
30 April 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

On the Dynamic Evolution of Distributed Computational Aggregates / Audrito, Giorgio; Casadei, Roberto;
Torta, Gianluca. - ELETTRONICO. - (2022), pp. 37-42. (Intervento presentato al convegno 2022 IEEE
International Conference on Autonomic Computing and Self-Organizing Systems (ACSOS) tenutosi a
Virtual / Washington, USA nel 19-23 September 2022) [10.1109/ACSOSC56246.2022.00024].

Published Version:

On the Dynamic Evolution of Distributed Computational Aggregates

Published:
DOI: http://doi.org/10.1109/ACSOSC56246.2022.00024

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/902820 since: 2022-11-15

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1109/ACSOSC56246.2022.00024
https://hdl.handle.net/11585/902820

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

G. Audrito, R. Casadei and G. Torta, "On the Dynamic Evolution of Distributed
Computational Aggregates," 2022 IEEE International Conference on Autonomic
Computing and Self-Organizing Systems Companion (ACSOS-C), CA, USA, 2022, pp. 37-
42.

The final published version is available online at:
https://dx.doi.org/10.1109/ACSOSC56246.2022.00024

Terms of use:

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's
website.

https://cris.unibo.it/
https://dx.doi.org/10.1109/ACSOSC56246.2022.00024

On the Dynamic Evolution of Distributed
Computational Aggregates

Giorgio Audrito
Università di Torino

Torino, Italy
giorgio.audrito@unito.it

Roberto Casadei
Università di Bologna

Cesena, Italy
roby.casadei@unibo.it

Gianluca Torta
Università di Torino

Torino, Italy
gianluca.torta@unito.it

Abstract—Engineering and programming approaches for col-
lective adaptive systems often leverage ensemble- or group-like
abstractions to characterise a subset of devices as a domain for a
given task or computation. In this paper, we address the problem
of programming the dynamic evolution of distributed computa-
tional aggregates, through neighbour-based coordination. This is
a problem of interest, since several situated activities – especially
in large-scale settings – require decentralised collaboration, and
need to be sustained by limited subsets of devices. These subsets
may vary dynamically due to delegation, completion of local
contributions, exhaustion of resources, failure, or change in the
device set induced by the openness of system boundaries.

In order to formally study and develop how distributed aggre-
gates progressively take form by local coordination, we build on
the field-based framework of aggregate processes, and extend it
with techniques to support more expressive evolution dynamics.
We propose novel algorithms for more effective propagation
and closure of the boundaries of dynamic aggregates, based on
statistics on the information speed and a notion of progressive
closure through wave-like propagation. We verify the proposed
techniques by simulation of a paradigmatic case study of multi-
hop message delivery in mobile settings, and show increased
performance and success rate with respect to previous work.

Index Terms—field-based coordination, collective adaptive sys-
tems, aggregate processes, dynamic ensembles

I. INTRODUCTION

Recent techno-scientific trends promote a vision of large-
scale cyber-physical ecosystems of situated devices that self-
organise to support applications like environment monitoring,
Industry 4.0, and smart ecosystems. An emerging viewpoint
suggests modelling and engineering such systems not just by
the perspective of individual devices, but also in terms of
the overall system behaviour. Such systems can be viewed as
Collective Adaptive Systems (CASs) [1], [2], [3], i.e., groups
of devices operating without a central coordinator and reacting
to environment and input changes coherently as a whole.

Since the 2000s and earlier, research mainly stemming from
the fields of coordination [4], multi-agent systems [5], self-
organisation [6], [7], and swarm robotics [8] has proposed
abstractions and mechanisms to engineer and program CASs.
These include e.g. spatial abstractions [9], macro-program-
ming [10], [11], field-based coordination [12], and ensemble-
based approaches [7], [13], [14]. A leitmotiv in these proposals

This work has been supported by the EU/MUR FSE REACT-EU PON R&I
2014-2022 (CCI2014IT16M2OP005).

is the definition of ways to capture dynamic aggregates (or
ensembles), namely groups of devices that change at runtime
and model providers for inputs, executors of collective tasks,
recipient for multicast communications, and so on. These
ensembles have proven to be crucial to promote desired
collective and self-organising behaviours [7], [15], [13].

In this work, we study how dynamic aggregates could
form, evolve, and cease to exist. We focus on a programming
perspective, proposing algorithmic mechanisms to control their
dynamics. As we consider a setting of large-scale decentralised
systems engaged in ongoing computations, we assume a “self-
organisation-like” system model of devices that compute and
communicate asynchronously at discrete rounds, interacting
with neighbours only. So, our focus is on computations that
are carried out indefinitely, across multiple rounds of mul-
tiple devices, supporting e.g. monitoring, control, and self-
organising activities. Thus, we adopt the Aggregate Computing
framework [12], where such systems are programmed “as
wholes” through a network-wide program manipulating (com-
putational) fields, namely functions mapping device rounds
to values. Specifically, we consider the notion of an aggre-
gate process [16], [15], which models a transient, concur-
rent1 aggregate computation running on a dynamic set of
devices. Aggregate processes have been used in applications
and domains like swarm-based exploration [15], peer-to-peer
messaging [15], self-discovery of services in edge-cloud in-
frastructures [15], multi-agent plan repairing [17], and space-
based coordination models [18].

The contribution is twofold. First, we provide a general
formal framework, based on augmented event structures [19],
[20], for modelling dynamically evolving ensembles on asyn-
chronous networks of neighbour-interacting devices. Through
this framework, we model aggregate processes [16] on a
denotational level, without relying on the operational seman-
tics of the field calculus [12]. Secondly, we propose novel
algorithms for controlling the evolution dynamics of aggregate
processes, in terms of effective propagation and shrinking (up
to extinction) of such processes. We build our algorithms on
information speed [21] statistics, a measure of space covered
by data (following connectivity structures) over time. A first

1As aggregate processes are tasks on a domain of rounds, we use concur-
rency to mean that a device may run multiple processes in a same round.

algorithm exploits these statistics to guide process extinction,
while a second one uses it to enact a wave-like propagation,
shifting process boundaries while the process is still active.

To evaluate these techniques, we run simulations of a
message delivery scenario (paradigmatic for several applica-
tions [15]) to experimentally compare them against baseline
algorithms of signal-based termination through neighbourhood
observation. We test the algorithms in a variety of network
configurations, and quantify the improvements in terms of suc-
cess rate and efficiency (i.e. number of rounds and bandwidth),
showing benefits w.r.t. solutions in previous work.

The paper is organised as follows. Section II provides
background on aggregate processes. Section III presents the
contribution. Section IV evaluates the proposed techniques
by simulation. Section V discusses related work. Section VI
summarises results and outlines directions for future work.

II. BACKGROUND AND FORMAL FRAMEWORK

In this section, we first review the aggregate computing
framework and its event structure model (Section II-A). Then,
we introduce a formal framework to describe the dynamic
formation of ensembles, applied to the notion of aggregate
processes (Section II-B). This framework will also be used
to present novel algorithms in Section III, and provides the
benefit of not requiring the reader to go through all the details
of field calculi [12]. To facilitate reading, a summary of the
notation used throughout the paper is reported in Table I.

A. Aggregate Computing

Aggregate Computing [12] is a recent approach for program-
ming CASs. It is a macro-approach, in the sense that the be-
haviour of the entire system is expressed as a single program,
called an aggregate program, consisting of a composition
of macro-level behaviours. The overall collective adaptive
behaviour stems from two main ingredients: (i) an execution
model for self-organisation, where each device operates at
asynchronous rounds of sense-compute-interact steps; (ii) the
aggregate program, specifying which data must be retrieved
from sensors, processed and shared with neighbours.

1) System and execution model: The system can be mod-
elled as a dynamic graph where nodes are devices and edges
denote neighbouring relationships. Only neighbour devices
can directly communicate. The neighbouring relationship may
be based on logical connectivity (as in an overlay network)
or physical connectivity (as in actual Wi-Fi range, so that
only devices sufficiently close together can directly commu-
nicate). Indirect communication may also be possible through
stigmergy, i.e., by perceiving and affecting the environment
through sensors and actuators.

Devices operate in rounds. In general, each round happens
asynchronously with respect to the rounds of the other devices.
Each round consists of the following steps.

(i) Context acquisition step: the device creates a snapshot of
its local context by loading its previous state, sampling
sensors, and retrieving the most recent message from each
of its neighbours.

(ii) Computation step: the device evaluates the aggregate
program against its context, obtaining a result that con-
tains (a) its local output, and (b) a coordination message
(exported data) to be broadcast to all its neighbours.

(iii) Interaction step: the device broadcasts the coordination
message to all its neighbours and uses the output of the
computation step to drive actuators.

This is the general aggregate execution schema, whose de-
tails (like frequency of rounds, retention of messages from
neighbours, topology management, delivery guarantees, etc.)
are left to implementations and generally depend on available
infrastructure and application goals.

2) Augmented event structures: An overall aggregate exe-
cution can be modelled as an event structure [19], where each
event denotes a round. Following the approach of [20], we
enrich an event structure with further information e.g. about
the device in which an event happens.

Definition 1 (Augmented Event Structure): An augmented
event structure is a 4-tuple E = 〈E, , d, s〉 where E is a
countable set of events, ⊆ E × E is a messaging relation,
d : E → ∆ is a mapping from events to the devices where
they happened, s : E → S is a mapping from events to (some
representation of) sensors status, such that:
• for any device δ ∈ ∆, the set of events Eδ =
{ε ∈ E | d(ε) = δ} forms a sequence of chains, i.e.,
there are no distinct ε, ε1, ε2 ∈ Eδ such that either ε εi
for i = 1, 2 or εi ε for i = 1, 2;

• the transitive closure of forms an irreflexive partial
order < ⊆ E × E, called causality relation;

• the set Xε = {ε′ ∈ E | ε′ < ε} ∪ {ε′ ∈ E | ε ε′} is
finite for all ε (i.e., and < are locally finite).

See Figure 1 for an example of an augmented event structure.
We also introduce the following concepts and notation:
• p(ε) denotes the previous event at the same device, i.e.,

the unique ε′ ∈ E such that ε′ ε, d(ε) = d(ε′);
• N (ε) denotes the neighbours of ε, i.e., the set of events
{ε′ ∈ E | ε′ ε};

• past(ε) denotes the set of past events for ε, i.e., the set
of events {ε′ ∈ E | ε′ < ε};

• pastδ(ε) denotes the set of past events for ε at the same
device δ, i.e., the set {ε′ ∈ E | ε′ < ε ∧ d(ε′) = d(ε)};

• given two events ε, ε′ ∈ E such that ε′ ε, their
temporal distance lag(ε, ε′) measures how much time has
passed in ε since the interaction with ε′ happened;

• given two events ε, ε′ ∈ E such that ε′ ε, their spatial
distance dist(ε, ε′) measures how much space is covered
moving from ε′ to ε.

3) Computational fields: Aggregate computing is part of
field-based coordination [22], [12], [23], an approach based on
a computational interpretation of the notion of field as found
in physics. Computational fields are distributed data structures
which may be generated by the agents or the environment.
Now, in the aforementioned system model, a field can be
thought of as a map from devices to values or, in its “dynamic
interpretation”, as a map from execution rounds to values. The

ε1
1 ε1

2 ε1
3

ε2
1 ε2

2 ε2
3 ε2

4 ε2
5

ε3
1 ε3

2 ε3
3 ε3

4

ε4
1 ε4

2 ε4
3 ε4

4 ε4
5 ε4

6

ε5
1 ε5

2 ε5
3

Devices

Time

Fig. 1. Example of an event structure modelling a distributed system
execution. Nodes labelled by εδk denote the k-th round of device δ. The
yellow background highlights a reference event, from which its past (green)
and future (blue) are identified through the causal relationship implied by the
arrows denoting neighbour events.

latter interpretation means that a field can also be defined as
a function whose domain is an event structure.

So, the aggregate programming model is based on the
denotational abstraction of a computational field [12], [24]
(field for short), which is essentially a function mapping each
event of an event structure (domain) to a computational value.
Fields can be used to represent collective data, results, and
commands. For instance, having a set of devices query their
local temperature sensor yields a field of temperature readings;
or, a set of robots may coordinate their motion, which can be
denoted as a field of movement vectors. Then, aggregate com-
puting languages like FCPP [25] and ScaFi [26] provide means
for describing how fields can be created, manipulated, and
composed. Such languages are implementations of a minimal
core language called the field calculus [12], which provides
a formal framework characterising the semantics of field
computations in terms of a minimal set of functional constructs
handling (i) abstraction and composition, (ii) stateful evolution
of fields, and (iii) neighbour-based communication. For the
purpose of this paper, it is sufficient to note that such a formal
framework represents the premier tool for implementing the
algorithms and techniques described in the following sections.
However, we presented them in a more general and accessible
form, by referring only to the notions discussed in this section,
i.e., augmented event structures and computational fields. The
reader interested in the details of field calculi can refer to [12].

B. Aggregate Processes

An aggregate process [16], [15] is a transient, concurrent
field computation that runs on a dynamic domain of devices.
It is characterised by the following.

Aggregate process vs. instance, generation fields, spawning:
An aggregate process P is a kind of field computation with
given programmed behaviour. A single aggregate process can
be run in multiple process instances Pi, each associated to a
unique process identifier (pid) i, which we assume also embeds

construction parameters for a process instance. New instances
of an aggregate process P are spawned through a generation
field GP , locally producing a set of identifiers GP (ε) = {i . . .}
in each event ε, of process instances that need to be created in
that event ε (which we call initiator for Pi). For each process
instance Pi, we use the Boolean predicate πPi(ε) to denote
whether such instance is being executed at ε (either being
initiated by ε, or through propagation from previous events).

Process output and participation status: Each process in-
stance Pi, if active in an event ε (i.e., πPi(ε) = >), locally
computes both an output OPi (ε) (returned to the process
caller) and a status sPi

(ε) that can take the following values:
1) internal : the event is part of the process, and propagates

it to other events of which it is a neighbour (see below);
2) external : the event is not part of the process;2

3) border : the event is in the process but does not propagate
it to any future event (even the one on the same device).

The operation through which Pi produces its output and status
is defined by its program, which we do not investigate in this
paper; the interested reader may see [16] for details.

Automatic propagation of process instances to neighbours:
A process instance Pi active in an event ε automatically
propagates to any event ε′ of which ε is a neighbour (ε ε′)
if and only if it returns internal status in ε. In formulas:

πPi
(ε) =

> if i ∈ GP (ε)

> if ∃ε′ ε. πPi
(ε′) ∧ sPi

(ε′) = internal

⊥ otherwise.

An example of evolution dynamics of two concurrent pro-
cesses is provided in Figure 2. This mechanism allows devices
to dynamically enter or leave the process, which can expand
or shrink in space, eventually ceasing to exist when all devices
quit. For instance, a device can call itself out of a process if its
hop-by-hop distance (also known as gradient [27]) from the
initiator of the process exceeds a certain threshold. Although
the decision of participating or not in a process instance is
ultimately local, that decision may also depend on information
computed collectively within the specific process instance.

Process result vs. process status/shape computation: A pro-
cess computation Pi consists of two (possibly inter-dependent)
parts: the part computing the “shape” (i.e., evolving domain) of
the process, and the part computing the output. These two parts
can be equally important for the functionality, since a different
domain of executing devices usually provides a different set
of contributions, thereby affecting the overall result. Moreover,
running computations on a smaller domain of devices may also
provide non-functional benefits, by using fewer resources than
those needed by a larger system.

Spawning aggregate process instances (construct spawn):
In [16], the field calculus is extended with a construct
spawn(P,GP) that runs independent instances of a field
computation P , where new instances are locally generated
according to a generation field GP . A spawn expression is

2This implies discarding the output and not sharing any information
generated by the execution of Pi with neighbours running the same process.

ε1
1 ε1

2 ε1
3

ε2
1 ε2

2 ε2
3 ε2

4 ε2
5

ε3
1 ε3

2 ε3
3 ε3

4

ε4
1 ε4

2 ε4
3 ε4

4 ε4
5 ε4

6

ε5
1 ε5

2 ε5
3

Devices

Time

Fig. 2. Example of evolution dynamics of two concurrent aggregate process
instances. Consider a process P that propagates only within 1 hop from
initiator events. Instance 1 (green) is initiated by device 4, which keeps it
alive until the end of the computation, by initiating it on each one if its
events ε41 to ε46. Instance 2 (blue) is initiated only in ε22 and ε23, and thus
starts later and closes earlier. Notice that device δ3 in events ε32 and ε33 runs
two process instances simultaneously. This is possible since multiple instances
of the same process are allowed to overlap.

evaluated round by round, and in different rounds the field
G may vary. In a round ε in which, e.g., i ∈ GP (ε), a new
instance of P with identifier i will be spawned locally. We
remark that the computations of different instances Pi and Pj
are fully independent and do not share any data among them.
Hence, they represent separate activities, each with its peculiar
evolution and history.

Output of a spawn expression: The output of a
spawn(P,GP) expression in an event ε is the set of pairs
{(i,OPi

(ε)), . . .} for which πPi
(ε) is true and sPi

(ε) is not
external . Notice that globally this is a field of maps, while
locally to an individual device it is a (possibly empty) map. In
this work, we enhance this construct and propose algorithmic
techniques to improve propagation and shrinking dynamics.

C. Example: situated service discovery

Consider a network of devices in a smart city that may offer
and request services (e.g., computing services as in volunteer
computing [28]). Interactions are limited to neighbours e.g. for
scalability, latency, or privacy reasons. Service requests scan
the surroundings of the requester device for offers including
cost and service-level agreements (SLAs), so that the requester
can choose and consume the offer that it deems best. The
requester and service provider may be hops away, thus other
devices need to act as relays for data and results. This logic
can be expressed through a spawn(P,GP) where GP is the
set of service requests to be spawned, and P is an aggregate
computation that e.g. spreads the process in space until a
certain distance threshold is covered, through a gradient [21],
and collects offers [29] by aggregating them while descending
the spanning tree induced by the gradient field.

TABLE I
SUMMARY OF NOTATION.

Symbol Description
δ Device identifier
ε Event (round) identifier
εδk The k-th round of device δ
d(ε) Device at which event ε occurred
p(ε) Previous event at the same device
past(ε) Set of past events of ε
pastδ(ε) Set of past events of ε on device δ
N (ε) Neighbour past events of event ε
lag(ε, ε′) Temporal distance between events
dist(ε, ε′) Spatial distance between events
P Aggregate process
Pi Aggregate process instance, identified by i
i Process identifier (pid)
GP Generator field producing pids {i} for P
πPi (ε) Whether Pi is active in event ε
OPi (ε) Output of process instance Pi in ε
sPi (ε) Status of process instance Pi in ε
s∗Pi

(ε) Extended status returned by Pi in ε
eSpawnX
(X ∈ {L, S, I,W})

Extended spawn construct (L=legacy,
S=share, I=ispp, W=wispp)

TAX(ε) Termination awareness of event ε according
to spawnX (X ∈ {L, S, I,W})

TL(ε) Termination predicate on event ε
Dw(ε)
(w ∈ {dist, lag})

Shortest-path distances based on weight
function w(ε, ε′) and source predicate src(ε)

Sl(ε) Slowness predicate on event ε
θ Minimum information speed allowed

III. TECHNIQUES FOR DYNAMIC ENSEMBLES

In this section, we describe novel techniques for dynamic
ensemble formation by means of extensions to the basic spawn
function covered in Section II-B. The extended spawn eSpawn
takes a function P similarly to spawn , but P can return an
extended status that can take the additional value terminated .
Such a value is intended to be interpreted by eSpawn as an
indication by P that the process should terminate not only
in the current node, but the termination should spread to all
the nodes in the network. In the following subsections we
shall propose four alternative versions of eSpawn that aim
to achieve the best performance in terms of minimizing the
(computational and networking) resources required to both
guide process propagation, and handle process termination. As
we shall see, those versions will re-interpret the states returned
by P (terminated as well as the others), providing means to
control process propagation and termination.

A. Baselines

A first version of eSpawn has already been presented in
the literature, although with a different name [16], [15]. In
this section, we reformulate it in a way homogeneous to the
other versions we have devised, to facilitate comparisons and
its use as a baseline in experiments (Section IV). Moreover,

we propose a first alternative that, although simple and natural
to realise, leads to significant performance improvements.

First, we consider the legacy version of eSpawn found in
literature [16], which we denote as eSpawnL, and describe
it in terms of how it determines the process status at each
event. When a process instance Pi is active in an event ε
(i.e., πPi

(ε) is true), an extended status s∗Pi
(ε) is returned

by P , and it is interpreted into a “regular” status sPi
(ε) by

eSpawn . Towards this aim, we define termination awareness
for a process instance Pi and event ε as follows.

Definition 2: Predicate TAL(ε) (termination awareness)
denotes the fact that event ε is termination-aware, i.e., either
s∗Pi

demands termination in ε, or some neighbour event was
termination-aware since its previous round. In formulas:

TAL(ε) := s∗Pi
(ε) = terminated or ∃ε′ ∈ N ′(ε). TAL(p(ε′)).

(1)
Above, N ′(ε) = N (ε)− p(ε)∪{ε}, that is the replacement of
p(ε) with ε in N (ε).

According to this definition, if TAL(ε) becomes true , it will
not go back to false in future events ε′ on device d(ε) until
πPi (ε

′) becomes false . This has the purpose of keeping track
in device d(ε), for some rounds, that P should terminate.

Actual termination occurs when both ε and all its neighbours
N (ε) agree that the process should terminate, as computed by
the termination predicate TL(ε) defined by:

TL(ε) := ∀ε′ ∈ N ′(ε). TAL(ε′). (2)

When TL(ε) becomes true , it is time for the process to
terminate at device d(ε), with sPi (ε) taking value external
(regardless of the value s∗Pi

(ε) returned by P). If this is not
the case, but s∗Pi

(ε) = terminated , then sPi
(ε) = internal ,

indicating that ε is still within Pi (in order to propagate
termination). In all other cases, sPi

(ε) = s∗Pi
(ε).

As mentioned above, a significant improvement can be eas-
ily obtained by exploiting the semantics of the share operator
recently introduced in Field Calculus (FC) [30], instead of
the rep and nbr operators used in eSpawnL . In terms of
computation on the event structure, the eSpawnS extension
(where subscript S is for share) allows a more efficient
definition of predicate TAS(ε) compared to Equation (1), by
directly accessing the predicate in neighbour events:

TAS(ε) := s∗Pi
(ε) = terminated or ∃ε′ ∈ N (ε). TAS(ε′).

(3)
The propagation of termination awareness TAS is clearly
faster in this case, since event ε directly exploits the values of
TAS of its neighbours ε′, instead of that of their predecessors
p(ε′). Actual termination TS(ε) in eSpawnS is defined as in
Equation (2), but based on the TAS defined by Equation (3).

B. Exploiting Information Speed

We now describe a further extensions to spawn , addressing
some shortcomings of eSpawnS : in particular, the possible
resurgence of terminated processes due to some isolated nodes
not receiving the termination signal. The idea on which it is
based, inspired by the BIS algorithm [21], is that of estimating

the spatial and temporal distances of each event ε in the
process from the source event ε0 that has started the process. In
case these two distances correspond to an information speed
that is below a certain threshold (more details below), it is
taken as an indication of a likely disconnection from the
source, prompting the device d(ε) to leave the process.

We call this extension eSpawnI (where subscript I is for
Information Speed-based Process Propagation, also shortened
as ISPP). In eSpawnI , termination awareness TAI computed
as TAS Equation (3). Differently from eSpawnS , though, TAI
becoming true implies a transformation in the returned status,
so that s∗Pi

(ε) = internal gets converted to sPi
(ε) = border

(cf. Equation (6)). This implies that termination-aware nodes
do not propagate the process to their neighbours, slowing
down the process expansion and helping termination to catch
up with it. Furthermore, there is no need for a termination
predicate TI : since termination-aware nodes do not propagate
the process (not even to their next event), once every neighbour
is termination-aware the process naturally stops anyway.

In addition to this difference, eSpawnI also features another
term called Sl(ε) to detect a slow information propagation
(hence likely disconnection from the source). Let us denote
with Dw(ε) a classic shortest-path distance function based
on weights w(ε, ε′) (where ε′ ε) and a source predicate
src(ε). In each event, this distance estimate is updated to the
smallest distance through a neighbour event, as in a step of
the Bellman-Ford algorithm (but on an event structure):

Dw(ε) :=

{
0 if src(ε)
min{Dw(ε′) + w(ε, ε′) : ε′ ∈ N (ε)} otherwise.

(4)
Through Dw, an estimation of the spatial or temporal distance
of events from sources can be obtained after a few rounds of
computation, even for those far from sources. Assume that
src(ε) is true in all events on the device that spawned the
process by providing pid i in the generation field GP , and w
is either the spatial distance dist or the temporal distance lag
(cf. Section II-A2).

An important property of Ddist is that, since it is a min-
imisation and dist(ε, p(ε)) is always 0, it can never increase
from two events p(ε) and ε on the same device d(ε): indeed,
even if the values from other neighbours increase, Ddist(ε)
can keep the previous value Ddist(p(ε)). On the contrary, in
Dlag , the weight lag(ε, p(ε)) is the time interval between two
rounds, which is positive hence Dlag(ε) can increase between
two successive events on the same device. In fact, it can be
shown that Dlag(ε) is always equal to the temporal distance
between the current event ε and the most recent source event
in ε’s past (modulo imprecisions in lag measurements). Thus,
we define slowness as follows.

Definition 3: Predicate Sl(ε) (slowness) denotes the fact that
the information speed detected at event ε is too slow, i.e.:

Sl(ε) := Ddist(ε) ≤ θ(Dlag(ε)−∆t) (5)

where ∆t is the average time interval between rounds, and θ
is a constant representing the minimum speed of information

that we are willing to allow (cf. Section III-D).
When Sl(ε) becomes true, it causes an event to also enter

the border state. Summarising, the status sPi is computed as:

sPi (ε) :=

external if s∗Pi

(ε) = external , otherwise
border if s∗Pi

(ε) = border or TAI(ε) or Sl(ε)
internal otherwise.

(6)
An important role of Sl in making a process terminate

everywhere in the network is when devices move, hence pos-
sibly quitting the main part of the process (the one originated
from its source). In such a case, events ε happening in the
connected devices are still not slow, because newer events
happening in the source continue to spread a 0 temporal
distance that leads to Dlag(ε) to be (with high likelihood) too
low for Equation (5). On the other hand, events happening on
the disconnected devices no longer receive information from
the source, so that their Dlag keeps increasing while their
estimated spatial distance Ddist stays constant, up to a point
when Sl(ε) becomes true , making them enter the border state,
stopping process propagation and ultimately terminating that
disconnected part. Without the Sl mechanism, isolated groups
of devices would continue to run the process, and, even worse,
would propagate it to any devices they dynamically connect
to through movements of the devices, possibly resurrecting it
after the process has already terminated its task elsewhere.

C. Wave-like Propagation

The last extension of spawn we introduce in this paper
is eSpawnW (where subscript W is for Wave-like ISPP).
Technically, this version is similar to eSpawnI , but the two
versions exhibit fundamentally different behaviours: while
eSpawnI aims at terminating isolated instances of the process
that would not become aware in due time that the process must
terminate everywhere, eSpawnW acts during a phase when
the process is still propagating (e.g., the message has not been
delivered yet to destination). Thus, it aims at modifying the
dynamic evolution of alive processes, by removing them from
selected devices that have already acted as propagators, and
are no longer required to support the process.

Specifically, the difference between eSpawnW and
eSpawnI resides in the definition of the src predicate used
by Ddist and Dlag to determine whether an event ε is a
source event. In eSpawnW , src(ε) is only true in the very
first event when the process is generated by providing pid i
in the generation field GP , and not in the following events
on the same device (unlike eSpawnI). This apparently minor
difference has large consequences in the algorithm behaviour:
as the source ephemerally disappears, every event behave as
if being in a disconnected part, eventually becoming slow and
leaving the process (including the original source itself). This
leads to a wave of termination that starts from the source
device and propagates outwards, with some time lag after
the propagation of the process itself. At any given time, the
process is thus active only on a set of events with similar
spatial distances from ε0, leading to a wave-like propagation.

This still allows the process to travel far through the network,
while keeping its spatial extension low at all times.

D. Adapting to Different Scenarios

The newly introduced extensions both rely on a crucial
parameter θ, the minimum information speed that we are
willing to allow. Correctly tuning this parameter is crucial for
obtaining the best performance. If θ becomes higher than the
average information speed in the network, processes terminate
prematurely, failing to accomplish their tasks. In order to avoid
this scenario, the estimate of θ needs to be on the conservative
side: however, if it is too low, the behaviour of the new
extensions will degenerate to be very similar to eSpawnS .

Furthermore, a one-fits-all number for θ is impossible, as the
information speed depends on many parameters: time intervals
between rounds t and their variance tvar, communication
radius r, dimensionality of the space n, device density dens,
movement speed speed and whether propagation is allowed
through a single path or multiple paths. If the process is
restricted to a single path, the theoretical-based estimation in
[21] of single-path information speed can be used:

θsp =
8n(1 + tvar2)r

4(n+ 1)t
+

speed
2

. (7)

For instance, this would apply to the tree topology scenario in
the experiments. If instead the propagation is allowed through
multiple paths, a theoretical-based approach is more compli-
cated, and empirical estimates (obtained through simulation
tools such as FCPP [25]) are most useful. In the particular case
where n = 2, we found that the following formula behaved
reasonably well in a large number of settings:

θmp = (0.08dens−0.7)speed+(0.075dens2−1.6dens+11)r/t
(8)

IV. EXPERIMENTS

We have executed a number of experiments on the proposed
algorithms using the FCPP simulator [25]. The basic use case
implemented by all experiments is a network of devices where,
at some point in time, a source device δF (from) sends a
message through a process to reach a destination device δT
(to). It is worth noting that, in the simulation, there is a global
clock (unlike in a real world scenario), which however is
not available to the program run by individual nodes. Round
durations are not identical (see parameter tvar below), and
the simulator provides to each node the exact spatial distance
dist and temporal distance lag between neighbour events,
needed for computing the speed of information in eSpawnI
and eSpawnW (see Section III-B). In a real scenario such
measures would be estimates subject to errors.

We distinguish between two scenarios based on the topol-
ogy followed by communications. In the spherical topology,
messages originate in the δF device and spread radially in 3D
trying to reach the δT device. In the tree topology, the devices
are organised in a spanning tree, and communications follow
the edges of the tree from δF to δT . In both scenarios, the
events happening at the δT device make the process function

time

ap
ro
c tvar = 10, dens = 10, hops = 20, speed = 10

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

spherical (legacy) spherical (share)
spherical (ispp) spherical (wispp)

speed

ap
ro
c tvar = 10, dens = 10, hops = 20

0 5 10 15 20 25 30 35 40

0.1

0.2

0.3

0.4

0.5

0.6

0.7

spherical (legacy) spherical (share)
spherical (ispp) spherical (wispp)

dens

ap
ro
c tvar = 10, hops = 20, speed = 10

8 10 12 14 16 18 20 22 24 26 28
10−1.4

10−1.2

10−1

10−0.8

10−0.6

10−0.4

10−0.2

spherical (legacy) spherical (share)
spherical (ispp) spherical (wispp)

hops

ap
ro
c tvar = 10, dens = 10, speed = 10

4 6 8 10 12 14 16 18 20 22 24

10−1.4

10−1.2

10−1

10−0.8

10−0.6

10−0.4

10−0.2

spherical (legacy) spherical (share)
spherical (ispp) spherical (wispp)

Fig. 3. Average processes with spherical topology varying time, speed, dens, hops.

P return status terminated , since the reception of the message
implies the termination of the process in the whole network.
For simplicity, in each run we generate only one process at
time t = 10 and wait until time t = 50 for its completion.
We also verified that results do not change by generating
several processes in each test, as expected since processes
are independent of one another. We considered 80.000 total
scenarios, with 200 different random seeds and 40 different
values of four parameters:

1) tvar (relative variance of round durations as percentage),
varying from 0% (quasi-synchronous rounds) to 40%
(highly asynchronous rounds), in steps of 1%;

2) dens (average number of neighbour devices for a device),
varying from 8 (very sparse network) to 28 (very dense
network), in steps of 0.5;

3) hops (average diameter of the network in hops), varying
from 4 (small networks) to 24 (relatively large networks),
in steps of 0.5;

4) speed (movement speed as percentage of communication
radius over round duration). varying from 0% (static
nodes) to 40% (highly mobile nodes), in steps of 5%.

The repository of experiments is publicly available online for
reproducibility.3

A. Spherical Topology

We first discuss results with the spherical topology. Figure 3
shows the average number of active processes (aproc) for
each version of eSpawn: eSpawnL (legacy), eSpawnS (share),
eSpawnI (ispp), and eSpawnW (wispp). The top left graph
shows the variation of aproc over 50 time instants, averaging
over 200 random cases. The other graphs show the variation
of aproc over, respectively, speed, dens, and hops; with each
point averaged over 50 time instants of 200 random cases.

In resource consumption, eSpawnL is much worse than its
extensions, while eSpawnI and eSpawnW still outperform
eSpawnS . All the algorithms successfully deliver the message
at about the same time (not shown in the figure). These results
are confirmed varying speed, dens, and hops.

In Figure 3 (bottom left) it is also visible the small relative
difference of performance between eSpawnW and eSpawnI
(with the former outperforming the latter), when varying the

3https://github.com/fcpp-experiments/process-management

https://github.com/fcpp-experiments/process-management

time

ap
ro
c tvar = 10, dens = 10, hops = 10, speed = 0

0 5 10 15 20 25 30 35 40 45 50
0

0.05

0.1

0.15

0.2

0.25

tree (legacy) tree (share)
tree (ispp) tree (wispp)

speed

ap
ro
c tvar = 10, dens = 10, hops = 10

0 5 10 15 20 25 30 35 40

0.05

0.1

0.15

0.2

0.25

tree (legacy) tree (share)
tree (ispp) tree (wispp)

speed

dc
ou

n
t tvar = 10, dens = 10, hops = 10

0 5 10 15 20 25 30 35 40

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

tree (legacy) tree (share)
tree (ispp) tree (wispp)

tvar

ap
ro
c dens = 10, hops = 10, speed = 0

0 5 10 15 20 25 30 35 40

0.02

0.04

0.06

0.08

0.1

0.12

0.14

tree (legacy) tree (share)
tree (ispp) tree (wispp)

Fig. 4. Average processes with tree topology varying time, speed (with delivered messages count), tvar.

density of devices, while keeping the other parameters fixed.
Additionally, when we vary the “hop” size of the network
(bottom right), we detect an increasing gap between the
performance of eSpawnW and eSpawnI as the number of
hops increases. This is expected, as the wave of terminating
nodes in eSpawnW has more time to be effective in large-
diameter networks. Finally, we have also run tests by varying
tvar while keeping the other parameters fixed. We do not report
the resulting plot since it does not show particular trends,
beside confirming the relative performance order between the
four versions of eSpawn .

B. Tree Topology

For the tree scenario, we implemented an adaptive algorithm
computing the spanning tree based on [31]. Then, we guide
process propagation by first following tree parents towards the
root, and then following children that include the destination in
their routing table (also computed through a literature adaptive
algorithm, called single-path collection [32]).

Figure 4 (top left) shows the average number of active
processes over time for each version of eSpawn (parameters

indicated in the plots). As expected, the percentage of nodes
running the process at any given time is significantly lower
than for the spherical topology (cf. Figure 3). The eSpawnL is
worse than its extensions, while eSpawnW clearly outperforms
both eSpawnS and (to a lesser degree) eSpawnI . All the
algorithms successfully deliver the message at about the same
time (not shown in the figure).

As the tree structure is continuously adapted, it is expected
that when devices move (i.e., their speed is not 0) this could
impact the performance of the algorithms. Figure 4 (top
right and bottom left) shows both the average percentage
of process nodes and the delivery count while varying the
device speed and keeping the other parameters fixed. For this
parameter setting, all the algorithms except eSpawnW deliver
the message even at high speeds.

A similar result is visible in Figure 4 (bottom right) where
we vary the tvar of the rounds of devices, while keeping
the other parameters fixed. Again, all the algorithms except
eSpawnW deliver the message even at high variance, while
eSpawnW performance degrades, although more smoothly
than in the case of speed increase.

Similarly to the spherical topology, varying the density of
the devices, while keeping the other parameters fixed, just
makes more visible the relative difference of performance be-
tween eSpawnW and eSpawnI . Similar outcomes are obtained
by varying the hops, and are thus not presented here.

V. RELATED WORK

In the following, we distinguish multiple clusters of works
that share some commonalities with our approach to dis-
tributed computational aggregate formation.

Pattern languages: The proposed work can be framed
within the field of self-organising multi-robot pattern for-
mation [33]. The survey [9] on spatial computing identifies
pattern languages as a class of works aiming to produce
spatial, geometrical, or topological patterns in amorphous
computers made of a several simple, unreliable devices lo-
cally communicating with one another. For instance, Origami
Shape Language (OSL) [34], enables to build shapes on a
surface through a sequence of flat folding operations. An
OSL program is then implemented by uniform cell programs
leveraging gradients, neighbourhood queries, and other local
operations like local folding. Another example is Growing
Point Language [35], which uses trajectories of “growing
points” (mobile computations) diffusing across nodes to form
patterns. However, unlike aggregate processes, growing points
are active at a single domain at a time. These works are related
as they propose mechanisms for building shapes incremen-
tally in systems of neighbour-interacting devices. However,
they tend to focus on the shape of groups and neglect the
information processing carried out in the defined domains.

Ensemble-based approaches: An ensemble is a dy-
namic group of devices that forms to support group-level
tasks. In Distributed Emergent Ensembles of Components
(DEECo) [13], ensembles are characterised by a membership
condition that expresses how a set of components get bound
together. Within an ensemble, the components interact by
implicit knowledge exchange. Aggregate processes can also
be seen as regulated through a membership condition, i.e., the
status determining whether the node is willing to participate
in the process; however, ensemble formation is a dynamic
activity that runs on a given communication topology that also
regulates interactions within processes. Service Component
Ensemble Language (SCEL) [36] is a language that enables to
express the behaviour of ensembles interacting via attributed-
based communication. Ensemble formation is thus regulated
through predicates over attributes exposed by components.
This is different from aggregate processes, where communica-
tion is constrained by both the given neighbouring relationship
and process membership. In summary, both in DEECo and
SCEL, the key aspect of ensemble domain propagation and
shrinking addressed in this paper is not directly captured.

Clustering and Area Formation: Swarm clustering [37]
brings the data clustering problem into swarm settings, where
the idea is to group agents into clusters such that the agents in
the same cluster are more correlated to each other (e.g., spa-
tially or temporally) than to the agents belonging to other clus-

ters. For instance, in [38], a mathematical model for cluster-
based group formation is proposed that takes inspiration from
bee foraging and recruitment in order to assemble groups with
complementary skills. A similar problem involves organising
a system into regions or areas to solve a certain problem
with a configurable level of decentralisation [39], cf. the Self-
organising Coordination Regions pattern [40]. Swarm clusters
and such pattern can, indeed, be expressed with aggregate pro-
cesses. Also, aggregate processes seamlessly model the case
where clusters need to overlap, which may be instrumental for
conflict resolution or inter-regional coordination. Vice versa,
clustering processes could be used to regulate the formation of
aggregate process domains; however, these could not naturally
cover all the possible evolution dynamics that CASs may
exhibit (e.g., wave-like ones).

Spreading and epidemic processes over networks: The topic
of this paper is also potentially related to spreading and epi-
demic processes in time-varying and complex networks [41],
[42]. Among the key distinguishing factors between those
works and this one there are the system model (cf. Section II)
and the emphasis on programmability of the logic for in-
cremental process domain evolution. However, studying the
dynamics of aggregate processes via tools and methods from
network science could be an interesting future work.

VI. CONCLUSION

In this paper, we have addressed the dynamic evolution
of distributed computational ensembles (or aggregates), using
descriptions over augmented event structures. Starting from
the field-based framework of aggregate processes [16], [18],
[15], we have proposed algorithms for effective propagation
and closure of group-wise processes, providing trade-offs in
terms of efficiency (e.g., in terms of rounds and messages),
design simplicity, and functionality. Specifically, we leveraged
information speed statistics to propose shrinking modalities
and wave-like propagation strategies. Then, we have shown
experimentally that the novel algorithms improve over a base-
line given by previous work in [16], [15].

We believe that the algorithms proposed in this work can
provide a benefit to existing scenarios and coordination models
built on aggregate processes, such as situated tuples [18] and
Self-organising Coordination Regions [40]. In future work, we
consider studying aggregate processes with methods found in
areas like complex networks and epidemics (briefly reviewed
in Section V), e.g., to devise formal guarantees on aspects of
evolution dynamics. Finally, we would also consider exploiting
the ability of aggregate processes of dynamically forming
cohesive groups of devices to promote self-improving system
integration (SISSY) goals [43].

REFERENCES

[1] R. D. Nicola, S. Jähnichen, and M. Wirsing, “Rigorous engineering of
collective adaptive systems: special section,” Int. J. Softw. Tools Technol.
Transf., vol. 22, no. 4, pp. 389–397, 2020.

[2] A. Bucchiarone, M. D’Angelo, D. Pianini, G. Cabri, M. De Sanctis,
M. Viroli, R. Casadei, and S. Dobson, “On the social implications of
collective adaptive systems,” IEEE Technol. Soc. Mag., vol. 39, no. 3,
pp. 36–46, 2020.

[3] A. Farahani, G. Cabri, and E. Nazemi, “Self-* properties in collective
adaptive systems,” in Proceedings of the 2016 ACM International Joint
Conference on Pervasive and Ubiquitous Computing, UbiComp Adjunct
2016. ACM, 2016, pp. 1309–1314.

[4] T. W. Malone and K. Crowston, “The interdisciplinary study of coordi-
nation,” ACM Comput. Surv., vol. 26, no. 1, pp. 87–119, 1994.

[5] J. Ferber, Multi-agent systems - an introduction to distributed artificial
intelligence. Addison-Wesley-Longman, 1999.

[6] D. Ye, M. Zhang, and A. V. Vasilakos, “A survey of self-organization
mechanisms in multiagent systems,” IEEE Trans. Syst. Man Cybern.
Syst., vol. 47, no. 3, pp. 441–461, 2017.

[7] S. von Mammen, S. Tomforde, and J. Hähner, “An organic computing
approach to self-organizing robot ensembles,” Frontiers Robotics AI,
vol. 3, p. 67, 2016.

[8] M. Brambilla, E. Ferrante, M. Birattari, and M. Dorigo, “Swarm
robotics: a review from the swarm engineering perspective,” Swarm
Intell., vol. 7, no. 1, pp. 1–41, 2013.

[9] J. Beal, S. Dulman, K. Usbeck, M. Viroli, and N. Correll, “Organizing
the aggregate: Languages for spatial computing,” in Formal and Practi-
cal Aspects of Domain-Specific Languages: Recent Developments. IGI
Global, 2013, ch. 16, pp. 436–501.

[10] R. Newton and M. Welsh, “Region streams: Functional macroprogram-
ming for sensor networks,” in Workshop on Data Management for Sensor
Networks, 2004, pp. 78–87.

[11] R. Casadei, “Macroprogramming: Concepts, state of the art, and
opportunities of macroscopic behaviour modelling,” CoRR, vol.
abs/2201.03473, 2022. [Online]. Available: https://arxiv.org/abs/2201.
03473

[12] M. Viroli, J. Beal, F. Damiani, G. Audrito, R. Casadei, and D. Pianini,
“From distributed coordination to field calculus and aggregate comput-
ing,” J. Log. Algebraic Methods Program., vol. 109, 2019.

[13] T. Bures, I. Gerostathopoulos, P. Hnetynka, J. Keznikl, M. Kit, and
F. Plasil, “DEECO: an ensemble-based component system,” in CBSE’13,
Proceedings of the 16th ACM SIGSOFT Symposium on Component
Based Software Engineering. ACM, 2013, pp. 81–90.

[14] R. Hennicker and A. Klarl, “Foundations for ensemble modeling - the
helena approach - handling massively distributed systems with elaborate
ensemble architectures,” in Specification, Algebra, and Software - Essays
Dedicated to Kokichi Futatsugi, ser. LNCS, vol. 8373. Springer, 2014,
pp. 359–381.

[15] R. Casadei, M. Viroli, G. Audrito, D. Pianini, and F. Damiani, “En-
gineering collective intelligence at the edge with aggregate processes,”
Eng. Appl. Artif. Intell., vol. 97, p. 104081, 2021.

[16] ——, “Aggregate processes in field calculus,” in International Confer-
ence on Coordination Languages and Models. Springer, 2019, pp.
200–217.

[17] G. Audrito, R. Casadei, and G. Torta, “Fostering resilient execution
of multi-agent plans through self-organisation,” in IEEE International
Conference on Autonomic Computing and Self-Organizing Systems,
ACSOS 2021, Companion Volume. IEEE, 2021, pp. 81–86.

[18] R. Casadei, M. Viroli, A. Ricci, and G. Audrito, “Tuple-based coor-
dination in large-scale situated systems,” in Coordination Models and
Languages - 23rd International Conference, COORDINATION 2021,
Proceedings, ser. LNCS, vol. 12717. Springer, 2021, pp. 149–167.

[19] M. Nielsen, G. D. Plotkin, and G. Winskel, “Petri nets, event structures
and domains, part I,” Theor. Comput. Sci., vol. 13, pp. 85–108, 1981.

[20] G. Audrito, J. Beal, F. Damiani, and M. Viroli, “Space-time universality
of field calculus,” in Coordination Models and Languages, ser. LNCS,
vol. 10852. Springer, 2018, pp. 1–20.

[21] G. Audrito, F. Damiani, and M. Viroli, “Optimal single-path information
propagation in gradient-based algorithms,” Sci. Comput. Program., vol.
166, pp. 146–166, 2018.

[22] M. Mamei and F. Zambonelli, “Field-based coordination for pervasive
computing applications,” in Bio-Inspired Computing and Communica-
tion, 1st Workshop on Bio-Inspired Design of Networks, BIOWIRE 2007,
ser. LNCS, vol. 5151. Springer, 2007, pp. 376–386.

[23] D. Xiao and R. J. Hubbold, “Navigation guided by artificial force
fields,” in Proceeding of the CHI ’98 Conference on Human Factors
in Computing Systems. ACM, 1998, pp. 179–186.

[24] M. Mamei, F. Zambonelli, and L. Leonardi, “Co-fields: Towards a
unifying approach to the engineering of swarm intelligent systems,”
in Engineering Societies in the Agents World III, 3rd International
Workshop, ESAW 2002, Revised Papers, ser. LNCS, vol. 2577. Springer,
2002, pp. 68–81.

[25] G. Audrito, “FCPP: an efficient and extensible field calculus frame-
work,” in International Conference on Autonomic Computing and Self-
Organizing Systems (ACSOS). IEEE, 2020, pp. 153–159.

[26] R. Casadei, M. Viroli, G. Audrito, and F. Damiani, “FScaFi: A core
calculus for collective adaptive systems programming,” in Leveraging
Applications of Formal Methods, Verification and Validation: Engineer-
ing Principles, ser. LNCS, vol. 12477. Springer, 2020, pp. 344–360.

[27] G. Audrito, R. Casadei, F. Damiani, and M. Viroli, “Compositional
blocks for optimal self-healing gradients,” in 11th IEEE International
Conference on Self-Adaptive and Self-Organizing Systems, SASO 2017.
IEEE Computer Society, 2017, pp. 91–100.

[28] T. M. Mengistu and D. Che, “Survey and taxonomy of volunteer
computing,” ACM Comput. Surv., vol. 52, no. 3, pp. 59:1–59:35, 2019.
[Online]. Available: https://doi.org/10.1145/3320073

[29] G. Audrito, R. Casadei, F. Damiani, D. Pianini, and M. Viroli, “Optimal
resilient distributed data collection in mobile edge environments,”
Comput. Electr. Eng., vol. 96, no. Part, p. 107580, 2021. [Online].
Available: https://doi.org/10.1016/j.compeleceng.2021.107580

[30] G. Audrito, J. Beal, F. Damiani, D. Pianini, and M. Viroli, “Field-
based coordination with the share operator,” Log. Methods Comput. Sci.,
vol. 16, no. 4, 2020.

[31] J. Beal, “Flexible self-healing gradients,” in Proceedings of the 2009
ACM symposium on Applied Computing, 2009, pp. 1197–1201.

[32] M. Viroli, G. Audrito, J. Beal, F. Damiani, and D. Pianini, “Engineering
resilient collective adaptive systems by self-stabilisation,” ACM Trans.
Model. Comput. Simul., vol. 28, no. 2, pp. 16:1–16:28, 2018.

[33] H. Oh, A. R. Shirazi, C. Sun, and Y. Jin, “Bio-inspired self-organising
multi-robot pattern formation: A review,” Robotics Auton. Syst., vol. 91,
pp. 83–100, 2017.

[34] R. Nagpal, “Programmable self-assembly: constructing global shape
using biologically-inspired local interactions and origami mathematics,”
Ph.D. dissertation, Massachusetts Institute of Technology, Cambridge,
MA, USA, 2001. [Online]. Available: http://hdl.handle.net/1721.1/86667

[35] D. Coore, “Botanical computing: a developmental approach to
generating interconnect topologies on an amorphous computer,” Ph.D.
dissertation, Massachusetts Institute of Technology, Cambridge, MA,
USA, 1999. [Online]. Available: http://hdl.handle.net/1721.1/80483

[36] R. D. Nicola, M. Loreti, R. Pugliese, and F. Tiezzi, “A formal approach
to autonomic systems programming: The SCEL language,” ACM Trans.
Auton. Adapt. Syst., vol. 9, no. 2, pp. 7:1–7:29, 2014.

[37] C. Lee, M. Kim, and S. Kazadi, “Robot clustering,” in Proceedings of
the IEEE International Conference on Systems, Man and Cybernetics,
2005. IEEE, 2005, pp. 1449–1454.

[38] D. S. dos Santos and A. L. C. Bazzan, “Distributed clustering for
group formation and task allocation in multiagent systems: A swarm
intelligence approach,” Appl. Soft Comput., vol. 12, no. 8, pp. 2123–
2131, 2012.

[39] D. Weyns and T. Holvoet, “Regional synchronization for simultane-
ous actions in situated multi-agent systems,” in Multi-Agent Systems
and Applications III, 3rd International Central and Eastern European
Conference on Multi-Agent Systems, CEEMAS 2003, Proceedings, ser.
LNCS, vol. 2691. Springer, 2003, pp. 497–510.

[40] R. Casadei, D. Pianini, M. Viroli, and A. Natali, “Self-organising coordi-
nation regions: A pattern for edge computing,” in Coordination Models
and Languages - 21st International Conference, COORDINATION 2019
Proceedings, ser. LNCS, vol. 11533. Springer, 2019, pp. 182–199.

[41] C. Nowzari, V. M. Preciado, and G. J. Pappas, “Analysis and control
of epidemics: A survey of spreading processes on complex networks,”
IEEE Control Systems Magazine, vol. 36, no. 1, pp. 26–46, 2016.

[42] M. Cremonini and S. Maghool, “The dynamical formation of ephemeral
groups on networks and their effects on epidemics spreading,” Scientific
Reports, vol. 12, no. 1, pp. 1–10, 2022.

[43] K. L. Bellman, J. Botev, A. Diaconescu, L. Esterle, C. Gruhl, C. Lan-
dauer, P. R. Lewis, P. R. Nelson, E. Pournaras, A. Stein, and S. Tomforde,
“Self-improving system integration: Mastering continuous change,” Fu-
ture Gener. Comput. Syst., vol. 117, pp. 29–46, 2021.

https://arxiv.org/abs/2201.03473
https://arxiv.org/abs/2201.03473
https://doi.org/10.1145/3320073
https://doi.org/10.1016/j.compeleceng.2021.107580
http://hdl.handle.net/1721.1/86667
http://hdl.handle.net/1721.1/80483

	Copertina_postprint_IRIS_UNIBO(2)
	paper22-acsos-processes-1
	Introduction
	Background and Formal Framework
	Aggregate Computing
	System and execution model
	Augmented event structures
	Computational fields

	Aggregate Processes
	Example: situated service discovery

	Techniques for Dynamic Ensembles
	Baselines
	Exploiting Information Speed
	Wave-like Propagation
	Adapting to Different Scenarios

	Experiments
	Spherical Topology
	Tree Topology

	Related Work
	Conclusion
	References

