (RL) is an area of machine
learning where an agent is interacting with an environ-
ment by selecting an action and receiving a reward. The
objective is to learn a policy that maximizes the cumu-
lative reward. RL agents learn by doing, and often fail
multiple times. Exploration is an important element of
training an RL agent. In this process, the agent tries out
different actions, many leading up to bad system states.
Deploying an RL agent on a real DC is typically not fea-
sible since it could cause real damage. To this end we
created a realistic digital twin of the DC based on Com-
putational Fluid Dynamics (CFD) for training of the RL
agent. The goal is to create a controller with more ther-
mal awareness, allowing for more energy-efficient opera-
tion.

Major challenges in implementing an RL agent for DC
control are the large state space created by the number
of individual server temperatures, the delayed rewards,
the noise from server load balancing, and the changing

1



outdoor temperatures. The challenges are approached by
both allowing more sensing, but then also introducing
initial structure and transformations in the networks to
reduce the data complexity.

The main contribution of this paper is the design of
an RL agent that outperforms current best practices. It
also shows the benefit of an approach that can learn over
time and be adaptive to changing circumstances. Further-
more, the viability of using complex simulation models for
training is explored, although verifying the agent on a real
system remains as future work.

The rest of the paper is laid out as follows. Section 2
describes previous work in both DC modeling and con-
troller optimization of DC cooling systems. The simu-
lation model used for training is presented in Section 3.
Section 4 gives a brief introduction to RL, the specific
algorithm used in this work. Section 5 explains the ex-
perimental setup for the model and agents used. Results
are presented in Section 6 and compared to two baseline
algorithms. In Section 7, we reflect on what benefits this
method could bring, as well as possible directions for fu-
ture work.

2 Related work

2.1 DC modeling

A compact model for the heat flow in a DC with a chilled-
water cooling system was proposed by VanGilder et al.
in 2018 [3]. It included discretized numerical models for
heat sources (servers) and cooling by assuming a simple
counter-flow heat-exchanger, which alternatively can be
replaced by a quasi-steady-state model for applications
when accuracy can be traded for model simplicity.

This compact model is developed further by Healey
et al. in 2018 [4] that adds components for the room,
plenum, walls, floor, and ceiling to better represent the
complete thermal mass of a DC.

Training RL agents on real systems often pose many
problems and is commonly done in simulation instead.
EnergyPlus [5] is one such simulation tool that can
be used to simulate Heating, Ventilation and Air-
Conditioning (HVAC) systems in buildings as an aid in
training RL agents [6]. It has also been used to simulate
DCs for training RL agents to minimize cooling energy
by finding optimal facilities setpoints [7].

The proposed CFD method used in this paper allows for
fast simulations in an interactive fashion, which is suitable
for use in an RL training scenario. The method can also

handle transient changes in boundary conditions, which
was not possible with most earlier approaches.

This work is similar to the work of Van et al. [8] in that
both use complex models to train an RL agent offline (i.e.
not on the real process), and the goal is to optimize en-
ergy consumption. The setups are slightly different, in [8]
a solely free-cooling approach is used, while this paper em-
ploys a model which switches between compressor-cooling
and free-cooling depending on setpoints. This paper also
utilizes RL methods designed to do updates in a more
stable and robust way with the intention to continue up-
dating the agent when running on a real process, which
should allow for a more adaptive agent.

2.2 DC control

With the increasing number of DCs in the world, the in-
terest in optimizing energy consumption is growing. Cool-
ing systems, though not the largest contributor, use a
considerable amount of energy and is one area that has
seen a lot of work lately.

It is not uncommon to find DC operators relying upon
manually tuning the cooling systems and running a simple
feedback loop for the fans to keep the cold aisle temper-
ature at a constant value.

Using Machine Learning (ML) for DC control is not a
novel idea, and has been used both as an aid to the human
operators or as an independent controller. In work from
Google presented in [9] a supervised learning approach is
designed to predict the PUE based on multiple different
sensors in the DC. This is then used by the operators
to predict which configuration would result in the lowest
PUE. However, it does not explicitly select and apply
actions, as done in this paper.

In recent literature, there have been two main ap-
proaches for the cooling optimization problem when it
comes to actual control of the DC. These are either using
Model Predictive Control (MPC) and data-driven model-
ing or training an RL agent. In 2017, Lucchese et al. [10]
created a CFD based model for which they found the
parameters using data-driven methods. In 2018 Lazic et
al. [11] estimated a linear model from data with only small
amounts of knowledge imposed to create sparsity in the
model. Both the above works implement an MPC using
their model to control the cooling equipment. The pro-
posed RL based method offers an adaptive approach that
will learn and improve over time.

In a 2021 survey by Zhang et al. [12] they compare
methods for MPC with RL. The main differences between

2



these come down to MPC needing a model and not being
adaptive by itself, while RL is often model-free, adaptive,
but often not as stable and can converge slowly.

In 2020, Van et al. [13] model the gas-vapour mixtures
of a DC. This was combined with a Neural Network (NN)
model that estimates power consumption and is trained
to match real data. The combined model is then used to
train an RL agent on a discretized subset of the action
space. In previous work by the same authors [8] they
use the same model and compare a MPC approach to
the training of an RL agent. They conclude that one big
disadvantage of the MPC approach is the much higher
computational cost for evaluating which action to take.

Townend et al. [14] presented a scheduler that takes
multiple levels of infrastructure into account when dis-
tributing containers on a Kubernetes cluster. Baek et
al. [15] use RL to balance workloads over heterogeneous
servers while optimizing throughput and energy usage.
This agent work does not explicitly issue actions for the
cooling equipment. In [16] we used holistic control strat-
egy which combined cloud workload scheduling with cool-
ing system control to minimize energy usage was pre-
sented. The difference compared to the work in this pa-
per is that a much simpler simulation model was used.
However, this simple model was also used in this paper
to search for suitable hyperparameters for the training of
the RL agent.

3 The DC simulation model
The DC CFD model used in this work was first presented
by Sjölund [17] and defines three-dimensional boundary
conditions for the room, servers, and Computer Room Air
Handler (CRAH) units. A conceptual schematic of the
heat rejection is shown in Fig. 1 where the different parts
are modeled using different strategies. The "IT space"
in Fig. 2 is modeled with an CFD method called Lattice
Boltzmann Method (LBM), using the Single Relaxation
Time (SRT) algorithm [18].

Boundary conditions of the servers and cooling systems
are based on mathematical modeling of hardware such as
the power used by the IT load (cloud services), the fan
speeds, the vapor compression, and the heat exchangers,
which all affect the temperatures and air velocities.

3.1 Lattice Boltzmann method
The LBM in its simplest form is based on a uniform grid
of statistical distribution functions (DFs), called lattice

sites, representing density and velocity of fluid particle
groups affected by different forces. Evolution of fluid flow
over time is computed using the discrete lattice Boltz-
mann equation

f(x⃗+ e⃗∆t, t+∆t) = f(x⃗, t) + Γ(f(x⃗, t)) + F∆t, (1)

where f is the distribution function of density, represent-
ing convection and diffusion, x⃗ is displacement in space,
∆t is the time step, Γ is the collision term and F is a
body force perturbation.

In the model, the density and velocity directions in each
lattice site are discretized in 3D space, see Fig. 3. The
collision term Γ in (1) the Bhatnagar-Gross-Krook (BGK)
employs a single relaxation time τ to return the perturbed
system into equilibrium, by

Γ(f(x⃗, t)) = −∆t

τ
(f(x⃗, t)− feq(x⃗, t)) . (2)

The function feq is the equilibrium distribution for veloc-
ity.

ρ(x⃗, t) =

Q∑
i=0

fi(x⃗, t) and u⃗(x⃗, t) =
1

ρ

Q∑
i=0

fi(x⃗, t)e⃗i.

Buoyancy effects from natural convection are imple-
mented using the Boussinesq approximation,

Fi = ± g⃗β(T − T0)

2
,

where the thermal expansion coefficient β is constant at
reference temperature T0 and g⃗ is gravitational accelera-
tion. This force works along the directions aligned with
gravity (e⃗5 and e⃗6 in Fig. 3).

For simulating thermal evolution, a separate lattice Ti

is used. The velocity lattice affects the temperature lat-
tice through advection, while the temperature affects ve-
locity through buoyancy. Its evolution is described as [18]

Ti(x⃗+ e⃗i∆t, t+∆t) = Ti(x⃗, t)−
∆t

τT
(Ti(x⃗, t)− T eq

i (x⃗, t)) ,

where T eq
i (x⃗, t) is the equilibrium DF and τT the relax-

ation time.

3.2 Turbulence modeling
Turbulence was modeled by Large Eddy Simulation (LES)
and the turbulent eddy viscosity is calculated as

νt =
1

6

√
ν20 + 18C2

s∆
2
√

SαβSαβ

3



Figure 1: Conceptual heat rejection schematic of the physical model.

3.0 m

4.9 m

7.0 m

From Heat
Exchangers

To Heat
Exchangers

Figure 2: The idealized hot and cold flows in the DC.
This corresponds to the "IT space" in Fig 1.

~e5

~e1

~e3

~e0
~e2

~e4

~e6
~e14

~e15
~e5

~e18

~e11

~e7
~e1

~e3

~e0~e10
~e2

~e8

~e4

~e12
~e16

~e6
~e17

~e13

~e9

z
y
x

Figure 3: The lattice sites are used to discretize the room
in Fig. 2 in order to model flow along the directions e⃗i.

where ν0 is the kinematic viscosity for no turbulence
model, Cs = 0.1 was chosen as the Smagorinsky constant,
filter cutoff length ∆ is set to unity and Sαβ is the local
stress tensor [18].

The relaxation time in (2) is then replaced with

τ = 3ν + 0.5 = 3(ν0 + νt) + 0.5.

3.3 Boundary conditions

Three different types of boundary conditions define the
three-dimensional model. The solid surfaces are defined
using a no-slip condition that imposes zero velocity. This
is implemented by reverting particles leaving the domain
in the opposite directions.

The inlet/outlet conditions, which specify a constant
flow velocity u⃗0 or temperature T0 in the direction of the
surface normal n⃗, were set using the corresponding equi-
librium DF.

Finally, the airflow into CRAHs and frontal server air
intakes were modeled using a zero-gradient boundary con-
dition, where the air was effectively removed from the sim-
ulation by setting the velocity and temperature gradients
to zero.

A model for the transient effects of a server’s thermal
mass is implemented based on VanGilder et al. [19]. The
effective temperature in the server is

Teff =

(
τ1

τ1 +∆t

)
T old
eff

+

(
∆t

τ1 +∆t

)
[Tamb +∆TIT ] ,

which along with ambient temperature Tamb and IT load

4



∆TIT it determines server exhaust temperature.

Tex = Tamb +∆TIT

+

(
τ2

τ1 +∆t

)[
T old
eff − Tamb −∆TIT

] (3)

Time constants τ1 and τ2 are approximated by

τ1 =
Mcpeff

hA
and τ2 =

Mcpeff

Qavgcpair

,

where M = 8 kg is the server mass, A = 0.15 m2 server
internal surface area, cpair = 1000 J/(kg·K) specific heat
capacity of air at 30°C, while cpeff

= 400 J/(kg·K) is over-
all specific heat and h = 40 J/(s·m2·K) overall effective
heat transfer coefficient. This resulted in time constants
of approximately 10 minutes and τ2 < τ1.

3.4 Server, CRAH, and compressor mod-
els

The models for the servers and cooling equipment are
based on similar ideas as in our previous work [16].

Individual servers s have IT loads generating heat with
an effect of ps, and a flow Qs cooling the server. Using
the volumetric heat capacity Cv = 1183 J/(m3·K), the IT
load referenced in (3) and (4) is

∆TITs
=

ps
CvQs

.

The CPU is the main part that needs to be cooled, and
its temperature is modeled to depend on the inlet tem-
perature TINs

as well as the IT load ∆TITs
. The new

temperature of the CPU is calculated as

TCPUs
= TINs

+R∆TITs
(4)

where R ≈ 3 is describes heat is removal from the CPU
and was estimated to make the simulations behave real-
istically. CPU temperature is used to update the future
flow for the using an integral controller

Qtarg
s = Qs +Ki(TCPUSP

− TCPUs)

where Qtarg
s is constrained by 0.001 < Qtarg

s < 0.04. The
controller was tuned to Ki ≈ −8·10−5 m3/(s·K) for a rea-
sonably quick response, and TCPUSP

= 60°C was chosen
as a stationary target temperature.

The cooling is modeled as shown in Fig. 1, where a
free-cooling heat exchanger is in series with a compres-
sor. If the outside air is cold enough, the dry-cooler is

sufficient, and otherwise the compressor is needed. The
dry-cooler allows removing heat corresponding to the dif-
ference in temperature between the CRAH inlets and the
outdoor temperature, and the remaining heat is then re-
moved using the compressor.

All the flows should follow fan affinity laws derived from
dimensional analysis, so the power will be cubic with re-
spect to the flow [20]. The flows in the cooling chain are
assumed to be proportional to the flow through the indi-
vidual CRAH units c, which then makes the total power
used for flows

pflow = Ksrv

360∑
s=1

Q3
s +Kcool

4∑
c=1

Q3
c (5)

where Ksrv = 7.9 · 105 Ws3/m9 is calculated to match
the specification on the fans and Kcool ≈ 80 Ws3/m9 is
estimated to cover all the flows in the cooling chain.

The compressor in the chiller will need to lower the heat
from the outdoor temperature TAMB to the setpoint tem-
perature TSP , and will do so with a coefficient of perfor-
mance KC ≈ 3. The total power used in the compressor
is then a sum over the power used to reduce each CRAH
to the corresponding setpoint temperature,

pcomp =
Cv

KC

4∑
c=1

max(0, Qc(TAMB − TSPc
). (6)

4 Reinforcement Learning
RL is an area of machine learning concerned with how
to find optimal ways of interacting with an environment.
The RL agent selects what action to take based on the
state of the system and observes how the environment
changes. It receives a reward signal for each applied ac-
tion. The goal is for the agent to learn to estimate the
value of different states and learn a policy that selects
actions that maximize the cumulative reward [21]. RL
has shown great promises in very complex scenarios, for
example, playing the board game Go [22], which were con-
sidered too computationally complex. Two distinguishing
features of RL are the trial-and-error search and the de-
layed reward. Some environments are more suitable for
trial-and-error than others. When it is not possible to
perform trial-and-error on a real system, like for a data
center, a high-fidelity simulation model is needed. The
delayed reward comes from the fact the value of an ac-
tion, for example, the value of placing a stone in Go, is
not evident until the game is finished. This means that an

5



agent has to play multiple games (episodes) to learn the
value of each state and action. The delayed reward makes
learning complex in RL. When controlling a datacenter,
there is no terminal state and no final accumulated re-
ward. We must instead rely on techniques that make no
assumptions about episodes.

Today, DC cooling systems are typically controlled us-
ing standard algorithms, e.g., PID controllers. A chal-
lenge in DC control design is the complexity of the dat-
acenter itself, composed of servers, routers, power distri-
bution units, etc., and the modeling of the thermal envi-
ronment. Machine learning offers the means to address
this by instead training a model. Using RL, it is possi-
ble to allow the agent to interact with the environment
to learn which actions to take. By giving the controller
more information and making it more adaptive, it is pos-
sible to find improved control strategies. In addition, an
RL agent can learn dynamically while interacting with
the environment and can thus be able to adapt to chang-
ing conditions, for example as the seasons change or as
hardware breaks down.

We will below give a brief background to our RL sys-
tem, and then later provide details on our implementation
in Section 5.

Fig. 4 visualizes the agent’s interaction with the envi-
ronment. The agent observes the state st and reward rt,
after which the agent’s policy π generates the next action
to take, at = π(st). The environment is stepped to for-
ward to t+ 1, resulting in a new observation of st+1 and
rt+1. The state st corresponds to temperature readings
and the actions at control the cooling equipment, i.e., the
CRAH units.

4.1 Reinforcement Learning Algorithm

Actor-Critics are a family of common algorithms in RL
where the agent consists of two parts, the actor that is
used to select an action and the critic that evaluates the
current state based on the expected reward. The actor
has a policy that generates an action distribution based on
the current state, from which the action is sampled at ∼
π(· | st). The critic estimates the value function V (st) =
Eπ

[∑
i γ

irt+i

]
, which is the discounted future value from

a state, where γ ∈ [0, 1] is a discount factor placing less
weight on future rewards since they are probably not as
reliable [21].

The Bellman equation is a recurrent relationship over
the value function, and this can be used for training. The
goal is that Vϕ(st) = rt+1+γVϕ(st+1) should hold, where

RL Agent

State

Action

Value
State st

State st+1

Reward rt

Reward rt+1

Action at

Datacenter

3.0 m

4.9 m

7.0 m

From Heat
Exchangers

To Heat
Exchangers

Figure 4: The RL agent observes the state and receives a
reward for time t, after which it decides on an action. In
the next step, it receives the new observation as well as a
reward describing the value of the new state of the DC.

Vϕ is the value function approximation parametrized by
ϕ. To achieve this the loss is defined as the mean squared
error of the difference between the two sides, also known
as the mean squared bellman error [21], which is approx-
imated by

LV (ϕ) =
1

N

N∑
i=1

(rti+1 + γVϕ(sti+1)− Vϕ(sti))
2. (7)

The policy is commonly trained to increase the prob-
ability of advantageous actions, but how this is achieved
varies a bit between algorithms. One way is to take the
gradient of πθ(at | st) with respect to θ, a parametriza-
tion of the policy function. The gradient is then weighted
based on both the probability of taking the action πθ(at |
st), and the advantage Ât of the action [21]. The ad-
vantage specifies how much better than expected an ac-
tion turned out to be, and can be estimated with Ât =
Vϕ(st+1) + rt+1 − Vϕ(st). Updating the policy using this
method will increase the probability of actions that are
estimated to be better than expected Ât > 0, while de-
creasing the probability when Ât < 0.

This work employs Proximal Policy Optimization
(PPO) [23], a type of actor-critic algorithm designed to

6



constrain the policy updates in an effort to make learn-
ing safer. It is implemented using constraints on qt(θ),
the ratio of the action probabilities between the updated
policy and the old policy.

qt(θ) =
πθ(at | st)
πθold(at | st)

The objective of the policy is to increase the probability
of taking good actions while decreasing the probability of
bad ones. Doing this without constraints would look like

L1(θ) = qt(θ)Ât.

To also implement constraints on the policy, a second
objective is defined to enforce 1 − ϵ ≤ qt(θ) ≤ 1 + ϵ for
some ϵ.

L2(θ) = max(1− ϵ,min(qt(θ), 1 + ϵ))Ât (8)

The actual objective for PPO is the minimum of these
two,

LPPO(θ) = Êt

[
min

(
L1(θ), L2(θ)

)]
, (9)

which should then stop gradients w.r.t to θ if qt(θ) is too
far from one, i.e. the policy changed too much.

The advantage Ât is estimated using Generalized Ad-
vantage Estimation (GAE) [24] which utilizes V (st) to
find a weighted sum of advantages over different horizons.

The end goal is to find a policy that maximizes the
probability of taking actions with high advantage.The
policy should be improved with each update, but it should
not change too much before the updated policy has been
tested in the environment.

A good change in the policy would be one where either
the action is better than expected Ât > 0 and the chance
of taking this action was increased qt(θ) > 1, or the action
is worse than expected Ât < 0 and the chance of taking
it was decreased qt(θ) < 1. If the policy was changed in
such a way for a batch of data, and qt(θ) differs from 1
by more than ϵ, then L2(θ) < L1(θ) and the objective
becomes (1 ± ϵ)Ât for that batch. The gradient of this
objective is zero, so this batch will not affect the policy
update. If, on the other hand, the policy has regressed
in performance, then L1(θ) ≤ L2(θ) and the full gradient
step will always be taken. This results in a larger effort
towards fixing the policy for data that was made worse
compared to the effort for further improving the policy
for data that is already improved.

The value function used to estimate Ât is trained using
a loss similar to the one in (7).

Figure 5: The experimental pod at RISE that was mod-
eled in the simulations.

5 Evaluation

In this section, the proposed approach is evaluated using
simulations of a DC pod. The modeled DC pod contained
360 servers distributed inside twelve racks placed in a hot
aisle configuration depicted in Fig. 2. The pod has two
pairs of CRAHs on opposite sides of the room, supplying
the servers with cold air. The actual experimental DC
pod is found at the RISE ICE facility in Luleå, Sweden,
and is shown in Fig. 5. All the code, except for the CFD
simulations, are publicly available and can be found at
Github [25].

The actual training was done using a set of Nvidia V100
GPU clusters running Ray [26]. The GPUs were used to
speed up both the training of the RL agents as well as
the CFD simulations. Ray has excellent support for large
numbers of parallel jobs on distributed platforms, as well
as managing resources such as Graphical Processing Units
(GPUs).

5.1 The simulation setup

The simulations are configured to trigger interesting sce-
narios. The outdoor temperatures and workloads are cho-
sen to put the DC in a state where there are interest-
ing decisions to make. This happens when the outdoor
temperature is high enough that the compressor is often
needed, but the workload is not high enough to require
constant max cooling.

Fig. 6 has a linear interpolation over an hourly average
of the temperature in Luleå, Sweden, retrieved from the
local weather forecast SMHI [27] and is the temperature
used for the simulation.

7



0 0.5 1 1.5 2 2.5 3 3.5

15

20

25

Time [Days]

Te
m

pe
ra

tu
re

[C
]

Outdoor temperature

Figure 6: Temperature data for Luleå from SMHI [27]
used in simulation.

The workload model is designed to represent different
kinds of services found in a datacenter. This includes
different kinds of cloud services, e.g., IaaS with virtual
machines or containers being allocated or more short run-
ning jobs in the shape of FaaS or serverless, but also more
traditional HPC style jobs. The workload model consists
of a job type with an expected duration, which can be ei-
ther static or given as a statistical distribution. Each job
is associated with a given workload, expressed in terms of
power consumption. The energy requirement of each job
is static in the evaluation, but this is trivial to extend.
In the simulation, each job has a constant load of 20 W
and a duration of 540 seconds, and for each step of the
simulation, there is a 50% probability of a job arriving.

Jobs are modeled to be received by a load balancer
that distributes them over servers by the current lowest
load. This will give a reasonably even distribution over
the servers. This simple workload model with constant
load and duration is motivated by job scheduling not be-
ing part of the algorithm at the moment.

The specific values for the jobs in the simulation were
chosen to keep the probability and load large enough for
changes to happen and matter, while also having an av-
erage load that put the DC in a state where there were
interesting decisions to make. This choice was made to
help the agent learn faster by exciting the state of the
environment.

The state consists of room measurements of the outlet
temperatures TOUTs and loads ps over the 360 servers, as
well as the outdoor temperature TAMB .

st = [TOUT1
, . . . , TOUT360

, p1, . . . , p360, TAMB ] (10)

The actions are continuous flow and temperature set-

points for each of the 4 CRAH.

at = [Q1, . . . , Q4, TSP1
, . . . , TSP4

] (11)

The reward from the environment is defined as a
weighted sum over all the negative costs in the environ-
ment. The costs are the cooling energy and an artificial
cost based on a common standard to keep cold isles below
27°C.

rt = −C1

(
pflow + pcomp

)
∆t︸ ︷︷ ︸

Cooling energy

−C2

N∑
s

max(0, TINs − 27)︸ ︷︷ ︸
Cold aisle threshold

(12)
The effects pflow (5) and pcomp (6) gives the energy, where
∆t = 1 since the environment is simulated in steps of one
second. The weights C1 = 10−1 J−1 and C2 = 1 K−1

were calibrated so that not staying under the threshold
for the cold aisle is punished quite hard. This will help the
agent to learn this objective first, and once this objective
is (mostly) fulfilled it will have very little effect on the
final reward, so the agent can focus on the energy expen-
diture. These weights are also used to scale the reward
to “reasonable” values, a common trick that can have a
large effect on training.

The simulation model is quite resource intensive, and it
is here the GPU requirement comes in. Having a cluster
to run multiple environments in parallel to collect data
for the agent made the training run much faster.

5.2 Baseline agents
As mentioned previously, it is not uncommon to find very
simple strategies that only aim to keep a constant cold
aisle temperature without taking any other external fac-
tors into account.

This strategy was used as a baseline to compare against,
with two slightly different versions of it to capture the dif-
ferent objectives. Both keep a constant flow and temper-
ature coming out of the CRAH with the single difference
that the temperature set-point is either 18°C (B18) or
22°C (B22).

The baseline with 18°C set-point is very good at keeping
it cold, and will never break the cold-aisle threshold, but
it will run the compressor more often.

The baseline with 22°C set-point is much more energy-
efficient, but will sometimes fail to adhere to the cold aisle
threshold.

Neither of these is likely an optimal constant valued
strategy, but they are each very good at one of the two

8



Table 1: Parameters for PPO training and model,
see Fig. 7 for model layout.

Name Value
Adam stepsize 5 · 10−5

Train batch size 1600
Minibatch size 128
Number of epochs 30
Discount (γ) 0.99
GAE parameter 1.0
Clipping parameter 0.3
VF clipping 1000.0
KL target 0.01
Hidden layer size 64
Activation function elu

objectives while still being very similar strategies. Using
both as a benchmark for the RL agent should then give
a good comparison of how well it fares in each objective.

5.3 Reinforcement Learning agent

The agent is an implementation of PPO [23] from Ray’s
RLlib [28]. PPO was chosen partly for its stable policy
updates, something that is desirable for an adaptive algo-
rithm that should be trained and updated while running
on a real system. PPO is an on-policy algorithm that
commonly is trained by having it interact with multiple
parallel environments to collect more and varied data.
We use eight parallel environments running with slightly
different initial conditions.

Successfully training RL agents can require a bit of
trial-and-error. It can for example be beneficial to start
in a simpler environment to get early signs of if it might
work, and is one reason behind the simple environment
in [16].

Doing hyperparameter tuning is also important, and
the parameters presented in Table 1 are a mix of RLlib
defaults, things tuned on the simpler environment (since
the simulation was a few orders of magnitude faster) and
a few that were tuned in the environment presented here.

All states and actions were also normalized to around
the interval [−1, 1], common practice in many ML appli-
cations. This can help with gradient updates by making
the gradients more similar, and thus the steps will not be
dominated by one direction.

The model used for πθ and Vϕ is presented in Fig. 7
and is made up of policy and value networks, both using
the input defined in (10).

Server loads

Outlet
temperatures

Outdoor
temperature

. . .

. . .

. . .

Mean over
racks

Mean over
servers D

en
se

la
ye
r

D
en

se
la
ye
r

D
en

se
la
ye
r

A
ct
io
n
o
u
tp
u
t

V
a
lu
e
o
u
tp
u
t

Figure 7: The network structure used for the agent. The
same input is used in both networks, see (10). The pol-
icy has two layers, the first one with transformations to
reduce the space and then a single dense layer before
the output layer. The outputs of the policy network are
means and standard deviations for normal distributions
for each action, which are then used for sampling. The
value network has two dense layers and outputs the esti-
mated future reward.

The policy network takes the state and generates an ac-
tion at = π(st). This network has transformations in the
initial layer creating averages over the server states, both
over all servers and over servers within each rack. The
averages are then fed through a single dense layer of 64
units with elu activation. The output layer has two val-
ues for each output dimension, this is since the policy is
stochastic internally and as such needs a mean and stan-
dard deviation to generate each output distribution. The
action is then sampled from the resulting distribution.

The value network takes the full state through two
dense layers of 64 units, each with elu activation func-
tions. The condensed state is not used mainly based on
hyperparameter tuning, though it also seems reasonable
that the value network might need more precise knowl-
edge over individual servers since, for example, the cubic
cost from (5) will allow the distribution of a load within
a rack to have an impact on the power used for the server
fans which affects the reward.

The RL agent starts interacting with the environment
without any previous training and continues to learn
throughout the simulation.

Entropy regularization is not used, so the agent will
explore a lot in the beginning, since the policy is stochas-
tic by design, but later converge towards something more

9



0 1 2 3

−40

−20

0

Time [Simulated days]

R
ew

ar
d

Reward over time

B18 B22 RL

Figure 8: The reward is a combination of the cooling energy cost and the cold aisle loss, and is the optimization
target for the RL agent.

deterministic where the collected knowledge can be ex-
ploited.

6 Results

In Fig. 8 the reward for all three algorithms are com-
pared, and the RL agent generally achieves the highest
reward. When the outdoor temperature in Fig. 6 is below
18°C, and hence allows for running the CRAH at mini-
mum temperature with no compressor, the 18°C baseline
algorithm is more efficient. After more training, the RL
agent might also learn to reduce the CRAH temperature
to 18°C in these cases, but it is not unexpected that it
is still a bit careful since lower temperatures can incur a
large energy cost from the compressor.

The total reward is based on both the cooling power
and the cold aisle loss. The RL agent matches up quite
well with the 22°C baseline while outperforming the 18°C
baseline when it comes to energy utilization, see Fig. 9.
But looking at the cold aisle loss in Fig. 10, it is apparent
that the 22°C baseline is not managing to keep the cold
aisle below the threshold for all servers as well as the other
two algorithms.

One thing to note is that the peaks in cooling power
from Fig. 9 happen in conjunction with the peaks in tem-
perature, Fig. 6. These peaks are from the compressor
needing to run more when the outdoor temperature is
high relative to the CRAH setpoint, thus adding a sub-
stantial energy cost.

In Fig. 11 the inlet temperatures for all 360 servers are
plotted for the three algorithms. Here we see how the RL
agent tries to optimize against the boundary that was set,

0 0.5 1 1.5 2 2.5 3 3.5

0

10

20

Time [Simulated days]

Po
w

er
[k

W
]

Total cooling power

B18 B22 RL

Figure 9: The total cooling power is the combination of
the power consumption of all flows (5) and the power con-
sumption of the compressor (6). The RL agent is similar
to the 22°C baseline, while managing to keep the cold
aisle below the threshold much better in Fig. 10.

10



0 0.5 1 1.5 2 2.5 3 3.5

0

2

4

·10−2

Time [Simulated days]

L
os

s

Cold isle loss

B18 B22 RL

Figure 10: The cold aisle loss for each agent as defined
in (12), the 22°C baseline does not manage to keep the
server inlets below the threshold.

0 1 2 3

20

25

30

In
le

t
te

m
pe

ra
tu

re
[C

]

B18

0 1 2 3

Time [Simulated days]

B22

0 1 2 3

RL

Figure 11: Temperature distribution of server inlets over
the three algorithms. The red line is the 27°C threshold
used in the loss calculations.

and while the 22°C baseline sits in a very similar space it
has a few servers that violate the threshold by a couple of
degrees. These few warmer servers turn out to be in the
upper parts of the rack, which seems reasonable, since if
there is any re-circulation of hot air from the server it will
come from above in this setup. The RL agent manages to
balance the CRAH setpoints better to avoid these outliers
and make the server inlets stay under the threshold.

The PUE is plotted in Fig. 12 and given that we are
running with a constant arrival rate for the workload,
it is no surprise that it will have a similar shape to the
cooling power in Fig. 9. Again, it is clear that the 18°C
baseline is using most power while the other two have
similar efficiency, but the RL agent manages to do so while
also keeping to the cold aisle thresholds much better than

0 0.5 1 1.5 2 2.5 3 3.5

1

1.1

1.2

1.3

Time [Simulated days]

PU
E

PUE

B18 B22 RL

Figure 12: PUE for the RL agent and the two baselines.
The RL agent is similar to the 22°C baseline, while man-
aging to keep the cold aisle below the threshold much
better in Fig. 10.

0 0.5 1 1.5 2
0

0.1

0.2

0.3

Time [Simulated days]

L
os

s
Cold isle loss for CRAH malfunction

B18 B22 RL

Figure 13: CRAH0 loses efficiency after one day and the
RL agent adapts to the changing conditions.

the 22°C baseline.
In addition to running the DC under normal conditions,

experiments were also conducted to show how the agent
continuously adapts to disturbances. In this case, an inef-
ficiency was introduced in CRAH0, resulting in the CRAH
operating with only 80% of the original airflow while us-
ing the same power. Fig. 13 shows how the cold aisle
threshold is temporarily broken by the RL agent when
the inefficiency is introduced at day one, and how it man-
ages to come back to a similar state as before within half
a day. How fast this is can be tuned with learning rates
for the agent, and here we went for a rather slow and
careful approach to ensure the agent didn’t change too
quickly with the new environment. Fig. 14 shows how
CRAH0 loses efficiency, and how the flow setpoint is in-

11



0 0.5 1 1.5 2

1.4

1.6

1.8

2

2.2

Time [Simulated days]

Fl
ow

[m
3
]

CRAH flow for CRAH malfunction

CRAH0 CRAH1

Figure 14: CRAH0 loses efficiency after one day, and the
RL agent increases the flow of both CRAH0 and CRAH1

to make up for parts of the lost efficiency. This is without
the agent being told that those CRAHs share an aisle.

creased to make up for parts of the lost flow. There is
also the neighboring CRAH1, sharing the same cold aisle,
which also increases its flow a bit to support the slightly
broken CRAH0. This is done without the RL agent get-
ting any information that these CRAH units are in the
same aisle and can support each other, and can be done
thanks to adaptive controllers that are aware of more of
the surrounding state than traditional controllers are.

7 Conclusion

This work shows that an RL agent can learn well in the
complex environment of a DC and illustrates how complex
models could be used for initial training to not put a DC
under strain in the initial phase. It also shows that the
RL agent can adapt to problematic situations that occur
over time.

The agent is also interacting with the environment ev-
ery second, this is a high rate compared to many other
works in similar fields where the sampling rate can be any-
where from tens of seconds to tens of minutes. One could
argue that updating the CRAH every second is certainly
not needed, but the problem with slower sampling is that
then something might happen right after taking an action
and the algorithm will not react to that for a full step.
So it is advantageous to have a faster interaction to allow
the agent to react faster, even if most of the interactions
will just repeat the last action. This is also a reason to
use RL agents compared to MPC, since running an MPC
on a model of this complexity every second would likely

not be a very viable solution.
The weighting between the two objectives, cooling en-

ergy and cold aisle loss, could be changed and would have
changed the final reward. What is shown is that based on
the current weighting, the RL agent finds a policy that is
more optimal than the baseline algorithms, one of which
is perfect in cold aisle temperature and another which is
very good with energy consumption.

7.1 Future work
The next step is to extend the agent to also handle the
load-balancing to further improve the energy efficiency.
This approach was demonstrated for a smaller DC model
in [16].

Validating the agent on a real DC after pre-training on
a simulated model of said DC would be the next step. The
model used in the simulation is of a real module located
at RISE in Luleå. This module is equipped with sensors
to allow detailed monitoring of temperatures.

References
[1] Martijn Koot and Fons Wijnhoven. Usage impact

on data center electricity needs: A system dynamic
forecasting model. Applied Energy, 291:116798, 2021.

[2] Jiacheng Ni and Xuelian Bai. A review of air condi-
tioning energy performance in data centers. Renew-
able and Sustainable Energy Reviews, 67:625–640,
2017.

[3] James W. VanGilder, Christopher M. Healey,
Michael Condor, Wei Tian, and Quentin Menusier.
A compact cooling-system model for transient data
center simulations. In 2018 17th IEEE Intersociety
Conference on Thermal and Thermomechanical Phe-
nomena in Electronic Systems (ITherm). IEEE, may
2018.

[4] C.M. Healey, J.W. VanGilder, M. Condor, and
W. Tian. Transient data center temperatures after a
primary power outage. pages 865–870, 2018.

[5] Drury B. Crawley, Linda K. Lawrie, Frederick C.
Winkelmann, W. F. Buhl, Y. Joe Huang, Cur-
tis O. Pedersen, Richard K. Strand, Richard J.
Liesen, Daniel E. Fisher, Michael J. Witte, and Ja-
son Glazer. EnergyPlus: Creating a new-generation
building energy simulation program. Energy and
Buildings, 33(4):319–331, April 2001.

12



[6] Bocheng Li and Li Xia. A multi-grid reinforcement
learning method for energy conservation and comfort
of HVAC in buildings. In 2015 IEEE International
Conference on Automation Science and Engineering
(CASE), pages 444–449, August 2015.

[7] Yuanlong Li, Yonggang Wen, Dacheng Tao, and
Kyle Guan. Transforming Cooling Optimization for
Green Data Center via Deep Reinforcement Learn-
ing. IEEE Transactions on Cybernetics, 50(5):2002–
2013, May 2020.

[8] Duc Van Le, Yingbo Liu, Rongrong Wang, Rui
Tan, Yew-Wah Wong, and Yonggang Wen. Con-
trol of Air Free-Cooled Data Centers in Tropics via
Deep Reinforcement Learning. In Proceedings of the
6th ACM International Conference on Systems for
Energy-Efficient Buildings, Cities, and Transporta-
tion, BuildSys ’19, pages 306–315, New York, NY,
USA, November 2019. Association for Computing
Machinery.

[9] Jim Gao. Machine learning applications for data cen-
ter optimization, 2014.

[10] Riccardo Lucchese, Jesper Olsson, Anna-Lena Ljung,
Winston Garcia-Gabin, and Damiano Varagnolo.
Energy savings in data centers: A framework for
modelling and control of servers’ cooling. IFAC-
PapersOnLine, 50(1):9050–9057, 2017.

[11] Nevena Lazic, Craig Boutilier, Tyler Lu, Eehern
Wong, Binz Roy, MK Ryu, and Greg Imwalle. Data
center cooling using model-predictive control. In Ad-
vances in Neural Information Processing Systems,
volume 31. Curran Associates, Inc., 2018.

[12] Qingxia Zhang, Zihao Meng, Xianwen Hong, Yuhao
Zhan, Jia Liu, Jiabao Dong, Tian Bai, Junyu Niu,
and M. Jamal Deen. A survey on data center cool-
ing systems: Technology, power consumption mod-
eling and control strategy optimization. Journal of
Systems Architecture, 119:102253, October 2021.

[13] Duc Van Le, Rongrong Wang, Yingbo Liu, Rui Tan,
Yew-Wah Wong, and Yonggang Wen. Deep Re-
inforcement Learning for Tropical Air Free-Cooled
Data Center Control. arXiv:2012.06834 [cs, eess],
December 2020.

[14] P. Townend, S. Clement, D. Burdett, R. Yang,
J. Shaw, B. Slater, and J. Xu. Invited paper: Improv-

ing data center efficiency through holistic schedul-
ing in kubernetes. In 2019 IEEE International
Conference on Service-Oriented System Engineering
(SOSE), pages 156–15610, 2019.

[15] J. Baek, G. Kaddoum, S. Garg, K. Kaur, and
V. Gravel. Managing Fog Networks using Reinforce-
ment Learning Based Load Balancing Algorithm. In
2019 IEEE Wireless Communications and Network-
ing Conference (WCNC), pages 1–7, April 2019.

[16] Albin Heimerson, Rickard Brännvall, Johannes
Sjölund, Johan Eker, and Jonas Gustafsson. To-
wards a Holistic Controller: Reinforcement Learn-
ing for Data Center Control. In Proceedings of the
Twelfth ACM International Conference on Future
Energy Systems, 2021.

[17] Johannes Sjölund. Real-time thermal flow predic-
tions for data centers: Using the lattice boltzmann
method on graphics processing units for predicting
thermal flow in data centers, 2018.

[18] Nicolas Delbosc. Real-time simulation of indoor air
flow using the lattice boltzmann method on graph-
ics processing unit. University of Leeds, September
2015.

[19] James Vangilder, Christopher Healey, Zachary
Pardey, and X. Zhang. A compact server model for
transient data center simulations. ASHRAE Trans-
actions, 119:358–370, 01 2013.

[20] E. Buckingham. On physically similar systems’ illus-
trations of the use of dimensional equations. Physical
Review, pages 345–376, 1914.

[21] Richard S. Sutton and Andrew G. Barto. Reinforce-
ment Learning: An Introduction. The MIT Press,
second edition, 2018.

[22] David Silver, Aja Huang, Chris J. Maddison, Arthur
Guez, Laurent Sifre, George van den Driessche, Ju-
lian Schrittwieser, Ioannis Antonoglou, Veda Pan-
neershelvam, Marc Lanctot, Sander Dieleman, Do-
minik Grewe, John Nham, Nal Kalchbrenner, Ilya
Sutskever, Timothy Lillicrap, Madeleine Leach, Ko-
ray Kavukcuoglu, Thore Graepel, and Demis Hass-
abis. Mastering the game of Go with deep neural
networks and tree search. Nature, 529(7587):484–
489, January 2016.

13



[23] John Schulman, Filip Wolski, Prafulla Dhariwal,
Alec Radford, and Oleg Klimov. Proximal Policy Op-
timization Algorithms. arXiv:1707.06347 [cs], 2017.

[24] John Schulman, Philipp Moritz, Sergey Levine,
Michael Jordan, and Pieter Abbeel. High-
Dimensional Continuous Control Using Generalized
Advantage Estimation. arXiv:1506.02438 [cs], Octo-
ber 2018.

[25] Albin Heimerson. Rldc rafsine, December 2021.
https://github.com/albheim/rldc_rafsine/
tree/ccgrid22.

[26] Philipp Moritz, Robert Nishihara, Stephanie Wang,
Alexey Tumanov, Richard Liaw, Eric Liang, Melih
Elibol, Zongheng Yang, William Paul, Michael I. Jor-
dan, and Ion Stoica. Ray: A Distributed Framework
for Emerging AI Applications. arXiv:1712.05889 [cs,
stat], 2018.

[27] Smhi (swedish meteorological and hydrological insti-
tute). https://www.smhi.se/data/meteorologi/
ladda-ner-meteorologiska-observationer#
param=airtemperatureInstant,stations=all,
stationid=162870. Accessed: 2021-09-28.

[28] Eric Liang, Richard Liaw, Philipp Moritz, Robert
Nishihara, Roy Fox, Ken Goldberg, Joseph E. Gon-
zalez, Michael I. Jordan, and Ion Stoica. RLlib: Ab-
stractions for Distributed Reinforcement Learning.
arXiv:1712.09381 [cs], 2018.

14

https://github.com/albheim/rldc_rafsine/tree/ccgrid22
https://github.com/albheim/rldc_rafsine/tree/ccgrid22
https://www.smhi.se/data/meteorologi/ladda-ner-meteorologiska-observationer#param=airtemperatureInstant,stations=all,stationid=162870
https://www.smhi.se/data/meteorologi/ladda-ner-meteorologiska-observationer#param=airtemperatureInstant,stations=all,stationid=162870
https://www.smhi.se/data/meteorologi/ladda-ner-meteorologiska-observationer#param=airtemperatureInstant,stations=all,stationid=162870
https://www.smhi.se/data/meteorologi/ladda-ner-meteorologiska-observationer#param=airtemperatureInstant,stations=all,stationid=162870

	Introduction
	Related work
	DC modeling
	DC control

	The DC simulation model
	Lattice Boltzmann method
	Turbulence modeling
	Boundary conditions
	Server, CRAH, and compressor models

	Reinforcement Learning
	Reinforcement Learning Algorithm

	Evaluation
	The simulation setup
	Baseline agents
	Reinforcement Learning agent

	Results
	Conclusion
	Future work


