
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Automatic Differentiation over Fluid Models for Holistic Load Balancing

Heimerson, Albin; Ruuskanen, Johan; Eker, Johan

Published in:
2022 IEEE International Conference on Autonomic Computing and Self-Organizing Systems Companion
(ACSOS-C)

DOI:
10.1109/ACSOSC56246.2022.00020

2022

Link to publication

Citation for published version (APA):
Heimerson, A., Ruuskanen, J., & Eker, J. (2022). Automatic Differentiation over Fluid Models for Holistic Load
Balancing. In 2022 IEEE International Conference on Autonomic Computing and Self-Organizing Systems
Companion (ACSOS-C) (pp. 13-18) https://doi.org/10.1109/ACSOSC56246.2022.00020

Total number of authors:
3

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://doi.org/10.1109/ACSOSC56246.2022.00020
https://portal.research.lu.se/en/publications/ccdaf1d2-1d2d-45b9-b1c1-4c86fe8ca45f
https://doi.org/10.1109/ACSOSC56246.2022.00020


Automatic Differentiation over Fluid Models for Holistic Load Balancing

Albin Heimerson, Johan Ruuskanen, Johan Eker

Abstract

Microservice applications consist of a set of smaller ser-
vices interacting in a graph structure to deliver the full
application. Jobs will traverse this graph in different
paths, both depending on the type of job, but also de-
pending on the current load of different service replicas.
Different paths will incur different scenario-specific costs,
dependent on, e.g., deployment and the underlying cloud
system. In this paper, we demonstrate how automatic dif-
ferentiation over data-driven fluid models can be used to
optimize a running microservice application, by designing
a load balancer that minimizes some holistic cost function
under response time constraints. First, a fluid model de-
scribing the load in each service is learned through pars-
ing tracing data from the application. We introduce a
cost function based on performance metrics such as mean
queue length and response time percentiles, all retrieved
from the fluid model. By using automatic differentia-
tion on this cost function, we can find the gradient of
the cost with respect to the load balancing parameters.
This enables us to update these parameters, using e.g.
gradient descent, in a manner that steers the application
towards a more optimal setting. In an experimental eval-
uation on a small microservice application running on Er-
icsson Research Datacenter, it is shown that the method
can quickly step towards optimal values while supporting
complicated cost functions such as solutions to a system
of ordinary differential equations.

1 Introduction

Cloud computing started with server consolidation sce-
narios where servers could be seamlessly migrated to vir-
tual machines hosted in public datacenters. Since then, it
has grown into a large ecosystem with a wide range of ser-
vices such as managed databases, IoT platforms, machine
learning frameworks, etc.

Recently, container technologies have gained popularity
as a more lightweight alternative to virtual machines. So-

called microservices [1] has become the dominant cloud
service architecture. A microservice is typically a smaller
service with a single purpose. A full-fledged cloud ser-
vice is then constructed from a set of microservices. Us-
ing a microservice architecture has the benefits of scal-
ing, migrating or replicating parts of the functionality
on an individual basis, allowing for very flexible orches-
tration strategies. Kubernetes1 is a portable, extensible,
open-source platform for managing containerized work-
loads and microservices.

Essentially, cloud computing is a business model where
the focus is on compute density, resource pooling, and
elasticity, to maximize utilization and minimizing cost.
Elasticity is a key feature of cloud computing, as it al-
lows cloud services to scale by dynamically adding or re-
moving resources to maintain stable performance levels
despite fluctuations in the workload. These resources can
be rapidly provisioned and released with minimal man-
agement effort or service provider intervention.

Commonly, cloud services are associated with a Ser-
vice Level Agreement (SLA) consisting of multiple Ser-
vice Level Objectives (SLOs) stipulating expectations
on availability, performance, latency, etc. The service
provider has to balance the cost of allocated resources
against the cost of violating the SLOs. An ideally config-
ured service is meeting the SLOs with a minimum amount
of allocated resources.

With the increased demand for low and predictable la-
tency, due to, for example, new use cases such as cloud
based automation, IoT, XR (eXtended Reality), and VR
(Virtual Reality), edge computing has gained traction as a
means of bringing compute resources closer to the user. A
combination of centralized cloud and edge compute nodes
offers a distributed compute platform which allows for
trade-offs between latency, cost, etc., and makes it possi-
ble to configure a cloud service to deliver solutions at the
right service level at the right cost.

In this work we consider microservices that are dis-
tributed across multiple sites such as edge nodes, local

1https://kubernetes.io
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Figure 1: A distributed microservice with replica sets ri over multi-
ple different sites. The load balancer distributes the incoming load
according to a weighted random scheme with probabilities pi over
the available replica sets. This can then be part of a larger appli-
cation of multiple communicating microservices.

datacenters, and centralized clouds. Each of these sites
comes with different cost and performance. The challenge
we address is how to distribute the incoming workloads
over the different sites and satisfy the SLOs while mini-
mizing cost.

1.1 Contributions

The load balancer in Fig. 1 distributes the incoming work-
load over replica sets, replicated instances of a service,
located in the different sites. In the proposed model, the
traffic is directed to a given site with probability pi. Due
to differences in communication delays, available capac-
ity etc., the access latency and the cost vary among each
site. The goal is to select the probabilities pi to minimize
the total cost while also keeping the response time below
a threshold. The incoming workload is constantly chang-
ing, meaning that any strategy must be able to adapt to
variations in traffic. In this paper, we use a fluid model
of the environment and perform online optimization of
a cloud application using automatic differentiation. We
specifically focus on adapting the load balancer proba-
bilities in order to minimize some cost function, but the
technique itself is more general.

The contributions of the paper are the following:

• A method for optimal weighting, with respect to
some cost function, of the random load balancing
policy is provided. The minimization is performed
online using gradient stepping via automatic differ-
entiation of said cost function.

• We propose a cost function that is based on the so-
lution of a fluid model, and can thus take into ac-
count transient and stationary queue lengths, and
constraints on e.g. response time percentiles.

• We demonstrate the solution in a real-world setting
with an application distributed over three different
Kubernetes clusters connected over a network gate-
way to simulate delays between our ”sites”. The
setup is running in the Ericsson Research Datacen-
ter.

2 Background and related work

2.1 Microservice fluid model

Queuing theory is a popular method for modeling cloud
systems, especially considering the queuing disciplines
first-come first-served (FCFS), processor sharing (PS)
and delay (INF) [2, 3]. Dependencies between resources
and servers can be modeled by joining multiple queues,
forming a queuing network. Unfortunately, queuing net-
works seldom have closed-form solutions, and evaluation
by simulation is often prohibitively computationally ex-
pensive for real-time usage. Instead, important perfor-
mance metrics are often approximated using different
methods. Most popular among these for stationary solu-
tions of product-form networks is the mean-value analysis
(MVA) and its extensions [4]. Another common method
is the fluid model, which approximates the time evolution
of the mean queue length as a set of ordinary differential
equations (ODE). Thus, fluid models can yield transient
solutions, that do not require product-form assumptions
and are fast to solve using modern methods.

In this paper, we adopt the fluid model for microservice
applications introduced in [5], based on the mean-field
approximation of a simplistic queuing network represen-
tation of the application. In short, the queuing network
models each replica to every service as a multiclass PS
queue and each replica-to-replica delay as a multiclass
INF queue. Each processing stage of a request across the
entire microservice application is then modeled as a path
over the classes in the network. An illustration of this can
be seen in Fig. 2. Poisson arrivals are assumed, and the
service time in each class is allowed to follow a phase-type
distribution [6], representing the service time as the time-
to-absorption in an internal Markov chain. The transient
states of this chain are referred to as phase states. Al-
though the individual replica models are simple, this fluid
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Figure 2: The transformation from a microservice graph (a) to the corresponding queuing network model (c). The example service graph
consists of 3 services, each with 1 replica, where external requests arrive to the service m1. Requests in m1 performs two remote calls to
m2 and m3. In (b), the path that all external requests must traverse is shown together with the corresponding class decomposition in a
spanning diagram. In (c), the replicas have been replaced by the multiclass PS queues qm1 , qm2 , qm3 , the replica-to-replica connection

delays by the INF queues q1,2d , q1,3d . Each arrow displays a class-to-class transition and is marked with the downstream class it connects
to.

model can capture quite general graphs of microservices,
and be completely extracted at runtime from commonly
collected2 tracing data. However, due to its simplicity, it
can experience modeling errors when predicting too far
from the operating point where it was fitted.

Before introducing the fluid model, some definitions
are needed. Let Q be the set of queues, C the set of
classes and S the set of phase states in the network.
Each queue q is assumed to have a unique set of classes
Cq, and each queue/class pair (q, c) ∈ (Q, Cq) is assumed
to have a unique set of phase states Sq,c. Further, let

kq be the number of processors in queue q, λ ∈ R|C|×1
+

the Poisson arrival rates to each class and P ∈ R|C|×|C|

the class-to-class routing probability matrix. Finally, let
Ψ ∈ R|S|×|S|,B ∈ R|S|×|C|,A ∈ R|S|×|C| be the parame-
ter matrices for the phase type distributions of each class,
stacked into block diagonals in an appropriate order.

The smoothed mean-field fluid model [7] can then be
introduced. It approximates the mean request population
in each phase state E [X(t)] ∈ R|S|×1 with the solution
x(t) ∈ R|S|×1 to the following system of ODEs.

dx

dt
= W T θ (x, z) +Aλ (1)

where x(0) = X(0), W = Ψ+BPAT , and the function

2https://www.envoyproxy.io/docs/envoy/latest/

intro/arch_overview/observability/tracing#

what-data-each-trace-contains

θi(x, z) = xigQ(i) (x, z) ∀i ∈ S where

gq (x, z) =
1(

1 +
(
k−1
q

∑
xq

)zq)1/zq
q ∈ Q (2)

Here, Q(i) is a function that maps a phase state to its
parent queue and zq the smoothing parameters in the
queue q. This parameter aims to improve accuracy in
mean-field fluid models, and can quickly be fitted to data
using bisection search.

2.2 Automatic differentiation

Automatic differentiation (AD) is a technique to evalu-
ate the derivatives of functions defined by computer pro-
grams. The basic idea is to apply the chain rule to the
code in order to reduce it to simpler expressions where
the derivative of each individual operation is easily de-
fined. To automate this process there are a few different
methods, but for this work we choose an implementation
using a type of dual numbers [8].
Dual numbers are a convenient way to propagate infor-

mation about the value of an expression, as well as the
derivative of the expression, at the same time. So if we
have a program where the higher level code is agnostic to
type, and the lower level operations are defined for dual
numbers, both the value and the derivative can be calcu-
lated in one go by supplying parameters as dual numbers.

Automatic differentiation distinguishes itself from nu-
merical differentiation by being exact in the mathemat-
ical sense. While numerical differentiation approximates
derivatives using finite differences, and will thus suffer
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from the inaccuracies coming from those techniques, au-
tomatic differentiation will do the calculation for the ex-
act mathematical expression. Numerical differentiation
also has the disadvantage that higher order derivatives
are complex and involve larger errors, while gradients over
multiple variables can become inefficient as the number
of variables grow, since the number of evaluations of the
function then also grows [9].

2.3 Load balancing

In this paper, we consider the load balancing problem of
assigning a stream of requests to a set of replicas of a
service. There is no magic bullet, as the ”best” choice
of load balancing strategy depends on characteristics of
the workload and system, as well as the desired out-
come [10]. Arguably, the most commonly used strategies
are round-robin (RR), random and join-shortest-queue
(JSQ) (also known as Least-Connected/Least-Request)
and their weighted counterparts [11, 12], available in
many modern software tools such as the proxies Envoy3

and Nginx4. JSQ has in general better performance than
the other two, and is for PS queues near optimal in min-
imizing the total mean response time [13]. However, it
requires knowledge about the current state in each replica
at each decision and is thus cumbersome to implement at
scale. To handle this state knowledge drawback, many
improvements have been suggested such as power-of-d
(SQ(d)) [14, 15], join-idle-queue (JIQ) [16] and join-the-
best-queue (JBQ) [17].

Although JSQ and its extensions promises a good mean
response time in a load balancing scenario, they are dif-
ficult to analyze under more general settings and costs.
We thus restrict ourselves to study the weighted random
strategy, which allows us to express the application as
a queuing network with probabilistic routing and subse-
quently the optimization problem as finding the proba-
bilities that minimizes our cost. This problem has been
extensively studied in the queuing theory community, but
in order to make it feasible only simple cost functions and
performance metric constraints (if any) are typically con-
sidered for specific types of queues and networks. We will
here state some notable results, and refer to the refer-
ences within for a more encompassing description of this
field. Regarding open networks, response time minimiza-

3https://www.envoyproxy.io/docs/envoy/v1.5.0/intro/

arch_overview/load_balancing
4https://docs.nginx.com/nginx/admin-guide/

load-balancer/http-load-balancer/

tion has been studied in e.g. [18] considering M/M/1
FCFS queues with link constraints using flow deviation,
[19] considering M/G/1 FCFS queues over a weighted
sum of response times, and [20] considering G/G/1 queues
of either FCFS and PS discipline with constraints on re-
sponse time variance. For closed networks, throughput
maximization has been studied for product-form networks
in e.g. [21] using gradient stepping as the gradient is
readily obtained from the MVA algorithm, and [22] using
closed-form heuristics based on heavy-traffic limits which
were later explored in [23] for heuristic weighting of the
RR strategy. In [24] it is shown that for product-form
networks with general cost function and constraints on
queue states, a Nash equilibrium can be obtained via de-
terministic routing. Further, in [25, 26] model-predictive
control (MPC) over the mean-field fluid model for a closed
network was studied in order to minimize response time
by tuning both routing probabilities and autoscaling.

Compared to these results, our approach of gradient
stepping using automatic differentiation is more general.
It allows for arbitrarily defined costs and constraints from
any performance metric that is obtainable from our fluid
model. Further, the fluid model allows us to consider both
transient and stationary metrics, and non-product-form
networks of INF and PS queues. However, in adopting
such a general approach, we forgo any theoretical results
on optimality bounds, feasibility, and convergence speed.

3 Application model

We consider a cloud application subjected to requests
from external users with an exponential inter-arrival time,
i.e. Poisson arrivals, and where there are (soft) con-
straints on certain performance metrics, e.g. response
time percentiles, via SLOs. The application is assumed
to consist of multiple distributed microservices interact-
ing in a graph structure. Each microservice is further
assumed to have a set of replicas. The replicas of each ser-
vice are allowed to span multiple placement possibilities,
e.g. machines, clusters or even different sites, each associ-
ated with their own communication delay. The service of
requests incurs a certain cost for the application owner,
depending on things such as the cost of electricity, avail-
ability, the specific cloud provider and more. This cost
will be highly specific to the application and deployment.
What we will assume is that the cost is tied to where the
requests are executed among the placement possibilities.

The task at hand is to minimize the total cost of run-
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Figure 3: An application consisting of two distributed microser-
vices, each with an internal load balancer and replicas ri,j spread
over different sites. The control variables are the set of all routing
probabilities for the load balancers, where pi = [pi,1, pi,2, pi,3] is
the distribution for microservice i.

ning the application, while not violating the constraints,
by tuning parameters related to the application deploy-
ment and management. In order to effectively determine
such parameters, a model can be used to estimate the
impact of them on both cost and constraints. Moreover,
given such a model, it is possible to use automatic dif-
ferentiation to differentiate the cost derived through this
model w.r.t. these parameters. Potentially, one could
then devise a control strategy to steer the entire applica-
tion towards an operating region of less cost while keeping
clear of the constraint limits. In this paper, we exemplify
such a procedure by considering load balancing between
the different replica sets in the application. Thus, our
parameters to tune, or control variables, will be the set of
all load balancing parameters.

An illustration of this kind of environment is presented
in Fig. 3. The load balancer is placed outside any site for
conceptual understanding, but for a practical implemen-
tation, the load balancer would exist on all sites of the
microservice to reduce unnecessary network traffic. This
would also allow a more general approach where each indi-
vidual replica set has its own parameters for load balanc-
ing, which could further reduce redundant traffic between
sites.

As our model, we adopt the microservice fluid model
introduced in Section 2.1. In this model, routing be-
tween the services is fully determined by the class-to-class
transitions described in the routing probability matrix P .
Hence, it captures the more general model where all repli-
cas use a random policy for load balancing requests, and

the probabilities are given by the rows of P . As the model
captures different request types as stand-alone classes,
multiple non-zero values in the rows of P only occurs for
load balancing purposes and are thus easy to find. The
set of all non-zero routing probabilities is captured in the
following definition.

Definition 1. Let pi be a vector of the non-zero proba-
bilities in the i’th row of P , and let P = {p1,p2, . . . } be
the set of all probability vectors in the system.

The elements of P are thus our control variables. Due
to probability constraints, the following can be stated.

Remark 1.1. As
∑

p = 1 ∀p ∈ P, connections with no
load balancing, i.e. where p only has a single downstream,
are fixed.

Changing the elements of P will affect the solution of
the fluid model (1), and we denote this dependence as
x(t | P).

3.1 Obtaining desired metrics

The cost and constraints for the application are based on
different performance metrics. These metrics needs to be
derived from our model in order to create a differentiable
mapping from control variables to costs and constraints.
We base the cost on the mean number of requests present
in each replica, and have a single constraint on a response
time percentile.

3.1.1 Mean requests in replicas

As each replica is modeled by a single queue, the mean re-
quest present at time t can be approximated from the fluid
model (1) by summing over all the phase states present
in that queue, i.e.

xq (t | P) =
∑
i∈Sq

xi (t | P) q ∈ Q (3)

Further, let xQ ∈ R|Q|×1
+ be the vector of all modeled

mean requests populations in each queue q in the network.

3.1.2 Response time percentiles

As shown in [7], it is possible to obtain an approxima-
tion of the response time CDF given our fluid model. Let

π(t) ∈ R|S|×1
+ be the probability vector of finding a re-

quest in the corresponding phase state after t time units,
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and β ∈ R|C|×1
+ the probability vector of the request en-

tering the corresponding class at t = 0. The probability
of remaining in the queuing network at time t can then
be approximated with the following ODE,

dπ

dt
= W TDg(z)π(t), π(0) = Aβ (4)

whereDg(z) ∈ R|S|×|S|
+ is a diagonal matrix with elements

D
g(z)
ii = gQ(i) (z), i.e. (2) evaluated at the stationary so-

lution x∗ given some z. As (4) is a linear system, it has a
closed form solution. An approximation of the percentile
φα can then be obtained by either bisection search over
this closed-form solution, or by evaluating (4) and finding
the t such that

∑
π (t = φα) = 1 − α. As the percentile

and its approximation depends on x∗, they also depend
on the choice of P which we denote as φα (P).

4 Holistic load-balancing

The fluid model allows us to pose an idealized optimal
control version of the original cost minimization problem,
assuming a set of load balancing probability trajectories
P(t) and some cost function Lo(·), as follows

min
P(t)

∫
Lo [t,xQ(t),P(t)] dt

subject to dx/dt = (1)∑
p(t) = 1 ∀t,p ∈ P

φα [P(t)] ≤ φlim ∀t

(5)

By minimizing over all P(t) we try to directly find the op-
timal load distribution that over time minimizes selected
cost. Although possible, the model will become less accu-
rate the further P(t) is from what it was when recording
the data used to fit the model, and thus the predicted
optimal is also less accurate. Further, as cloud systems
are inherently dynamic due to resource contentions, work-
load changes, migrations, or even malfunctions, the opti-
mal P(t) will generally not be convergent as the system
is subjected to both slow and abrupt changes over time.
This necessitates an optimization scheme where we per-
form simultaneous online optimization and model tuning
in order to both update P(t) in a robust manner and
adapt to changes in the system. To create such an algo-
rithm, some adjustments to (5) are first needed.

4.0.1 Iterative model refitting & optimization

The model will become less accurate as the operating
state change from what was used to train the model.
Thus, we cannot be certain that a control action based
on x(t), in regions beyond the current state, will have the
expected effect on the real system. Taking such an action
increases the risk of accidental violation of constraints or
unstable control.

This can be remedied by continuously updating the
model. But due to the fast timescale of the system dy-
namics compared to the time needed to gather enough
data for an accurate model fitting using the scheme from
[5], robust online model tracking at the necessary speed
becomes a non-trivial problem. Instead, one possible sim-
ple solution is to update P in discrete steps, where be-
tween each step the system is monitored in order to gather
enough data to refit the model before deciding the next
Pk. By bounding how far Pk can move from Pk−1, it
is then possible to assure that the system moves within
some vicinity of the current operating condition where
the model is accurate, increasing robustness against ac-
cidentally violating the constraints. We denote step k
as the period between tk−1 and tk, the sample time as
h = tk − tk−1, the data gathered during step k as Dk,
and the model re-fitted on Dk as ẋ = Fk(x), where
Fk(x) = W T θ(x, z) +Aλ according to (1).

This iterative scheme will however result in a slower
control action, and thus a potentially slower convergence
of the cost function minimization, than fully relying on
the model to decide some trajectory P(t) in a single step.
In fact, the system will reach a stationary operating con-
dition before deciding the next Pk as this is required to
reliably re-fit the model. But as the overall goal is to
minimize cost of a running system over a potentially very
long time horizon, this slowdown is acceptable as long as
the system is not subjected to too many disturbances of
too high frequency.

4.0.2 Optimizing over weights

Optimizing directly over the probabilities becomes cum-
bersome, as we need to adhere to the constraint

∑
p = 1

∀p ∈ Pk. Instead, it is possible to optimize over weight
vectorsw and enforce the constraint via the softmax func-
tion S(w) [27], where

Si(w) =
exp (wi)∑
j exp (wj)

(6)
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The softmax function maps vectors defined on Rn, to vec-
tors whose elements are allowed to take values in the in-
terval [0, 1] and that fulfills

∑
i Si(w) = 1. Further, the

softmax function preserves the order of the vector element
quantities, i.e. if wi ≥ wj , then Si(w) ≥ Sj(w). We let
each p ∈ Pk be associated with a weight vector w, and
introduce the following.

Definition 2. Let Wk = {w1,w2, . . . } be the set of all
weight vectors at time step k + 1, and let P (Wk) :=
{S(w) ∀w ∈ Wk}.

To clarify the subscript, the set Wk will be decided
based on data Dk that is gathered during step k, i.e. be-
tween {tk−1, tk}, usingWk−1. It will then be used during
step k + 1.

4.0.3 Limiting the step size

A natural way of managing the step sizes would be to
introduce some cost on the difference between Wk and
Wk−1. However, certain disturbances such as an increase
in the load would increase the overall cost of the system,
and thus change the relative step sizes if care is not taken.
Instead, we will manage the step size limits by introducing
the following constraint on the 2-norm on the change in
probability over all weight vectors√ ∑

w∈Wk−1

||S(w)− S (w+)||22 ≤ dWlim (7)

where w+ is the corresponding updated w in Wk.

4.0.4 Reworking the percentile constraint

Due to the dynamic nature of cloud systems, we can-
not guarantee that any constraints based on performance
metrics can actually be fulfilled at any time step. A dis-
turbance might arise that pushes the system to an oper-
ating region where a constraint is violated. This can also
happen if we are unlucky with the robust stepping of Pk,
although we will still be in the vicinity of the constraint
limit.

The optimization algorithm must thus be able to han-
dle such cases, and quickly drive the system back to a
viable operating region. To do this, we can remove the
constraint and instead heavily penalize the cost function
in the case of violation by e.g. an additive cost function
term Lφ [P (Wk)] using a penalty function. The impor-
tant thing is that the penalization should be negligent as
long as the constraint is not violated, sharply increases

around the constraint limit, and continue to quickly grow
the further from the limit the system moves. This will
ensure that the gradient of the cost function points the
parameters towards viable operating regions.

4.0.5 New cost function

At time step k, the refitted model Fk(x) can then be
used to determine the next Wk using the following new
cost function

Lk (W) =

∫ tf

0

Lq [t,xQ(tk + t),P (W)] dt+ Lφ [P (W)]

(8)
subjected to ẋ = Fk(x) where x(tk) is set to the station-
ary solution of x [t | P (Wk−1)], and the step size con-
straint (7). As we obtain transient values from the fluid
model, we can minimize over these given some arbitrary
cost function Lq(·) from current time tk over some time
horizon tf . In general, as the system will reach a station-
ary state before the next action is taken, we should let tf
be large enough to capture the stationary values of xQ(t).
Further, the cost function only takes the next step Wk

into consideration, and no prediction horizon of multiple
consecutive {Wk+i}i≥0. This is done for simplicity, and
since we are simply unsure how the model behaves when
leaving the vicinity of Wk−1. A prediction horizon could
potentially be added together with a decreasing trust the
further fromWk−1 we move, to create an MPC-like prob-
lem formulation similar to [25, 26]. But the resulting
optimization problem would be problematic, as it would
become quite intricate with no guarantees on convexity.

4.1 Cost-optimizing controller

In each step, we will use the cost function (8) to decide
the next Wk. As we consider no prediction horizon, and
since the optimization problem is not convex with poten-
tially multiple local minima, we will not try to optimize
(8) until convergence in each time step. This would be-
come unnecessarily costly, and only result in generating
an optimal Wk given the step length constraint with no
guarantees that it would actually move the system to-
wards its global minimum.

Instead, a more direct approach is suitable. For demon-
strative purposes, we use a very simple single gradient
step to decide Wk, based on the gradient of (8). Using
automatic differentiation, this gradient ∇Lk can be di-
rectly obtained, despite the dependence on the two ODEs
(1) and (4). Together with some constant scaling factor
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Figure 4: The controller sets some weights W for the application to
run with. Data D is collected and used to fit model F as well as es-
timate the response time φα. These are then used by the controller
to simulate the environment and update the old weights based on
the gradient of the cost on the simulated state. Disturbances can
act on both the controller, in the form of e.g. changes in the cost
Lq , and on the application, in the form of e.g. changing workload
λ.

α and a step size limiter c, we can then calculate the next
Wk with the following gradient step update

w+ = w − cα∇wLk (Wk−1) ∀w ∈ Wk−1 (9)

where ∇w is the gradient w.r.t the elements in w, and
w+ the corresponding weight vector in Wk. If (7) is not
violated, then c = 1, otherwise it can be obtained as

c := argmin
c∈[0,1]

√ ∑
w∈Wk−1

∥S(w)− S [w+(c)]∥22 = dWlim

(10)
using e.g. bisection search.

The complete algorithm can thus be seen as an adapt-
able gradient descent scheme, where we after each step
re-evaluate the model before calculating the gradient and
deciding the next step to take. The resulting algorithm
is summarized by the block diagram in Fig. 4 and the
pseudocode in Algorithm 1.

5 Evaluation

To test and showcase the online optimization algorithm,
two experiments were performed on a small distributed
microservice application.

5.1 Experimental setup

A similar setup to the one studied in [5] was considered,
consisting of a simple microservice application deployed
on a testbed of multiple Kubernetes clusters.

Algorithm 1 Control and learning loop.

Algorithm 1a Run N iterations of data collection and
parameter updates. Data collection is run for a dura-
tion h.

Initialize W0

for k ← 1 to N do
Set P(Wk−1) as load balancing strategy
Dk ← collect data(h)
Fk, φ.95 ← fit(Dk)
Wk ← update(Wk−1, Fk, φ.95)

end for

Algorithm 1b CalculateWk based onWk−1 and data
Dk.

function update(Wk−1, Fk, φ.95)
Wk ← ∅
for w ∈ Wk−1 do
∇wLk ← gradient(Lk(w | Fk, φ.95),w)
w+ ← limited step(w,∇wLk)
Wk ←Wk ∪ {w+}

end for
return Wk

end function

5.1.1 Kubernetes testbed

The federated application sandbox described in [28] was
used as a testbed for the application. The sandbox con-
sists of clusters of virtual machines deployed on Open-
Stack5 in the Ericsson Research datacenter. To each clus-
ter, 4 virtual machines, each with 4 vCPU and 4 Gb of
RAM, were assigned. All virtual machines in each cluster
are further connected via a cluster-specific isolated net-
work. These networks are then connected to each other
via a Gateway, which enables network characteristics be-
tween clusters to be easily emulated using TC netem6.
On each cluster, Kubernetes7 is then deployed along the
service mesh Istio8 to handle the application and to emu-
late a realistic cluster software stack. Istio further allows
for easy extraction of the required tracing data for model
fitting, and handling of cluster-to-cluster communication
between microservices.

5https://www.openstack.org/
6https://man7.org/linux/man-pages/man8/tc-netem.8.html
7https://kubernetes.io/
8https://istio.io/
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Figure 5: The incoming load passes through the frontend and is bal-
anced over the replicas bi in the backend based on the probabilities
pi. The delay between the frontend and the replicas in the backend
are di on average. The backends with lower delays are assumed
to be more expensive to run, so a small edge node will be closer to
the customer, but will likely have higher relative maintenance costs.
This creates an optimization problem where delay and cost has to
be balanced.

5.1.2 Application

A simplified version of the facedetection-as-a-service ap-
plication shown in [5] was used as an example applica-
tion. It consists of two services, a frontend implementing
a user interface and image preprocessing, and a backend
implementing a face-detection algorithm. Both services
are implemented in Python using Flask9 and Gunicorn10.
We assume a structure as in Fig. 5 where the user-facing
frontend only exists on the edge close to its users, and
the backend is distributed across multiple sites, emulated
by our different clusters. Each frontend-to-backend con-
nection is associated with a delay di, and each backend
is also associated with a computation cost Ci. We will
assume that the higher costs are associated with lower
delays, in order to create a trade-off between cost and la-
tency. Such scenarios could occur in e.g. edge computing,
where low-latency computations can be performed on the
device or at geographically close edge data centers, but
at an increased cost, while off-loading computations to
larger sites is cheaper but subjected to longer communi-
cation delays.

5.1.3 Cost-optimizing controller

Using the load generator from [5], images are fed to the
application as Poisson arrivals with rate λ. At every time

9https://flask.palletsprojects.com/en/2.1.x/
10https://gunicorn.org/

step k, tracing data from Istio is collected to generate Dk.
The model Fk is fit to Dk, and the cost function Lk (W)
is implemented using the Julia11 programming language.
Using ForwardDiff.jl [29] together with the ODE solver
package DifferentialEquations.jl [30] allows for auto-
matic differentiation of the cost function, so the gradient
∇Lk as well as the nextWk can be effortlessly calculated.
The application, alongside the implementation of our on-
line optimization algorithm, can be found here12.

5.2 Two Backends - fixed steps in an of-
fline experiment

In a first experiment, we consider the example applica-
tion with only two replica sets of the backend, b1 that
is deployed on the same cluster as the frontend, and b2

that is deployed on a different cluster. All connections
between the two clusters are given a Pareto distributed
additive delay with a 25ms mean, 5ms jitter (a TC netem
term roughly equating standard deviation) and 25% cor-
relation between samples. Hence, requests load balanced
to b2 will experience an additive delay.

The probability constraint enables us to determine the
load balancing probabilities directly by using a single pa-
rameter p1, and then determining p2 = 1 − p1, remov-
ing the need for the weights and softmax function. This
makes it feasible to collect data in a grid over p1 ∈ [0, 1],
allowing us to run the agent offline against the recorded
data with a fixed size step according to the grid that is in
the direction of the gradient.

For the cost function, we let it be conditional on φα

violating φlim for selecting either Lφ or Lq. Lφ is simply
a scaled estimate of φα at stationarity, whereas Lq is 0
everywhere except at time tf where it is a linear function
of the state. We choose to look at the stationary values
to make it easier to compare data.

Lk(p1) =

{
Cφφ̂α (p1) if φα > φlim

CTxQ (tk + tf | p1) otherwise
(11)

The conditional uses recorded data, as we like the con-
straint to be active if the real φα violates its limit. The
actual cost is then implemented using a prediction from
the model, φ̂α, so it can be differentiated. We let α = 0.95
to consider the 95th percentile of response times to the ap-
plication, φlim = 0.55ms, tf = 5s, and C be a zero vector
except for two backends where it was set to Cb = [3, 1].

11https://julialang.org/
12TBD
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Figure 6: Results from the offline experiment with two backends. The values are plotted over the probability p1. In 6(a) and 6(b) the
blue lines show the value from recorded data D, while the red dashed line shows the corresponding prediction from the fitted model. In
6(b) φlim shows when the cost (11) switches mode. The cost in turn can be seen in 6(c), where the blue and green lines correspond to the
queue cost respective to the cost on overstepping the response-time threshold. The lines are filled where each cost is active, and dotted
where they are inactive. The red dashed line shows the model’s estimate of the full cost from both parts of the cost function.

We set Cφ = 8, though in this case it only affects plot
scaling since the cost is conditional and the gradient step
is fixed. For the model, we give each class in the queuing
network 3 phase states, for a total size of |S| = 24.

We record data for the offline experiment by creating a
grid over p1 with steps of 0.05 between 0 and 1. For each
value of p1, data is recorded for h = 300s using an arrival
rate λ = 14. The optimization algorithm is then run
against the recorded data, starting from p1 = 1, stepping
along the grid in the gradient direction. The results can
be seen in Fig. 6. Fig. 6(a) shows the total mean requests
present in the application, Fig. 6(b) shows the percentiles,
and Fig. 6(c) shows the cost based on (11). A dashed red
line shows the model prediction in all subfigures, while
the blue (and green) lines represent values from recorded
data. The cost in 6(c) is conditional on (11), where the
recorded values are plotted for both individual costs while
the model prediction is only for the combined function.
The apparent noisiness can be attributed to the noisy
data used for refitting the model.

As can be seen, the algorithm manages to step in the
direction of a decreasing cost and ultimately find the min-
imum. Starting at p1 = 1, the system is passing all load
to b1 resulting in φ.95 > φlim and the cost is then based
on the response time curve. Moving in the direction of
−dφ.95/dp1 the response time as well as the total queue
length is decreasing since we offload b1 by routing some
load to b2 instead. Crossing the threshold φlim, the cost
switch to Lq. Even though we see that the total queue
length starts growing as p1 goes below 0.65, the cost for
b1 is higher than b2 and thus the queue based cost is still
decreasing with decreasing p1. Before reaching p1 = 0

though, we hit the φlim threshold again, and here the
simulation is stopped since the algorithm will start alter-
nating between fixed steps in different directions.

5.3 Three Backends - online optimization
experiment

For the second experiment, we run everything live on
the real application. We consider the same setup as in
the first experiment, but also introduce a third backend
replica (b3) deployed on a third cluster. All connections
between the first and third clusters are given a Pareto
distributed additive delay with a 50ms mean, 10ms jitter
and 25% correlation between samples. As we now have
more than 1 parameter to optimize over, we will resort to
using the weight vectors in W as described in Section 4.

For the cost function, we again let Lq be a linear func-
tion of state at tf and 0 for other times, to only consider
stationary values and simplifying comparisons. However,
the response-time constraint is included by setting Lφ as
an exponential penalty function based on the difference
between φα and φlim. Again, we base the activation of
the constraint on recorded data, as we would like it to be
active when the real φα is near or above its limit. The
cost itself is based on the predicted φ̂α to make it differ-
entiable. The resulting cost function becomes

Lk(W) = CTxQ [tk + tf | S (W)]

+ Cφe
µ(φ.95−φlim)φ̂.95 [S (W)]

(12)

where we set α = 0.95, φlim = 0.6ms, µ = 10, Cφ = 5,
tf = 5ms and C to a zero vector except for the backend
replicas where it is set to Cb = [3, 2, 1]. Further, the
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Figure 7: Results from the online experiment with three backends. The values are plotted over the simulated time steps, each being one
sampling period of 300 seconds. In 7(a), 7(b) and 7(c) the blue lines shows the value from recorded data D, while the dashed red line
shows the corresponding value from the fitted model. Further, in 7(d) the three lines corresponds to the three load balancing probabilities.
Finally, the blue shaded area shows where the first disturbance is active on the arrival rate, while the shaded red area shows where the
first and second disturbance is active on both arrival rate and queue length costs. A one time step lag can be seen on 7(a), 7(b), 7(c)
compared to 7(d) as Dk is recorded using Wk−1.

gradient step is given α = 0.5 and dWlim = 0.15. For the
model, we give each class in the queuing network 3 phase
states, for a total size of |S| = 33.

The system is loaded with Poisson arrivals at λ = 15
for a total of 40 time steps, with the initial weight vector
is set to w0 = [2, 0, 0], giving p0 ≈ [0.78, 0.11, 0.11]. Each
time step is given a duration of h = 300s. We further let
the running system be influenced by two disturbances.
The first disturbance is introduced at time step 14, where
the arrival rate is suddenly increase by 50% to λ = 22.5.
The second disturbance is introduced at time step 27,
where the costs to the backend replicas are changed to
Cb = [1, 2, 3].

The results from this experiment can be seen in Fig. 7.
In all subfigures, the blue shaded area shows where
the first disturbance is active, and the red area shows
where both the first and second disturbances are active.
Fig. 7(a) shows the total mean requests present in the ap-
plication, Fig. 7(b) shows the response time percentiles,
and Fig. 7(c) shows the cost based on (12). Both val-
ues from data (blue) and the corresponding fitted model
(dashed red) are shown in these three subfigures. Fi-
nally, Fig. 7(d) shows the three load balancing probabili-

ties from the frontend to b1 (p1, blue), to b2 (p2, dashed
red) and to b3 (p3, dotted green).

As can be seen, the online optimization algorithm man-
ages to drive the system towards a load balancing setting
of less cost and counteract the disturbances in quite a few
steps. At a few steps, it seems as the algorithm steps up-
wards in cost, but this can be attributed to noise. At first,
the system shifts load from b1 to b2 and b3 where costs
are smaller. This decreases the cost, but also increases
the total queue length and response time percentile, as
b2 and b3 are associated with a higher site-to-site delay.
The shift is mostly stopped when the percentile constraint
is reached, but due to the simplicity of the gradient de-
scent approach, the system experiences a slow final con-
vergence. When the first disturbance in the form of a
50% increase in load is introduced, both the queue length
and percentiles immediately increases. As the percentile
constraint is now violated, the cost function spikes, which
results in the gradient step aggressively moving the sys-
tem back into a parameter configuration where the con-
straint is no longer violated. After the constraint is once
again fulfilled, the cost function slowly settles to a mini-
mum. At the activation of the second disturbance, in the
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form of shifting the costs of b1 and b3, the cost function
increases while the queue length and percentile stays the
same. The system then quickly shifts the load probabil-
ities and reduce the cost until the effects of the penalty
function becomes too large, and it settles to a slow final
convergence. As can be seen in Fig. 7(b), there are at
times rather large gaps remaining between the percentile
and its limit. This has to do with the values assigned to
the penalty function. Increasing Cφ and µ would lead to
more aggressive handling of violations and a tighter gap,
but they where kept fairly low to yield a more presentable
cost function.

6 Conclusion and discussion

In this paper, we have demonstrated how automatic dif-
ferentiation can be used to optimize a running distributed
microservice application. This is done by deriving an on-
line optimization scheme to minimize some holistic cost
by tuning the probabilities of random load balancers be-
tween replica sets. Although not guaranteed to find the
global cost minimum, the algorithm is shown to reduce
cost while adhering to constraints on the response time
percentile in an experimental evaluation. As the assumed
microservice fluid model is fairly general, and the cost
function can be arbitrarily defined, this online optimiza-
tion scheme can be quickly adapted for a multitude of
different load balancing scenarios.

Automatic differentiation allows us to differentiate
functions whose derivatives would be too difficult to ex-
plicitly derive. In our case, it is used to differentiate
through an arbitrary cost function L based on the solu-
tion of two dependent ODEs from our fluid model. Other
models, e.g. the common mean-value analysis, could be
used as well, but we chose the fluid model due to its tran-
sient values, validity for non-product-form networks and
as it is quick to evaluate and differentiate using the Julia
ecosystem. In our experiments, the model fitting and pa-
rameter update in Algorithm 1 takes about 10-15s, where
the majority of the time goes to fitting the phase-type dis-
tributions using the EM algorithm, which can be made
quicker by e.g. moment matching. The differentiation
step itself is quick, in the range of 100ms.

Further, the generality of automatic differentiation al-
lows us to consider a whole range of other ways of op-
timizing an application, e.g. scaling and migration, as
long as such an action can be represented in e.g. the
fluid model. Also, given an expression for the gradient

and higher order partial derivatives, more advanced op-
timization methods can be used to decide how to update
the control variables. In this paper we however chose to
focus on optimizing load balancing using simple gradi-
ent stepping, to exemplify the procedure with a problem
whose fluid model representation is simple, a comprehen-
sible control variable update and a relatively easy exper-
imental validation. More advanced decisions and opti-
mization algorithms are left for future work.

The approach however has some drawbacks. First,
there are no convergence guarantees and the performance
is inherently dependent on the accuracy of the model.
Identifying when a model is performing poorly is thus im-
portant to avoid driving the system into regions of high
cost or constraint violations. Further, the generality of
the approach is not only a boon. Deriving a suitable cost
function and good optimization parameters can require
both time and expert knowledge.
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