
LOCALIZATION OF PACKET BASED RADIO

TRANSMITTERS IN SPACE, TIME AND

FREQUENCY

BY GORAN IVKOVIC

A dissertation submitted to the

Graduate School—New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Graduate Program in Electrical and Computer Engineering

Written under the direction of

Predrag Spasojevic

and approved by

New Brunswick, New Jersey

May, 2013



ABSTRACT OF THE DISSERTATION

Localization of Packet Based Radio Transmitters in

Space, Time and Frequency

by Goran Ivkovic

Dissertation Director: Predrag Spasojevic

We consider the scenario where one or more sensors observe a frequency band potentially

used by multiple radio transmitters forming packet based networks. Our goal is to

develop algorithms for estimation of spectrum usage in space, time, and frequency.

This estimation is obtained by performing some form of analysis of the received signals

at the sensors. The proposed algorithms can be used for achieving efficient spectrum

utilization by identifying unused portions of spectrum in space, time and frequency as

well as for other applications requiring spectrum monitoring.

The received signals consist of packets from multiple transmitters with possible time-

frequency collisions. Each received signal consists of multiple statistically homogeneous

segments where each combination of active transmitted signals creates one or more of

such segments. In order to perform any form of statistical analysis using conventional

methods for stationary or cyclostationary signals these segments must be first localized

in time. In the first part of the thesis we propose a nonparametric algorithm for solving

this problem. Initial segmentation is computed using a variant of mean shift algorithm,

which is a clustering tool based on nonparametric estimate of the underlying probability

distribution. We show that this type of mean shift algorithm is based on the modified

Newton’s method and provide a convergence analysis which explains how and why
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the algorithm works. Final segmentation results are obtained after applying a cluster

validation procedure and impulse noise filtering on the initial segmentation results.

In the second part of the thesis we propose a method for analysis of the segments

localized in the first step. This method is useful if transmitted signals are linearly mod-

ulated or can be approximated as sums of linearly modulated signals. For each set of

segments generated by the same combination of the transmitted signals we compute a

certain two dimensional slice of the fourth order spectrum. These slices are arranged

in a three way array. We show that under certain conditions it is possible to recover

contributions of individual signals to the observed three way array by decomposing the

array into low rank terms. Thus, for each received signal we can estimate its spectrum

and the associated activity sequence in time. We discuss the uniqueness conditions,

treat the nontrivial problem of fourth order spectrum estimation and propose a numer-

ical algorithm for estimation of the spectra and the associated activity sequences of

individual signals from the observed three way array.

The algorithms for segmentation and fourth order spectrum based analysis require

only one sensor. In the third part of the thesis we assume that multiple sensors are

available. Using the algorithms mentioned above for each transmitter we can estimate

its received spectrum at different sensors. From the received spectra of the same trans-

mitted signal at different sensors it is possible to estimate the source signal spectrum

and transfer functions of the channels between the transmitter and the sensors. For

realistic channels the resulting deconvolution problem is often ill conditioned and then

the solutions provided by existing algorithms are useless. We show that a useful solu-

tion to the formulated blind deconvolution problem can be obtained using the l1 norm

regularization and propose a numerical algorithm for estimation of the channel param-

eters and the source spectrum from the received spectra at the sensors. The estimated

channel parameters depend on the location of the transmitter relative to the sensors

and thus, they can be used for transmitter localization in space.
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Chapter 1

Introduction

1.1 Problem formulation

In this thesis we consider the scenario where one or more sensors observe a frequency

band potentially used by multiple radio transmitters forming packet based networks.

Packet based networks consists of multiple nodes which communicate by exchanging

packets using a certain protocol. Some examples of these networks are 802.11a/b/g,

Bluetooth, various types of cordless phones, etc. Transmitters in these networks are

active only during their packet transmission slots and silent rest of the time. This type

of transmission yields signals with nonpersistent excitation. Thus, each transmitter

transmits a modulated signal which can be statistically characterized by its second

and higher order spectra and whose activity over time is represented with an on/off

sequence. Transmissions of different nodes from the same network are coordinated

by their protocol, which is typically designed to eliminate or minimize time-frequency

collisions. Transmissions of nodes from different types of networks (e. g., Bluetooth and

WLAN) are not coordinated in any way and may result in time-frequency collisions.

Received signal at each sensor consists of packets from different transmitters with

possible time-frequency collisions between the packets coming from heterogeneous sys-

tems. Our first goal is to develop methods for analyzing the received signal at each

sensor. Main goal of the single sensor analysis is the estimation of spectra and as-

sociated activity sequences of the packet based signals present. In other words, the

goal of the single sensor analysis is to localize the packet based signals in time and

frequency. When multiple sensors are available we also wish for each identified trans-

mitter to estimate the signal spectrum and the channel transfer functions between the

transmitter and sensors. From the estimated channel transfer function we can, at least
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approximately, localize the transmitter in space. Therefore, our goal in this work is to

develop algorithms for localization of packet based radio transmitters in space, time,

and frequency.

1.2 Possible applications

Let us now discuss possible applications of the algorithms solving the formulated prob-

lem. By solving the formulated problem we obtain the key information about the trans-

mitters using the observed frequency band: their spectra showing what radio spectrum

frequencies they occupy, their activity sequences in time and their approximate loca-

tions in space. Thus, we obtain the complete picture of radio spectrum utilization in

space, time, and frequency. Obviously, this information enables us to monitor spec-

trum usage in the observed frequency band, which is one possible application of these

algorithms.

Another important observation is that by knowing radio spectrum utilization in

space, time, and frequency we are also identifying unused portions of radio spectrum.

In other words we are finding space-time-frequency spectrum holes, which are caused by

static allocation of radio spectrum. Most existing wireless systems use static spectrum

allocation. Since statically allocated spectrum is only partially used across space and

time, this type of allocation creates space-time-frequency spectrum holes. This fact

implies inefficient radio spectrum utilization. In order to achieve efficient radio spec-

trum utilization a new class of wireless systems with dynamic spectrum allocation is

proposed [1] [2]. These new systems are supposed to exploit unused radio frequencies.

By solving the formulated problem we are identifying the space-time-frequency spec-

trum holes, which can be exploited by the systems with dynamic spectrum allocation.

Therefore, estimation of spectrum usage in space, time, and frequency provides the

crucial information needed for achieving efficient spectrum utilization without causing

interference to the legacy systems.
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1.3 Related work

One line of work which is somewhat related to our problem is spectrum sensing for

cognitive radios. In this type of research it usually assumed that a secondary network

wishes to opportunistically use the spectrum allocated to some primary user. Most of

this work is motivated by the emerging 802.22 standard, where the secondary 802.22

networks should exploit available spectrum allocated to digital TV stations [3]. In order

to avoid causing interference to the primary user the secondary network must be able

to detect if the observed spectrum is used by the primary user. By identifying the

spectrum occupied by the primary user we are also finding spectrum holes which can

be used by the secondary network. This problem is usually formulated as a binary

hypothesis testing. Main method for solving these problems can be classified as follows:

(1) building matched filter detectors for the signals of interest or for some known signal

components in these signals, (2) power spectrum based methods and (3) methods based

on cyclostationarity of the signals of interest [1].

An obvious brute force approach consists in building receivers for each of the sig-

nals using the observed frequency band. This approach requires considerable signal

knowledge and separate receiver for each signal format from the observed frequency

band. Obviously, this approach is very complicated and impractical. It is also unnec-

essary since signal demodulation is not needed here. A much simpler approach is to

exploit deterministic signal components(e. g., pilot carriers, preambles, etc.) that are

embedded in many communication signals [1]. When these deterministic signal compo-

nents exist we can build matched filter detectors for them and thus, detect presence of

signals of interest.In real world even when transmitted signal contains known compo-

nents, these components at the receiving side are not fully known because of effects of

multipath propagation, frequency offset and unknown arrival time. Dealing with these

unknown parameters complicates implementation considerably and limits performance

of the method [4]. Another problem is that with this approach we need a separate

detector for every signal type. In some cases it is not possible to build receivers or

exploit known signal components because required signal knowledge is not available(e.
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g., wireless microphones [5], cordless phones [6], etc.).

Obviously, building receivers or matched filters for known signal components is

not a satisfactory solution and in some cases is not even possible. Therefore, it is

desirable to develop methods that do not require detailed signal knowledge and thus,

are more widely applicable. These methods are based on estimating certain statistical

properties of the received signal. Two most widely used statistical features are power

spectral density(PSD) and cyclostationary spectra. PSD based methods are typically

based on nonparametric PSD estimates computed with certain number of frequency

bins. These PSD estimates are compared with thresholds to determine occupied and

available frequency bins. Various PSD based methods(they are sometimes called energy

detectors) have been proposed for spectrum sensing [1] [7] [8] [9]. All these methods are

based on same principles and have similar properties. Main problem with these methods

is their inability to separate PSD of the signal of interest from that of interfering

signals and noise. Thus, PSD based methods can determine occupied and available

frequency bins, but they are not useful for signal identification. Even for determining

occupancy of frequency bins setting of thresholds requires known noise levels, which

can be problematic in real world conditions.

Second class of statistical methods is based on cyclostationary properties of com-

munication signals. Many communication signals are generated by certain repetitive

mechanisms and are thus, associated with certain periods(e. g., symbol period, chip

period, hopping period, etc.). As a result, statistics of most communication signals

are periodic functions of time. This property is in contrast with stationary signals

whose statistics are independent of time. Hence, most communication signals are not

stationary, but cyclostationary. Periodic fluctuations of statistics in time give rise to

cyclostationary spectral features, which can be used for signal detection and identifi-

cation [10]. Different signal formats are often associated with different periods which

yields different cyclostationary spectral features. Hence, cyclostationary spectra exhibit

certain form of signal selectivity and they are much more useful for signal identification

compared to PSD [11]. Most spectrum sensing methods based on cyclostationarity(e.g.,

[1] [7] [12] and references in [9]) are straightforward applications or simple extensions
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of the general theory presented in [10].

In addition to these main methods there are numerous methods developed for spe-

cific applications [13] [8] [5]. Most of these application specific algorithms are various

heuristics based on the three main classes of methods discussed earlier. More detailed

overview of these algorithms can be found in [9] and references therein.

Let us now discuss if any of these methods are applicable to our problem. We

can build full receivers or detectors for known signal components if we assume that

such components exist and that all needed signal knowledge is available. As already

mentioned, this approach is too complicated and requires separate detector for each

signal format. Therefore, this solution is not satisfactory. Methods based on estimating

signal statistics, such as power spectrum or cyclostationary spectra, assume that the

estimated statistical parameters do not change during the time interval over which these

parameters are estimated. Since in our problem the received signals consist of multiple

signals with nonpersistent excitation it is very difficult to pick the time interval for

estimation during which the estimated parameters do not change. This fact prevents a

straightforward application of these statistical methods in our problem.

Another important point is that most of these spectrum sensing methods explicitly

or implicitly assume only one transmitter in the observed time-frequency window. If

multiple transmitters are present in the observed time-frequency window these meth-

ods cannot produce a comprehensive picture of spectrum usage in space, time, and

frequency. There are very few attempts to deal with multiple transmitters [14] [15].

These approaches treat some special cases and cannot be directly applied to our prob-

lem.

Obviously, the mathematical framework used in spectrum sensing research is not

appropriate for our problem. A more appropriate mathematical framework for our

problem can be found in blind signal separation research. A motivating example for

this area of research is so-called cocktail party problem [16]. In this problem we have

several speakers (or other sound sources) in the same room talking over each other.

The sounds are recorded by an array of microphones placed at different locations in the

room. Each microphone receives a linear combination of source signals and possibly
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their attenuated and delayed versions due to reflections from surrounding objects. The

goal is to recover source signals from the recorded signals at different microphones.

This is an example of blind signal separation problem. The problem is formulated as

estimation of source signals and impulse responses of the channels between the sources

and sensors.

Since blind signal separation problems arise in many different contexts, numerous

approaches have been developed for solving them [17]. These problems are solved by ex-

ploiting some properties of source signals. One class of algorithms assumes that source

signals are statistically independent and non-gaussian. Source signals are recovered

by finding statistically independent components from the observed signals at sensors.

These methods are known as independent component analysis(ICA) algorithms [18]

[19] [20]. In these approaches statistical independence is usually imposed through high

order statistics [17]. Blind signal separation algorithms are not always based on sta-

tistical independence of source signals. Other approaches separate signals by assuming

different autocorrelation functions(or power spectral densities) [21], different cyclosta-

tionary features [22], different time-frequency distributions [23], etc. Some approaches

exploit nonstationary nature of source signals [24] [25] [26]. They are applicable to

speech signals, which are highly nonstationary.

An important class of algorithms has been developed for blind signal separation

problems arising in wireless communications. These algorithms exploit special proper-

ties of analog and digital communication signals such as constant modulus [27] or finite

alphabet property [28] [29]. A very good overview of these methods (also known as blind

beamforming algorithms) is given in [30]. They are applicable when receiver has mul-

tiple antennas. If such a receiver receives several interfering signals, individual source

signals can be recovered using these blind signal separation methods. Adding multiple

antennas introduces spatial dimension into signal processing algorithms. Hence, these

receivers can deal with multiple superimposed signals in a way that is not possible in a

single antenna receiver [31].

In our problem the received signals consist of contributions from multiple radios.
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Our goal is to estimate spectra and activity sequences of the sources and impulse re-

sponses of the channels between the sources and sensors. Thus, our goal is not to

estimate the source signals as in blind signal separation problems but some other pa-

rameters characterizing individual contributions of the different sources. Another im-

portant point is that most blind signal separation methods assume that the number

of sensors is higher than the number of sources, which is unrealistic in most practical

applications. There are some attempts to solve underdetermined blind signal separa-

tion problems [32] [33], but these solutions require additional assumptions and are not

satisfactory. In our problem, we wish to design algorithms which work even if only

one sensor is available. Therefore, our parameter estimation problem cannot be solved

by straightforward application of the existing blind signal separation algorithms and it

requires a different approach.
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Chapter 2

Signal segmentation

In this chapter we consider a scenario where one or more sensing nodes observe a

frequency band used by multiple packet based transmitters. In this environment the

received signals at the sensors consists of multiple statistically homogeneous segments.

Each combination of active transmitted signals and sensor noise create one or more

of such segments with their distinct statistics. Our goal is to develop a segmentation

algorithm which localizes in time these signal segments. First we will consider a single

sensor case and then we extend our approach to the scenario with multiple sensors.

2.1 Problem formulation

We consider a setup where one sensing node observes a frequency band with M packet

based radio sources. Received complex baseband equivalent signal at the sensing node

is

r(t) =

M
∑

m=1

Lc
∑

l=0

am,lsm(t− τm,l) + n(t) (2.1)

where sm(t) are transmitted signals, am,l and τm,l are channel parameters, and n(t) is

stationary sensor noise. Transmitted signals are given by

sm(t) =

∞
∑

q=−∞

gm(t;θm,q)(u(t− tin,m,q)− u(t− tfi,m,q)) (2.2)

where u(t) is a unit step function, tin,m,q and tfi,m,q denote start and stop time of the

q-th packet, and gm(t;θm,q) defines modulation format of the m-th source. In general,

gm(t;θm,q) depends on the parameter vector θm,q containing certain parameters that

may vary from one packet to another. For example, for linear modulation formats

gm(t;θm) =
∑∞

k=−∞ akpm(t− kTm − φm) where ak are information symbols, pm(t) is

the pulse shape, Tm is the symbol period, and θm = [φm] is the timing parameter that
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may vary across packets. We assume that during the observation interval each source

operates with a constant power when on.

We would like obtain information on signals present in the observed frequency band

through some form of statistical analysis of the received signal. Let us now review

main existing statistical methods for signal analysis and see how they can be used here.

There is a well established theory for analysis of stationary signals. Methods for analy-

sis of stationary signals using second order statistics are well known [34] [35]. There are

also methods for analysis of stationary signals using higher order statistics [36]. These

methods can be extended to cyclostationary signals, where statistics periodically vary

in time. We also have second order [10] and higher order methods [37] [38] for analysis

of cyclostationary signals. Methods for analysis of stationary signals assume that statis-

tics of the analyzed signal are independent of time on the observation time interval.

Methods for analysis of cyclostationary signals assume that statistics of the analyzed

signal periodically vary in time but parameters describing this periodic variation are

constant on the observation time interval. Therefore, these main statistical methods for

analysis of stationary and cyclostationary signals are applicable to signals that are in

certain sense statistically homogeneous on the observation time interval. These meth-

ods applicable to stationary and cyclostationary signals do not extend easily to general

nonstationary signals [39]. Hence, there is no general theory applicable to nonstation-

ary signals and they are treated on a case by case basis. For some special classes of

nonstationary signals it is possible and useful to define certain statistics, which have

different interpretations and properties from those of the similar statistics of stationary

and cyclostationary signals [40]. However, it is not always possible or useful to define

such statistics for nonstationary signals.

We see that in our case the received signal r(t) is nonstationary consisting of a

number of statistically homogeneous segments. Each combination of active transmitted

signals and noise generates one or more such segments. Statistical parameters abruptly

change at time instants located at the boundaries between the segments. These time

instants are called statistical change points. In order to use any of the conventional

statistical methods we have to localize in time the statistically homogeneous segments
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of the received signal. One possible approach is to use methods for detection of statis-

tical change points. A very good overview of these methods can be found in [41] and

numerous references therein. Many of these methods are based on likelihood ratio tests

and they have some nice theoretical properties. However, they are derived assuming a

certain probability distribution for the underlying signals. Since these probability dis-

tributions are almost never known in practical applications, these methods must resort

to simplifying assumptions (e. g., Gaussian signals) which are rarely satisfied for any

real world signals. In addition to the assumption on the signals probability distribu-

tions the methods for detection of statistical change points frequently assume various

parametric models for the underlying signals (e. g., AR, ARMA, state space models,

etc. ). These parametric models impose implicit assumptions on the analyzed signals

and hence, they are not always appropriate. Since these parametric methods for statis-

tical change detection are based on unrealistic assumptions a number of nonparametric

methods for statistical change detection and signal segmentation have been developed.

An on-line method for detecting change points was proposed in [42]. This method

is based on tracking signal subspace of the estimated signal covariance matrix. This

method is applicable if the underlying signals have a finite dimensional signal subspace

which is not necessarily true for all signals. It is assumed in [42] that the dimension of

the signal subspace is known in advance and same for all segments. However, in most

applications the dimension of the signal subspace is not known and it must estimated

which is a very difficult problem itself. In [43] the signal to be segmented is first trans-

formed into another sequence which is constructed so that the statistical changes in

the original signal result in the changes of the mean value of the transformed signal.

Then the segmentation is performed by detecting the changes of the mean value of the

transformed signal. Main weakness of this approach is that the transformed sequence

cannot be a vector sequence which is more appropriate for some applications [44]. In [45]

the signal to be segmented is transformed into a sequence of vectors where the change

points of the original signal produce changes of the mean values of the transformed

vector sequence. The change points are detected on the transformed vectors using an
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on-line approach based on a certain distance measure which is constructed using Gaus-

sian kernel function. Main problem with this method is that it works properly only if

the scale parameters of the Gaussian kernel function are appropriately selected which

is a difficult problem without a good solution. Another nonparametric approach based

on numerical estimation of likelihood ratio was proposed in [46]. The likelihood ratio

is estimated using a linear combination of Gaussian kernel functions which is similar to

kernel probability density estimates [47]. Main problem with this approach is that this

type of estimation works well only if the scale parameters of the Gaussian kernels are

appropriately selected. In [46] these parameters are determined using some heuristic

method. However, it very difficult to find a good solution for this problem since the

scale parameters depend on the likelihood ratio function which is unknown and has

to be estimated. In conclusion, each of these nonparametric methods has significant

limitations and some unresolved problems and hence, none of them is quite satisfactory.

In our problem we wish to localize in time statistically homogeneous segments where

the signal in each segment consists of the sensor noise and possibly some combination

of the received communication signals. These communication signals may be generated

using different modulation formats and thus, they may have different probability distri-

butions. Therefore, the signals from different segments of the received signal typically

have different probability distributions which are unknown apriori. Clearly, finding

appropriate parametric models for these signals is very difficult and hence, parametric

methods for statistical change detection do not represent a satisfactory solution to our

problem. In this paper we present a nonparametric approach. We analyze the un-

derlying signal by sliding a window of a certain length over the signal and computing

a feature vector in every step. The transformation for computing the feature vectors

is chosen so that statistical changes in the analyzed signal are transformed into the

changes of the mean value of the feature vectors. The feature vector used here is the

signal power spectrum computed with a certain frequency resolution. Now, the problem

of signal segmentation is reduced to the problem of clustering of the feature vectors.

Each cluster contains the feature vectors from one or more segments containing the

same combination of active transmitted signals. The clustering problem is solved in
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two steps. An initial clustering is obtained using a variant of the mean shift algorithm

with adaptive scale parameters, which is a clustering method based on nonparametric

estimate of the probability density function of the feature vectors. The initial cluster-

ing is refined in the cluster validation step where our goal is to remove all the clusters

caused by spurious peaks in the pdf estimate and keep only the true clusters. The so-

lution of the clustering problem produces initial segmentation results which sometimes

contain some amount of impulse noise. This noise is removed using one form of general-

ized vector median filtering, which yields the final segmentation results. Our approach

is completely nonparametric and it does not assume any probability distributions or

parametric models for the underlying signals.

2.2 Segmentation algorithm

Let the total observed bandwidth be W . The received signal r(t) is bandlimited to

[−W/2,W/2] by filtering and sampled with Ts ≤ 1/W , which yields the discrete time

signal r(k), k = 1, . . . ,K, where KTs is the total observed time. We analyze the signal

r(k) with the sliding window of the length NT , which corresponds to time resolution

T = NTTs. We define the vectors

rn =
[

r(1 + (n− 1)Nd) . . . r((n− 1)Nd +NT )

]T

(2.3)

for n = 1, . . . , N where 1 ≤ Nd ≤ NT is step parameter of the sliding window. We

compute the feature vectors xn = f(rn) for n = 1, . . . , N where the function f(·)

should be chosen so that each set of segments generated by the same combination of

received signals and noise produces a subset or cluster of the vectors xn with its distinct

mean vector. In other words, the function f(·) should transform the problem of finding

statistically homogeneous segments in the received signal r(k) into clustering of the

vectors xn for n = 1, . . . , N . Here, we assume that each combination of received signals

and noise creates a signal which is uniquely identified by its power spectrum and use

power spectrum estimates of the vectors rn as the feature vectors xn. If this is not the

case other appropriate signal features (e. g., other signal spectra, projections onto a

suitable set of basis functions, time-frequency distributions, etc.) can be used instead
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of the power spectrum. If parametric signal models (e. g., AR, ARMA, state space

models, etc.) are appropriate then the coefficients of these models can be used as the

feature vectors and thus, any apriori knowledge of the analyzed signal can be taken into

account. We will explain later how different types of feature vectors computed from

the same signal can be used simultaneously for segmentation.

For each of the vectors rn, we compute its power spectrum estimate as follows. We

compute the vectors

vn = FFT{rn} (2.4)

for n = 1, . . . , N . Next, we compute vn ◦ v∗
n for n = 1, . . . , N where the symbol

◦ denotes elementwise (Hadamard) product of two vectors [48]. The vector vn ◦ v∗
n

contains magnitude squared entries of vn. We compute the power spectrum estimate

xn = A [vn ◦ v∗
n] (2.5)

for n = 1, . . . , N where the frequency smoothing matrix

A =



















1 . . . 1 0 . . . 0 . . . 0 . . . 0

0 . . . 0 1 . . . 1 . . . 0 . . . 0

...
...

...
...

...
...

...
...

...
...

0 . . . 0 0 . . . 0 . . . 1 . . . 1



















(2.6)

is of the size J by NT and its each row has L = [NT /J ] consecutive ones. The power

spectrum estimate xn is one form of a periodogram with frequency smoothing [34]. The

vector xn has J frequency bins where 1 ≤ J ≤ NT .

For appropriately selected NT the vectors xn for n = 1, . . . , N form a certain number

of clusters, where each cluster contains the subset of vectors xn whose analysis windows

of the length NT are from the segments with the same combination of active sources. In

general, each cluster corresponds to a union of one or more continuous time segments.

Dispersion around cluster means is caused by two effects: (1) inevitable power spectrum

estimation errors due to the finite sample size effects and (2) presence of vectors xn

corresponding to time intervals with transitions from one segment to another. Reducing

power spectrum estimation errors requires a larger NT , while reducing the number of
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time intervals with transitions requires a smaller NT . Therefore, any choice of NT

is a compromise between these two conflicting requirements. When NT is very small

(i. e., close to one) it becomes impossible to reliably estimate power spectrum or any

other statistics because of large estimation errors. When NT is too large the percentage

of time intervals with transitions is high, which leads to merging of clusters. Hence,

the vectors xn form clusters only for NT selected from a certain useful range. Our

fundamental assumption is that duration of the statistically homogeneous segments in

r(k) is such that an appropriate range for selection of NT exist. Under this assumption,

finding statistically homogeneous segments in r(k) reduces to finding clusters in the

vectors xn.

2.2.1 Mean shift clustering algorithm

One clustering approach that is useful for our problem assumes that the vectors xn

are realizations from a certain multimodal pdf. The idea is to somehow determine

cluster assignments from an estimate of this pdf obtained from xn. There are two main

approaches to do this: parametric and nonparametric. Parametric methods assume

some functional form for the underlying pdf and then estimate its parameters. Most

frequently assumed functional form is the Gaussian mixture model where each cluster is

modeled with one multivariate Gaussian distribution [49]. Nonparametric methods do

not impose any assumed model on the pdf. In our application the shape the underlying

pdf depends on the dispersion effects caused by the PSD estimation errors and by

the vectors xn corresponding to time intervals with transitions from one segment to

another. The pdf depends on the analyzed signals and the parameters NT , J , and L.

Since the pdf is signal dependent and unknown, it is not appropriate to impose any

parametric models here. For this reason we proceed using nonparametric methods.

Our clustering approach is based on the kernel pdf estimate [47]. Given realizations

xn for n = 1, . . . , N the nonparametric pdf estimate with Gaussian kernel is

f̂(x) =
1

N

N
∑

n=1

1

(2π)J/2
√
detHn

e−
1

2
(x−xn)TH−1

n (x−xn) (2.7)

where the symmetric positive definite matrix Hn contains scale parameters, which
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determine shape and size of the Gaussian kernel centered at realization xn. In the

following analysis we will assume that the matrices Hn are given. We will discuss how

to determine these parameters later. Clustering algorithms using nonparametric pdf

estimates are based on the assumption that each cluster contributes one mode (i. e.,

local maximum) to the underlying pdf. Hence, we need to assign each vector xn to its

nearest mode. This assignment can be performed using the mean shift algorithm which

is an iterative procedure which starts at the vector xn and converges to the nearest

mode of the pdf estimate f̂(x). This idea was introduced in [50] and further studied

in [51] [52] [53] [54]. Here, we will use one variant of the mean shift algorithm. We

need an iterative procedure that starts at each xn and converges to the nearest mode

of f̂(x). We derive the desired iterative procedure starting from Newton’s method

yj+1 = yj − α
[

∇2f̂(yj)
]−1

∇f̂(yj) (2.8)

where yj is the iteration vector at the j-th step and y0 = xn and α is the step size.

The gradient of the kernel pdf estimate (2.7) is

∇f̂(x) =

N
∑

n=1

ωn(x)H
−1
n (xn − x) (2.9)

where ωn(x) = Cne
− 1

2
(x−xn)TH−1

n (x−xn) and Cn =
(

N(2π)J/2
√
detHn

)−1
. We can

rewrite (2.9) as

H(x)∇f̂(x) = H(x)

N
∑

n=1

ωn(x)H
−1
n xn − x (2.10)

where H(x)−1 =
∑N

n=1 ωn(x)H
−1
n . The Hessian of f̂(x) is

∇2f̂(x) =

N
∑

n=1

ωn(x)H
−1
n (xn − x)(xn − x)TH−1

n −
N
∑

n=1

ωn(x)H
−1
n (2.11)

where the first term is positive definite

[

∇2f̂(x)
]

pd
=

N
∑

n=1

ωn(x)H
−1
n (xn − x)(xn − x)TH−1

n (2.12)

and the second term is negative definite and can be written as

[

∇2f̂(x)
]

nd
= −

N
∑

n=1

ωn(x)H
−1
n = −H(x)−1. (2.13)
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The iterative procedure (2.8) converges to the nearest local maximum of f̂(x) if the

Hessian ∇2f̂(yj) is negative definite. We see from (2.11) that the Hessian is, in general,

indefinite. Therefore, we cannot use the ordinary Newton’s method as defined in (2.8)

because that would not lead to a convergent algorithm. One strategy for dealing with

indefinite Hessian is to replace the true Hessian with a positive definite or negative

definite matrix which is closest to the true Hessian in a certain sense. This strategy is

called the modified Newton’s method [55, sec. 4.4.2]. Since we are looking for a nearest

local maximum of f̂(x) we replace the true Hessian ∇2f̂(x) with its negative definite

part
[

∇2f̂(x)
]

nd
and obtain the iterative procedure

yj+1 = yj − α
[

∇2f̂(yj)
]−1

nd
∇f̂(yj) = yj + αH(yj)∇f̂(yj) (2.14)

which is an example of the modified Newton’s method. Since
[

∇2f̂(x)
]

nd
is negative

definite it is easy to show that the search direction
[

∇2f̂(yj)
]−1

nd
∇f̂(yj) is a direction

of increase of f̂(x) [56, ch. 9]. Therefore, it is possible to select the step size α so that

the algorithm (2.14) converges. To analyze convergence of the algorithm we form

f̂(yj+1)− f̂(yj) =
N
∑

n=1

Cn[e
−un

2 − e−
vn
2 ] (2.15)

where vn = (yj − xn)
TH−1

n (yj − xn) and un = (yj+1 − xn)
TH−1

n (yj+1 − xn). Since

the function g(z) = e−z/2 is convex we have g(z2) − g(z1) ≥ g′(z1)(z2 − z1). Applying

this inequality to (2.16) yields

f̂(yj+1)− f̂(yj) ≥
1

2

N
∑

n=1

Cne
− vn

2 [vn − un]. (2.16)

Since Cne
− vn

2 = ωn(yj) and H(yj)
−1 =

∑N
n=1 ωn(yj)H

−1
n we have

N
∑

n=1

Cn

2
e−

vn
2 [vn − un] =

=
1

2

[

yT
jH(yj)

−1yj − yT
j+1H(yj)

−1yj+1 + 2(yj+1 − yj)
T

N
∑

n=1

ωn(yj)H
−1
n xn

]

. (2.17)

Using (2.10) and (2.14) we have

N
∑

n=1

ωn(yj)H
−1
n xn = ∇f̂(yj) +H(yj)

−1yj = H(yj)
−1

(

1

α
(yj+1 − yj) + yj

)

. (2.18)
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After substituting (2.18) into (2.17) and some straightforward manipulations we get

N
∑

n=1

Cn

2
e−

vn
2 [vn−un]=

2−α

2α
(yj+1−yj)

TH(yj)
−1(yj+1−yj). (2.19)

From (2.14), (2.16), and (2.19) we get

f̂(yj+1)− f̂(yj) ≥
α(2− α)

2
(∇f̂(yj))

TH(yj)(∇f̂(yj)). (2.20)

Since H(yj)
−1 =

∑N
n=1 ωn(yj)H

−1
n where ωn(yj) > 0 and Hn are symmetric positive

definite matrices, we conclude that H(yj) and its inverse are also symmetric positive

definite matrices. Therefore, the convergence of (2.14) is assured for 0 < α < 2. We

pick α = 1 since this choice maximizes the lower bound in (2.20). For α = 1 equation

(2.14) becomes

yj+1 =

[ N
∑

n=1

ωn(yj)H
−1
n

]−1 N
∑

n=1

ωn(yj)H
−1
n xn (2.21)

which corresponds to one version of the mean shift iterations [53] [54]. We can draw the

following conclusions: (1) if ∇f̂(yj) 6= 0 it follows from (2.20) that f̂(yj+1) > f̂(yj)

since H(yj) is positive definite and (2) if ∇f̂(yj) = 0 it follows from (2.14) that

yj+1 = yj. If y0 = xn and ∇f̂(y0) 6= 0 the iterations (2.21) move the vector yj in

the direction of increase of f̂(yj) until it reaches a point where ∇f̂(yj) = 0. Since the

convergence is also assured for 0 < α < 2 the function f̂(yj) is monotonically increasing

on the continuous trajectory obtained by connecting vectors yj for j = 0, 1, 2, . . .

with straight lines. Thus, when the vector xn gets attracted by one of the points of

convergence it converges to that point. Depending on the shape of the underlying

probability distribution estimate each point of convergence attracts a subset of the

vectors xn for n = 1, . . . , N . All the vectors xn that converged to the same point are

assigned to the same cluster. Thus, the number of clusters is equal to the number of the

convergence points, which is automatically determined by the algorithm. In practice

the convergence points are almost always local maxima (i.e. modes of the probability

distribution estimate). Although it very rarely happens in practice, in theory it is

possible that some points of convergence are not local maxima of f̂(x). These points

can be detected by checking the Hessian ∇2f̂(x) at the points of convergence. If the
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Hessian ∇2f̂(x) is not negative definite at a point of convergence, that point is not

a local maximum of f̂(x). The vectors xn that converged to those points can be

classified based on other vectors that did converged to the local maxima of f̂(x) using

the k nearest neighbors rule [52].

There is another way to arrive at the mean shift iterations (2.21) without assuming

the iterative form (2.14). Let us assume that yj is given and we wish to select yj+1 so

that the LHS in (2.16) is maximized. From (2.21) we see that this is equivalent to

min
yj+1

1

2
yT
j+1H(yj)

−1yj+1 − yT
j+1

N
∑

n=1

ωn(yj)H
−1
n xn. (2.22)

Since the matrix H(yj) is positive definite we only need to find the gradient of the

expression in (2.22) and set it to zero. We get

H(yj)
−1yj+1 −

N
∑

n=1

ωn(yj)H
−1
n xn = 0. (2.23)

which is equivalent to (2.21). It follows that for a given yj the vector yj+1 given by

(2.21) maximizes the LHS in (2.16).

The iterations (2.21) define the mean shift algorithm with an adaptive (variable)

scale, since each vector xn is assigned its own scale parameters Hn. This type of

mean shift algorithm appears in [53] and [54]. However, the algorithm is not fully

understood. It is not clearly explained in [53] or [54] how one can arrive at iterations

(2.21). Convergence of the fixed scale algorithm was proved in [52]. Convergence of

the variable scale algorithm is proved under some assumptions in [54]. However, these

proofs assume α = 1 and study convergence of the discrete sequence of points yj for

j = 0, 1, 2, . . . . These proofs do not explain what is happening between these discrete

points and hence, they cannot explain why each vector converges to the mode whose

region of attraction contains that vector, which is crucial for clustering. Here, we

explained how one can logically arrive at the iterations (2.21). We have shown that

the mean shift algorithm with variable scale is in fact the modified Newton’s method

where the true Hessian ∇2f̂(x) is replaced with its negative definite part
[

∇2f̂(x)
]

nd

and with the step size α = 1. In vicinity of the convergence points the algorithm

behaves similarly to true Newton’s method, which explains its rapid convergence. Our
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convergence analysis is qualitatively different because it allows the step size α to be

continuous. We have shown that f̂(x) is monotonically increasing on the continuous

trajectory obtained by connecting the discrete points yj for j = 0, 1, 2, . . . with straight

lines. This fact explains why each vector xn converges to the local maximum of f̂(x)

whose region of attraction contains the vector xn. Therefore, our derivation of the

iterations (2.21) and convergence analysis go beyond existing work and demonstrate

how and why the variable scale mean shift algorithm works.

2.2.2 Selection of scale parameters

Main difficulty in applying the mean shift algorithm to practical problems is in deter-

mining the appropriate scale parametersHn. To explain the role of the scale parameters

we must understand their effect on the pdf estimate (2.7). Let us assume that Hn are

known constants independent of xn. Since Hn is positive definite we can represent it

as Hn = h2nAnA
T
n where detHn = h2Jn and detAn = 1. Then using an analysis similar

to the one from [47, sec. 6.3.2] we have

E[f̂(x)] =
1

N

N
∑

n=1

∫

K(z)f(x− hnAnz)dz (2.24)

and

V ar[f̂(x)] ≈ f(x)
∫

K(z)2dz

N2

N
∑

n=1

1

hJn
(2.25)

where K(z) = (1/(2π)J/2)e−
1

2
zT z and the approximation in (2.25) is valid for small

hn. When hn = 0 the estimate f̂(x) is unbiased but its variance tends to infinity. For

hn = 0 the estimate f̂(x) given by (2.7) consists of delta impulses and it is useless

for our clustering application. In order to get a useful estimate we have to work with

hn > 0, which introduces some bias but reduces the variance of f̂(x). Scale parameters

should be large enough so that only local maxima of f̂(x) are those due to the actual

clusters in the vectors xn but not too large because then two adjacent modes could be

merged. This is why the problem of scale parameter selection is very difficult.

The simplest choice is to set Hn = h2I and then determine only one global scale

parameter h as proposed in [52]. We experimented with this fixed scale algorithm and
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were unable to obtain satisfactory results. Since the underlying pdf typically contains

both peaks and flat regions it may be impossible to find one fixed scale parameter h

that yields correct clustering. Next possibility is to set Hn = h2nI and then determine

the parameters hn [57]. This method is again not satisfactory, since in our applica-

tion different entries of the vectors xn representing different frequency bins also require

different scale parameters. Therefore, in this application we must use mean shift al-

gorithm with adaptive scale, where each vector xn has its own scale parameters Hn

where different entries of xn may have different scale parameters. We select the scale

parameters Hn as follows. We form the matrix Xn whose columns are xn and its k

nearest neighbors. The scale parameters are found as

Hn = diag
{[

h1n . . . hJ,n

]}

(2.26)

where

hj,n = [max(Xn(j, :)) −min(Xn(j, :))]
2 (2.27)

where Xn(j, :) is the j-th row of Xn. If points around xn are densely packed scale

parameters will be small. On the other hand, if xn lies in the region of low density

scale parameters will be large. Thus, the scale parameters given by (2.27) adapt to

the local properties of the underlying pdf. We picked diagonal form for Hn because

this is the simplest form where each entry of the vector xn can have its own scale

parameter. This choice also reduces computational complexity of mean shift iterations

(2.21). Since (2.21) requires computing matrix inversion, using full matrix Hn would

result in a much more computationally costly algorithm. According to our choice hJn =
√
detHn = h1,nh2,n . . . hJ,n, which is the volume of the smallest J-dimensional box that

contains xn and its k nearest neighbors. For any finite N these scale parameters depend

on xn, which makes the analysis of bias and variance of f̂(x) very complicated. Let

as assume that N is very large and that the number of nearest neighbors k depends

on N so that limN→∞ k(N) = ∞ and limN→∞ k(N)/N = 0. Then the parameters hn

tends to zero as N → ∞ regardless of the underlying pdf [58, sec. 6.2.]. Then we can

treat hn as small constants independent of xn and hence, we can use bias and variance

expressions given by (2.24) and (2.25). Since hn → 0 as N → ∞ we see from (2.24) that
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the estimate f̂(x) is asymptotically unbiased. Now we note that k(N)/(NhJn) is the k

nearest neighbors pdf estimate [58, sec. 6.2.]. Since this pdf estimate is asymptotically

consistent we have f(xn) ≈ k(N)/(NhJn). Inserting this into (2.25) we have

V ar[f̂(x)] ≈ f(x)
∫

K(z)2dz

Nk(N)

N
∑

n=1

f(xn) ≤
f(x)

∫

K(z)2dz

k(N)
max
x

f(x). (2.28)

Assuming that f(x) is bounded the last expression tends to zero as N → ∞ since

limN→∞ k(N) = ∞. Hence, when the scale parameters are given by (2.26) and (2.27)

and k(N) satisfies limN→∞ k(N) = ∞ and limN→∞ k(N)/N = 0 we get asymptotically

unbiased and consistent estimates of f(x). Numerical experiments have also confirmed

this conclusion. For any finite N (2.26) and (2.27) yield scale parameters which adapt

to the local properties of the underlying pdf. We can satisfy the conditions on k(N) by

setting k(N) = Np where 0 < p < 1. Using p we can control bias variance trade-off in

estimating f(x). Increasing p from 0 to 1 increases the bias and reduces the variance.

Performance of the mean shift algorithm with the proposed selection of scale pa-

rameters is much better compared to the fixed scale algorithm. However, there are still

occasional problems caused by spurious peaks in the pdf estimate. In such cases, the

algorithm finds two or more closely spaced modes where only one mode exists in the

true pdf and thus creates undesirable cluster splitting. Probability of cluster splitting

can be reduced by increasing the parameter p in k(N) = Np, but this parameter can-

not be increased too much because then some actual clusters could be missed. Some

other methods for selecting scale parameters were proposed in [53] [57] and [54], but

as acknowledged in [54] this problem does not have a satisfactory solution. Main dif-

ficulty in selection of scale parameters is that appropriate values of scale parameters

depend on the underlying pdf. However, this pdf is almost always unknown in practical

applications.

2.2.3 Cluster validation

Instead of trying to find a better method for selection of scale parameters we take a

different approach. Using the mean shift algorithm with the proposed selection of scale

parameters we obtain an initial clustering of the vectors xn. In this initial clustering



22

the number of clusters may be overestimated because of the spurious peaks in the pdf

estimate f̂(x). In order to remove the clusters caused by the spurious peaks of f̂(x) and

find the actual clusters in the vectors xn we need a cluster validation algorithm. Some

methods for solving this problem can be found in [59] [60] [61] [62]. Main idea behind

these methods is to select only statistically significant modes of f̂(x), which usually

means that the probability mass concentrated around those modes must be sufficiently

large. Most of the existing methods treat the case where f̂(x) is a function of one vari-

able and do not generalize well to the multidimensional case. Also performance of these

methods depends heavily on the setting of various thresholds which is highly nontrivial

in real world problems. Another challenging problem occurs when the estimate f̂(x)

has several spurious peaks located in the vicinity of one true mode of f(x). In this

case a meaningful algorithm must recognize this situation and merge artificial clusters

corresponding to the spurious peaks into one true cluster. The existing methods do not

have a satisfactory solution for this problem.

Our cluster validation algorithm is based on the following distance measure between

two clusters

dij =
(mi −mj)

T (mi −mj)
√

(mi −mj)TΣi(mi −mj) +
√

(mi −mj)TΣj(mi −mj)
(2.29)

where mi and Σi are the mean and covariance matrix of the i-th cluster. The distance

measure (2.29) can be rewritten as

dij =
||mi −mj||2

√

(mi−mj)TΣi(mi−mj)

||mi−mj ||22
+

√

(mi−mj)TΣj(mi−mj)

||mi−mj ||22

(2.30)

where ||mi −mj ||2 is the Euclidean distance between centroids of the clusters i and j

and

√

(mi−mj)TΣi(mi−mj)

||mi−mj ||22
is standard deviation of the i-th cluster in direction of the

unit vector (mi−mj)/||mi−mj||2. These facts explain why it makes sense to use the

quantity defined in (2.29) as a cluster distance measure. This cluster distance measure

is of the similar form as reciprocal of the cluster similarity measure from [63], but the

terms in the denominator in (2.29) are different from those in [63].

Our cluster validation algorithm takes as its input the number of clusters Icl and the

Icl by N cluster assignment matrix U = [uqn] where uqn = 1 if xn belongs to the q-th
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cluster and uqn = 0 otherwise. Initial values for Icl and U are obtained by applying

the mean shift iterations (2.21) on xn for n = 1, . . . , N . In the initial step we compute

the mean vectors and covariance matrices of the clusters using

mq =
1

Nq

N
∑

n=1

uqnxn (2.31)

and

Σq =
1

Nq

N
∑

n=1

uqn(xn −mq)(xn −mq)
T (2.32)

where Nq is the number of vectors in the q-th cluster and q = 1, . . . , Icl. Next, we

repeat the following two steps.

(1) Compute dqp using (2.29) for 1 ≤ q < p ≤ Icl and find the pair of clusters

(qm, pm) with the smallest distance. If dqmpm > dtr where dtr is a predefined threshold,

exit the algorithm, otherwise go to step (2).

(2) Merge the clusters qm and pm by updating the matrix U . The qm-th and pm-th

rows of the old matrix are added and they become one row in the updated matrix.

All other rows of the old matrix U are copied into the updated matrix without any

changes. Set Icl = Icl − 1, compute the mean vector and covariance matrix for the new

cluster resulted from merging the clusters qm and pm and go to step (1).

These two steps are repeated until all pairwise distances are greater than the thresh-

old dtr or the number of clusters Icl is reduced to 1. The choice of dtr is a compromise

between two conflicting requirements: ability to detect two closely spaced true clusters

and ability to eliminate false clusters resulting from spurious peaks in the pdf estimate.

We see that our cluster distance measure defined in (2.29) is independent of the scaling

of the vectors xn. Hence, the setting of dtr is also independent of this scaling.

2.2.4 Removal of impulse noise

Applying mean shift iterations (2.21) and our cluster validation algorithm on xn for

n = 1, . . . , N determines the number of clusters Icl and the cluster assignment matrix

U = [ujn] =
[

u1 . . . uN

]

. If xn belongs to the q-th cluster then uqn = 1 and

ujn = 0 for j 6= q. As the final result of our algorithm we wish to find the matrix of

segmentation sequences S whose size is Icl by K. The q-th row of S has ones at time
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instants when the received signal has the distinct statistics corresponding to the q-th

cluster and zeros otherwise. First, we obtain the initial estimate of the segmentation

matrix denoted by Ŝcl =
[

ŝcl,1 . . . ŝcl,K

]

. The columns of this matrix are computed

as

ŝcl,1+(n−1)Nd+NT /2+r = un (2.33)

where r = 1 − Nd/2, . . . , Nd/2 and n = 1, . . . , N . We assumed that NT and Nd are

even numbers. Our clustering algorithm assigns each vector xn independently of all

other vectors. As a result Ŝcl often contains certain amount of impulse noise, especially

around transition points. Therefore, we need a method for removal of impulse noise.

We use the following filtering procedure for removal of impulse noise. Let Ŝ =
[

ŝ1 . . . ŝK

]

be the filtered version of segmentation sequences. The k-th column of

Ŝ is computed as

ŝk = majority vector{ŝcl,k−Nw
, . . . , ŝcl,k+Nw

} (2.34)

where k = 1, . . . ,K. In other words, ŝk is the vector from the set {ŝcl,k−Nw
, . . . , ŝcl,k+Nw

}

which has the highest frequency of appearance. This vector can be selected because

Ŝcl contains only Icl distinct columns. This filtering method can be considered as one

version of the generalized vector median filtering [64]. This type of filtering removes

short impulses but does not blur abrupt transitions in the segmentation matrix. Param-

eter Nw controls duration of the impulses that are removed by the filtering procedure.

When Nw is small the filtering removes only very short impulses. Increasing Nw leads

to removal of impulses of greater duration as well. Most vector median filters have the

following property. If the filtering operation is applied repeatedly on the input signal

the output eventually becomes invariant to filtering. The resulting signal is called a

root signal for the given filter [64]. This method is used to compute Ŝ from Ŝcl. The

final estimate Ŝ is obtained by repeatedly applying the filtering defined by (2.34) on

the previous filtering output until there is no change in the output.
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2.2.5 Summary of the algorithm

Let us now summarize the proposed segmentation algorithm. It consists of the following

four steps.

(1) Collect the samples of the received signal r(k) for k = 1, . . . ,K. Apply the

sliding window analysis with the selected parameters NT and Nd to create the vectors

rn for n = 1, . . . , N . Estimate PSD for each of the vectors rn to obtain the vectors xn

for n = 1, . . . , N .

(2) Using the proposed mean shift algorithm perform clustering of the vectors xn

for n = 1, . . . , N . This procedure gives initial estimates of the number of clusters Icl

and cluster assignment matrix U .

(3) Apply the proposed cluster validation procedure with the selected parameter dtr

the initial estimates for Icl and U from the previous step. This procedure gives the

final estimates for Icl and U .

(4) Find the initial segmentation matrix Ŝcl using the matrix U from the previous

step. Apply the proposed impulse noise removal procedure with the selected parameter

Nw on Ŝcl which yields the segmentation matrix Ŝ.

In the second step we must apply the mean shift iterations (2.21) on each of the

vectors xn for n = 1, . . . , N . When the number of vectors N is large this step can be

very computationally costly since we must solve an optimization problem for each vector

xn. One simple method for reduction of the computational complexity is proposed

in [65]. This method consists in using the mean shift algorithm to cluster only one

representative subset of the vectors xn. All other vectors are classified using the vectors

from the subset and k nearest neighbors rule. In our application this subset can be

generated using the vector resulting from the sliding window analysis with no overlap

(i. e., Nd = NT ). Hence, this technique for reduction of computational complexity can

be easily applied here. However, this technique has a significant drawback. Here the

clustering assignments are based on a subset of vectors. Hence, in this case the estimate

of the underlying pdf and the resulting cluster assignments are less accurate compared

to the estimate obtained using all available vectors.
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Another useful technique for speeding up the computations in the proposed algo-

rithm is parallelization. This technique can be applied to (1) the k nearest neighbors

search in the selection of scale parameters needed for the mean shift algorithm, (2) the

mean shift iterations and (3) the impulse noise removal using vector median filtering.

All these operations are applied to sequences of vectors (xn for n = 1, . . . , N or the

columns of Scl). These operations can be done independently at each vector and hence,

they can be also done in parallel.

2.2.6 Fusion of different segmentation decisions

By applying the proposed algorithm on the same signal with different time resolutions,

different numbers of frequency bins or different types of feature vectors we can obtain

different segmentation matrices of the same signal. Let us assume that we have com-

puted the segmentation matrices Ŝi, i = 1, . . . , I of the same signal. Segmentation

results depend on the underlying signals and their SNR values and the choice of the

algorithm parameters. In general, different signals and different SNR values require

different algorithm parameters for achieving the best possible segmentation results. We

would like to design a fusion method that will produce one segmentation matrix Ŝfu

from Ŝi, i = 1, . . . , I. Our goal is to design an algorithm that combines good sides of

the different algorithm parameter choices. Thus, using this approach we hope to obtain

a more robust algorithm.

Using multiple time resolutions. As already mentioned, any choice of the time

resolution parameter T is a compromise between the two types of errors described

earlier. One reasonable strategy is to apply the segmentation algorithm for several

values of T which are appropriate for the given problem and then somehow fuse these

segmentation results. By doing this we hope to exploit the good sides of each specific

choice for T and thus, obtain a better algorithm. Let Ŝi be the segmentation matrix

computed for the time resolution Ti where i = 1, . . . , I and T1 < T2 < · · · < TI . In
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order to perform the fusion we first form the matrix

S̃ =













Ŝ1

...

ŜI













(2.35)

and cluster its columns. Since S̃ contains a finite number of distinct columns, the

clustering task is simple. Each distinct column of S̃ with all its repetitions defines

one cluster and hence, produces one segmentation sequence. Some of these sequences

represent true segments in the analyzed signal, while the others contain only very short

impulses resulting from small disagreements in the estimated locations of the change

points from Ŝi, i = 1, . . . , I. This impulse noise can be removed by applying our

impulse noise filtering on S̃. Let S̃filt =
[

s̃filt,1 . . . s̃filt,K

]

be the matrix computed

by applying the filtering on S̃ =
[

s̃1 . . . s̃K

]

. The k-th column of S̃filt is computed

as

s̃filt,k = majority vector{s̃k−Nw
, . . . , s̃k+Nw

} (2.36)

where k = 1, . . . ,K. The matrix S̃filt contains the initial segmentation results which

will be refined in the next step.

In the final step we refine our initial estimates of the change points locations. For

each change point in S̃filt we perform the following procedure. Let k be the time index

of one change point in S̃filt which means that the k-th column is different from the

k − 1-th column of S̃filt. We consider the window of time indices [k − Pw, k + Pw]

where Pw should be chosen so that the window contains only one change point. In

each matrix Ŝi we find the change point which is nearest to k and is from the window

[k−Pw, k+Pw]. Let these change points be ki for i = 1, . . . , I. Each point ki is the time

index of a transition from one cluster to another where the distance between these two

clusters is di. Hence, for each ki we assign the corresponding distance di for i = 1, . . . , I.

If for some Ŝj there is no change point in the window [k − Pw, k + Pw] we set kj to an

arbitrary value and dj = 0. Our final estimate of the change point location is

kf = kî (2.37)
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where î is the minimum value from 1 ≤ i ≤ I such that di > dstr where dstr is a suitable

threshold. In other words, if d1 > dstr then kf = k1. If d1 ≤ dstr and d2 > dstr then

kf = k2 and so on. If di ≤ dstr for all 1 ≤ i ≤ I then we set kf = k.

The proposed fusion method for multiple time resolutions can be summarized as fol-

lows: (1) form the matrix S̃ according to (2.35), (2) apply the impulse noise filtering on

S̃ which yields S̃filt, and (3) for each change point in S̃filt perform the final estimation

of its location using (2.37) which produces the final segmentation matrix Ŝfu.

Using multiple feature vectors. Let Ŝi be the segmentation matrix computed for the

i-th feature vector and the fixed time resolution T where i = 1, . . . , I. For example,

these different feature vector could be obtained for different numbers of frequency bins

Ji computed for the fixed time resolution T . Our first two steps are identical to the

previous case. We form the matrix S̃ according to (2.35) and apply the impulse noise

filtering on S̃ which yields S̃filt. Next, for each change point in S̃filt perform the final

estimation of its location as follows. Let k be the time index of one change point in

S̃filt and let us consider the window of time indices [k−Pw, k+Pw]. We define ki and

di for i = 1, . . . , I in the same way as in the previous case. The final estimate of the

change point location is

kf = kimax (2.38)

where

imax = argmax
1≤i≤I

di. (2.39)

In other words, our final estimate is equal to the kimax where dimax = max{d1, . . . , dI}.

Using multiple sensors. One interesting application where fusion can be useful

is to the case when Ŝi for i = 1, . . . , I are the segmentation matrices obtained at

different sensors. In this case the received signals at different sensors are different

because of the different channels between the transmitters and the sensors. However,

if the sensors collect the received signals samples synchronously, the locations in time

of change points seen at different sensors should differ only slightly because of the

small difference in propagation delays of the channels between the transmitters and the

sensors. Therefore, the fusion of the segmentation matrices Ŝi, i = 1, . . . , I computed
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at different sensors makes sense assuming that the sensors collect the received signals

samples synchronously and that the differences in the propagation delays are much

shorter than the duration of the statistically homogeneous segments in the received

signals. If Ŝi for i = 1, . . . , I are computed with the same time resolution at each

sensor we can use the same fusion method that was proposed for the multiple feature

vectors. The method can be summarized as follows: (1) form the matrix S̃ according

to (2.35), (2) apply the impulse noise filtering on S̃ which yields S̃filt, and (3) for each

change point in S̃filt perform the final estimation of its location using (2.38) and (2.39)

which produces the final segmentation matrix Ŝfu.

In practice the fusion of the segmentation matrices Ŝi, i = 1, . . . , I computed at

different sensors can be performed at any sensor designated for this purpose or at some

central computer which is collecting data from all sensors. Our fusion method requires

the following data from each sensor: (1) its locally computed segmentation matrix Ŝi

and (2) for each pair (p, q) of locally detected clusters their distance dp,q defined by

(2.29). The segmentation matrices Ŝi, i = 1, . . . , I have a very simple structure with

many repeated columns and hence, they can be compressed substantially. Therefore,

the amount of data that needs to be transmitted from each sensor to the fusion node

is relatively small.

2.3 Numerical examples

We illustrate the proposed algorithm with the following simulation example. In the

example we consider a setup with one sensor and one source, whose locations are shown

in Figure 2.1. Channel transfer function between the transmitter and the sensor is

measured in the ORBIT room in WINLAB for the setup shown in Figure 2.1 [66]. This

channel transfer function is used in our simulations. Thus, the real world propagation

environment is faithfully reconstructed in the simulations.

The source is transmitting DBPSK signals with Barker sequence spreading which is

used to produce 1 Mbit/s data rate in 802.11b systems [67]. Total observed bandwidth is

W = 20MHz and the sampling period is Ts = 0.05µs. Figure 2.2 shows the power trace
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of the received signal at the sensor, where each point is the average power computed over

NT = 200 consecutive samples, which corresponds to the interval of T = NTTs = 10µs.

The total observation time on this example is 5ms. The transmission is happening in

packets, where duration of each packet is 1ms. After each packet there is a silent period

which consists of the 50µs interframe space called DIFS and the contention window.

Duration of the contention window is a random number of 20µs time slots where this

random number is uniformly distributed and ranges between 0 and 31. These quantities

are chosen according to the 802.11 standard [67]. At the sensor the signal is corrupted

with additive white Gaussian noise. We define SNR as the ratio of the average received

source signal power(when the source is on) at the sensor and the average sensor noise

power. The SNR value in the example shown in Figure 2.2 is 30dB.

We compute the feature vectors xn for the example shown in Figure 2.2 with J = 2

and apply the mean shift algorithm on this set of vectors where the scale parameters are

selected using k(N) = N0.65. Scatter plot of the vectors xn is shown in Figure 2.3. In

this example there are two clusters: one consisting of the vectors xn corresponding to the

time intervals with noise only and the other consisting of the vectors xn corresponding

to the time intervals with signal plus noise. We also see from Figure 2.3 that the two

clusters are connected. This connection is caused by the vectors xn corresponding

to the time intervals containing statistical change points. Points of convergence of

the mean shift algorithm are shown in Figure 2.3 with red marks. These points are

local maxima of the pdf estimate (2.7) computed from the vectors xn. We see from

Figure 2.3 that there are five local maxima of the pdf estimate. Using the result of

the mean shift clustering we compute the segmentation sequences which are shown in

Figure 2.4. Obviously, the mean shift algorithm did not perform a correct segmentation

in this example because of the spurious peaks in the pdf estimate. After applying our

cluster validation procedure with dtr = 2 on the results of the mean shift algorithm we

find that there are two clusters in the vectors xn which is correct. Using the clustering

obtained after the cluster validation procedure we obtain the segmentation sequences

shown in Figure 2.5. By comparing Figure 2.2 and Figure 2.5 we see that the algorithm

performed a reasonably accurate segmentation.
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Now we repeat this experiment for a range of SNR values. For each SNR point

we repeat the experiment 100 times and calculate the percentage of times when the

algorithm finds the correct number of clusters. These percentages are computed before

and after the cluster validation procedure. The results are shown in Figure 2.6. We see

that the mean shift algorithm finds the correct number of clusters for −5dB < SNR <

20dB. For SNR < −5dB the two clusters are very close to each other and cannot

be resolved. For SNR > 20dB the mean shift algorithm overestimates the number of

clusters because of the spurious peaks in the pdf estimate. After adding the cluster

validation procedure we obtain an algorithm that finds the correct number of clusters

for a much wider SNR range. In general, the mean shift algorithm treats every local

maximum of the pdf estimate as one of the pdf modes and creates a separate cluster

for it. Since the pdf is always estimated from a finite sample size, some local maxima

may be artifacts of the pdf estimation and they do not represent any real clusters in the

data. Because of this problem it is very difficult to obtain reliable clustering using the

mean shift algorithm alone. In order to obtain more reliable clustering the mean shift

algorithm results must go through some form of cluster validation where all clusters

caused by spurious peaks should be identified and merged into real clusters.
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Figure 2.1: Locations of the transmitter and sensor

Now we discuss the role of the proposed impulse noise removal procedure. Again we

consider the setup shown in Figure 2.1. Figure 2.8 shows power trace of the received

signal for SNR = −3dB. Scatter plot of the vectors xn for this example is shown in
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Figure 2.2: Power trace of the received

signal computed with time resolution

T = 10µs for SNR = 30dB
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Figure 2.3: Scatter plot of the feature

vectors and local maxima(red marks) of

the pdf estimate
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Figure 2.4: Segmentation sequences ob-

tained using mean shift clustering
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Figure 2.5: Segmentation sequences ob-

tained after the cluster validation pro-

cedure

Figure 2.9. We see from Figure 2.9 that the algorithm correctly found two clusters.

Segmentation results before the impulse noise removal are shown in Figure 2.10 where

we see some amount of impulse noise. These segmentation results are obtained by clus-

tering the vectors xn where each vector is assigned to one of the clusters independently

of all other vectors. At low SNR values some vectors may be assigned incorrectly which
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Figure 2.6: Detection rates for the cor-

rect number of clusters before and after

the cluster validation procedure
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Figure 2.7: Segmentation error rate be-

fore and after the impulse noise removal

for J = 2 and T = 10µs

causes impulse noise in the segmentation sequences shown in Figure 2.10. After apply-

ing our impulse noise removal procedure with Nw = 500 we obtain the segmentation

results shown in Figure 2.11 where we see that the impulse noise has been removed.

Next, we repeat this experiment for a range of SNR values. At each SNR point we

repeat the experiment 100 times where in each run we generate different signal and noise

realizations and find segmentation sequences before and after the impulse noise removal

procedure. We calculate segmentation error rate for each run by comparing the true

segmentation sequences with the segmentation sequences estimated by our algorithm.

Segmentation error rate for each SNR point is computed as an average value of the rates

obtained for the runs at that SNR value. These segmentation error rates before and

after impulse noise removal are shown in Figure 2.7. We see that as SNR increases the

segmentation error rate decreases. However, at high SNR values this decrease stops and

the error rate becomes approximately constant. In our algorithm we analyze signals

with a window of the finite size NT and hence, we cannot perfectly localize the signal

segments in time. This fact explains why the segmentation error rate does not tend to

zero at high SNR values. When SNR < −3dB the two clusters start to overlap and the

error rate rapidly increases. At high SNR values error rates before and after impulse

noise removal are very similar. At low SNR values the error rate after filtering increases
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much more slowly than the error rate before filtering because our impulse noise removal

procedure can correct some errors caused by the cluster overlap.
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Figure 2.8: Power trace of the received

signal computed with time resolution

T = 10µs for SNR = −3dB
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Figure 2.9: Scatter plot of the feature

vectors and local maxima(red marks) of

the pdf estimate
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Figure 2.10: Segmentation results be-

fore the impulse noise removal
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Figure 2.11: Segmentation results after

the impulse noise removal

Now we study effects of the choice of the time resolution parameter T . Again,

we consider the same setup shown in Figure 2.1 with the same signals as described

earlier. We apply our segmentation algorithm for J = 2 and three different values of

the time resolution parameter T : 5µs, 10µs, and 20µs. For each time resolution we

run the algorithm for a range of SNR values. At each SNR point we compute the
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average detection rate of determining the correct number of clusters and the average

segmentation error rate. Figure 2.12 shows the detection rates of determining the

correct number of clusters. We see that these curves exhibit a threshold behavior.

When SNR is above some threshold the detection rate is one. When SNR is below the

threshold the algorithm cannot resolve two closely spaced clusters and the detection

rate rapidly falls to zero. We see from Figure 2.12 that the SNR threshold becomes

lower as the time resolution increases. Main limiting factor in resolving two closely

spaced clusters is the PSD estimation error caused by the finite sample size. As T

increases this error reduces and hence, the SNR threshold also reduces. Figure 2.13

shows the segmentation error rates for different time resolution. We see that at high

SNR values the error rates cannot fall below certain error floor rates. These error

floor rates are caused by the fact that we are working with finite time resolution which

prevents perfect localization of signals in time. As T increases our ability to localize

signals in time reduces and hence, the error floor rate increases. When SNR approaches

the threshold value the corresponding error rate rapidly increases because of the cluster

overlap. We conclude that a small T is good at high SNR values because it reduces

the error floor rate, while a large T reduces the threshold SNR. In order to obtain an

algorithm that combines positive effects of a large T at low SNR values and a those

of a small T at high SNR values we perform a fusion of the segmentation results for

different time resolutions using the proposed fusion method. Figure 2.12 shows that

the fusion curve of detection rates of determining the correct number of clusters is

approximately the same as the curve obtained for the largest value of T , which is

satisfactory. Figure 2.13 shows the fusion curve of the segmentation error rates. We see

that this curve is approximately an envelope of the three curves obtained for different

time resolutions, which is the desired behavior.

Now we study effects of the choice of the number of frequency bins J . Again,

we consider the same setup shown in Figure 2.1 with the same signals as described

earlier. For a fixed time resolution T the number of frequency bins is in the range

1 ≤ J ≤ NT where NT = T/Ts. For T = 10µs and Ts = 0.05µs we get NT = 200

which implies 1 ≤ J ≤ 200. Since J is the length of xn any increase of J increases
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Figure 2.12: Detection rates of the cor-

rect number of clusters for different

time resolutions
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Figure 2.13: Segmentation error rates

for different time resolutions

computational complexity of our algorithm. Another limitation on J stems form the

fact that our approach is based on nonparametric pdf estimation. It is well known

that nonparametric pdf estimation becomes very difficult if the number of dimensions

is too high. For example, it is suggested in [47, sec. 7.2] that kernel pdf estimate is not

reliable if the number of dimensions is more than five. Therefore, a practically usable

range for J is very limited because of increased computational complexity and problems

with nonparametric pdf estimation for a high J . We apply our segmentation algorithm

for T = 10µs and three different numbers of frequency bins J : 1, 2, and 5. Results

are shown in Figures 2.15 and 2.21. At low SNR values the performances for J = 1

and J = 2 are very similar, while for J = 5 we have a somewhat lower threshold SNR.

At high SNR values all three values of J produce very similar performances. Next, we

perform a fusion of the segmentation results obtained for J = 1, J = 2, and J = 5. We

see from Figures 2.15 and 2.21 that the fusion curves approximately follow the curves

obtained for J = 1 and J = 2, which is good since the performance obtained for J = 1

and J = 2 is better than that obtained for J = 5.

In the next example we consider the setup with one transmitter and four sensors

shown in Figure 2.16. The transmitter transmits the same signal as described earlier.

Channel transfer functions between the transmitter and the sensors are measured in
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Figure 2.14: Detection rates of the cor-

rect number of clusters for different

numbers of frequency bins
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Figure 2.15: Segmentation error rates

for different numbers of frequency bins

the ORBIT room in WINLAB for the setup shown in Figure 2.16 [66]. These channel

transfer functions are used in our simulations. First, we consider an example where

the received signals at the sensors have the power traces shown in Figure 2.17. The

SNR values at the sensors are: SNR1 = 0.42dB, SNR2 = −2.46dB, SNR3 = −8dB,

and SNR4 = −2.46dB. These significant SNR differences are caused by differences

in the channel transfer functions. First, we apply our segmentation algorithm on the

received signal at each sensor separately. The algorithm parameters were T = 10µs,

J = 2, k(N) = N0.65, and Nw = 500. Segmentation sequences obtained by applying the

algorithm separately at each sensor are shown in Figure 2.10 where different colors were

used to plot the sequences from different sensors. We see that sensor 1, sensor 2, and

sensor 4 correctly detected two clusters while sensor 3 could not resolve the two closely

spaced clusters because its SNR was too low. Now we would like to perform a fusion

of the locally computed segmentation sequences. Let Ŝi, i = 1, 2, 3, 4 be the locally

computed segmentation sequences. We form the matrix S̃ =
[

Ŝ
T
1 Ŝ

T
2 Ŝ

T
3 Ŝ

T
4

]T

and cluster the columns of S̃. Figure 2.20 shows segmentation sequences obtained after

this simple fusion of the locally computed segmentation sequences. We see that this

simple fusion produced 8 clusters and hence, there are 8 segmentation sequences shown

in Figure 2.20. However, only the first and the last row in Figure 2.17 represent true
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clusters while all other sequences contain only impulse noise caused by small disagree-

ments in locally estimated statistical change points. Therefore, this simple fusion is

not satisfactory and its results must be further processed. After impulse noise removal

and final estimation of locations of the statistical change points we obtain the segmen-

tation sequences shown in Figure 2.19. We see that the algorithm correctly found two

segmentation sequences and that the segmentation is reasonably accurate.

Next, we study the performance for a range of SNR values. At each SNR value

we repeat the above experiment 300 times and compute the average detection rate of

determining the correct number of clusters and the average segmentation error rate.

These rates are computed for each sensor separately and for the results computed using

our fusion method. The results are shown in Figure 2.21 and 2.22. The SNR values

at the sensors are SNR1 = SNR + 8.42dB, SNR2 = SNR + 5.44dB, SNR3 = SNR,

and SNR4 = SNR+5.44dB where SNR is the variable from the graphs shown in Fig-

ure 2.21 and 2.22. We see that the performances at different sensors differ significantly

which is caused by significant differences in the corresponding SNR values. In other

words, the same transmit power level produces very different received signal powers at

different sensors because of differences in the corresponding channel transfer functions.

We also see from Figure 2.21 and 2.22 that performance of the fusion method is very

similar to that of the sensor with the highest SNR. Thus, by adding multiple sensors

and using this fusion method we can extend the range of the transmit power for which

our algorithm correctly identifies the number of clusters. We conclude that exploiting

spatial diversity provided by multiple sensors is a very effective method for improving

performance of the algorithm.

Once we have localized in time statistically homogeneous segments in the received

signal we can further analyze them. Let us illustrate this using as an example the

received signal whose power trace is shown in Figure 2.8. For each of the localized

segments we will estimate the second order spectrum S2x(f1, f2). For the signal x(t)

admitting Cramer spectral representation [68]

x(t) =

∫ ∞

−∞
ej2πfdX(f) (2.40)
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Figure 2.16: Locations of the transmitter and the sensors
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Figure 2.17: Received power traces at

different sensors
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Figure 2.18: Segmentation sequences

obtained at different sensors

the second order spectrum S2x(f1, f2) of x(t) is defined as

S2x(f1, f2)df1df2 = E[dX(f1)dX(f2)
∗]. (2.41)

For f1 = f2 we have S
(0)
2x (f)df = E[|dX(f)|2] where S

(0)
2x (f) = S2x(f, f) represents

the power spectrum of x(t). For f1 6= f2, S2x(f1, f2) represents correlation between the

spectral components at f1 and f2. Let us define the autocorrelation function R2x(t, τ) =

E[x(t + τ)x(t)∗]. If x(t) is a second order stationary signal (i. e., R2x(t, τ) = R2x(τ))

then S2x(f1, f2) = 0 for f1 6= f2 [69]. If x(t) is a second order cyclostationary signal

with the period Tc (i. e., R2x(t + Tc, τ) = R2x(t, τ)) then S2x(f1, f2) = 0 for f1 6=

f2 +m/Tc where m = . . . ,−2,−1, 0, 1, 2, . . . . For f1 = f2+m/Tc we define the spectra
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Figure 2.19: Segmentation sequences

computed as the final result of the fu-

sion of the sequences from different sen-

sors
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Figure 2.20: Segmentation sequences

obtained by a simple fusion of the se-

quences from different sensors
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Figure 2.21: Detection rates of the cor-

rect number of clusters for different sen-

sors
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Figure 2.22: Segmentation error rates

for different sensors

S
(m)
2x (f)df = E[dX(f)dX(f − m/Tc)

∗] where S
(m)
2x (f) = S2x(f, f − m/Tc) for m =

. . . ,−2,−1, 0, 1, 2, . . . . For m = 0 we obtain the power spectrum S
(0)
2x (f) and for m 6= 0

we obtain the second order cyclic spectra S
(m)
2x (f) [10].

Let us now estimate S2x(f1, f2) for the first segment of the signal whose power trace

is shown in Figure 2.8. This segment starts at 0 and ends at about 0.6ms and it contains
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only stationary white Gaussian noise. The estimate of S2x(f1, f2) for the first segment

is shown in Figure 2.23. We see that the signal has a flat power spectrum and the

estimated spectrum is close to zero for f1 6= f2. Next, we estimate S2x(f1, f2) for the

second segment which starts at about 0.6ms and ends at about 1.6ms. This segment

contains DBPSK signal with Barker sequence spreading plus stationary white Gaussian

noise. The DBPSK signal with Barker sequence spreading is a linearly modulated

signal with the symbol period Tc = 1µs and it is cyclostationary with this period. The

estimate of S2x(f1, f2) for the second segment is shown in Figure 2.24. For f1 = f2 we

get the power spectrum which consists of the DBPSK signal power spectrum and the

noise power spectrum. For f1 = f2 +m/Tc and m 6= 0 we get the cyclic spectra of the

DBPSK signal. We see that the spectrum S2x(f1, f2) provides a useful characterization

of the signals in the observed frequency band. In this example the analysis based on

S2x(f1, f2) can be used only if the statistically homogeneous segments in the received

signal have been localized in time.
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Figure 2.23: Spectrum S2x(f1, f2) for

the first noise segment
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Figure 2.24: Spectrum S2x(f1, f2) for

the first signal plus noise segment

2.4 Conclusion

We have proposed a method for localization in time of statistically homogeneous seg-

ments in the received signal. The proposed method is almost completely nonparametric

and it does not assume any probability distributions for the analyzed signals. This is
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an important advantage since these probability distributions are almost never known in

real world applications. In this application we did not impose any parametric models

on the underlying signals. However, if such models are appropriate they can be easily

incorporated into the algorithm. Thus, any apriori knowledge about the signals can

be exploited. We have also proposed a method for fusion of segmentation decisions

obtained using different time resolutions or different feature vectors. This is a useful

technique for obtaining a more robust algorithm. The proposed segmentation algo-

rithm was designed for one specific application but it can be applied in many other

situations where it is desired to find statistical change points in a piecewise statistically

homogeneous signal.
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Chapter 3

Fourth Order Spectrum Based Analysis

Using the proposed segmentation algorithm we can localize in time segments in the

received signal generated by the same combination of active transmitted signals and

sensor noise. After these segments have been localized in time they can be further

analyzed using various statistical methods. The goal of this analysis is to extract

more information about the signals using the observed frequency band. In this section

we propose one signal analysis method that uses partial information from the fourth

order spectrum of the localized segments. Main goal of this method is to estimate the

spectrum and the associated activity sequence in time for each signal present in the

observed frequency band. This type of analysis is useful when the transmitted signals

are either linearly modulated or they can be represented as a sum of a finite number of

linearly modulated terms.

3.1 Signal analysis method

Let us first introduce a few definitions. Let x(t) be a random process admitting Cramer

spectral representation

x(t) =

∫ ∞

−∞
ej2πfdX(f) (3.1)

where dX(f) is called spectral function [68] or spectral process [70]. The second order

spectrum (power spectrum) of x(t) is defined as

S2x(f)df = E[|dX(f)|2] (3.2)
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and the fourth order spectrum (trispectrum) is defined as

S4x(f1, f2, f3)df1df2df3 =

cum(dX(f1), dX(f2), dX(−f3)
∗, dX(f1 + f2 + f3)

∗) =

E[dX(f1)dX(f2)dX(−f3)
∗dX(f1 + f2 + f3)

∗]

− E[dX(f1)dX(f2)]E[dX(−f3)
∗dX(f1 + f2 + f3)

∗]

− E[dX(f1)dX(−f3)
∗]E[dX(f2)dX(f1 + f2 + f3)

∗]

− E[dX(f1)dX(f1 + f2 + f3)
∗]E[dX(f2)dX(−f3)

∗] (3.3)

where we used the definition of the fourth order cumulants [36]. The spectrum S4x(f1, f2, f3)

is related to the fourth order statistic

C4x(t, τ1, τ2, τ3) = cum(x(t+ τ1), x(t + τ2), x(t+ τ3)
∗, x(t)∗). (3.4)

If x(t) is stationary, we have C4x(t, τ1, τ2, τ3) = C4x(τ1, τ2, τ3) and then

S4x(f1, f2, f3) =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
C4x(τ1, τ2, τ3)e

−j2π(f1τ1+f2τ2+f3τ3)dτ1dτ2dτ3. (3.5)

If x(t) is cyclostationary with the period T , we have

C4x(t+ T, τ1, τ2, τ3) = C4x(t, τ1, τ2, τ3) =

∞
∑

q=−∞

C
(q)
4x (τ1, τ2, τ3)e

j2π q

T
t (3.6)

where C
(q)
4x (τ1, τ2, τ3) =

1
T

∫ T
0 C4x(t, τ1, τ2, τ3)e

−j2π q

T
tdt. In this case we have

S4x(f1, f2, f3) =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
C

(0)
4x (τ1, τ2, τ3)e

−j2π(f1τ1+f2τ2+f3τ3)dτ1dτ2dτ3. (3.7)

These relations between S4x(f1, f2, f3) and C4x(t, τ1, τ2, τ3) can be shown using the

methodology from [70]. When x(t) is complex we can define different statistics for

different conjugation patterns in (3.4). The spectrum S4x(f1, f2, f3) defined in (3.3) is

useful for our application.

In our work we are going to use the following two dimensional slice of the fourth

order spectrum

S̃4x(f, v) = S4x(f, v,−v) (3.8)
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which using the definition (3.3) can be written as

S04x(f, v)dfdv = cum(dX(f), dX(v), dX(v)∗ , dX(f)∗) =

E[|dX(f)dX(v)|2 ]− |E[dX(f)dX(v)∗ ]|2 − |E[dX(f)dX(v)]|2 − E[|dX(f)|2]E[|dX(v)|2 ].

(3.9)

The quantity S04x(f, v) for f = v is the fourth order autocumulant (kurtosis) at fre-

quency f . It is zero for Gaussian signals and non-zero for most non-Gaussian signals.

Thus, it can be interpreted as deviation from Gaussianity at frequency f . Kurtosis

has also other interpretations and it is difficult to determine exactly what this statistic

measures [71]. The interpretation of kurtosis is even more complicated for complex

signals [70], which is the case in our application. Kurtosis can also be defined for some

classes of nonstationary signals where it has a different interpretation [40]. The quan-

tity S04x(f, v) for f 6= v measures a certain form of statistical dependency between

spectral components at frequencies f and v. Again, it is not easy to exactly understand

the nature of this statistical dependency. In contrast to the fourth order spectrum,

the second order spectrum S2x(f) measures only average power at frequency f and

contains no information about statistical dependencies between spectral components at

different frequencies. Hence, the slice S04x(f, v) contains significant information about

the received signal, which is not present in its second order spectrum.

We now consider the scenario where one sensor observes a frequency band used by

M packet based radio transmitters. The received signal r(t) is given by (2.1). Let us

assume that the received signal consists of Icl sets of one or more continuous time seg-

ments where the segments from each set are generated by the same combination of active

transmitted signals and thus, have the same fourth order spectrum slice S04x(f, v). The

problem of localizing these segments in time has been treated in the previous chapter.

We note that each set of segments mentioned above corresponds to one cluster in our

segmentation algorithm. Let S04(f, v, i) be the fourth order spectrum slice defined in

(3.9) for the i-th cluster. Assuming statistically independent signals over each segment

we have

S04(f, v, i) =

M
∑

m=1

|Hm(f)|2|Hm(v)|2S04m(f, v)cim + S04n(f, v) (3.10)
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where S04m(f, v) is the fourth order spectrum slice of the m-th transmitted signal and

cim ∈ {0, 1} indicates whether the m-th source is on during the segments of the i-

th cluster for i = 1, . . . , Icl. We define the matrix C = [cim] of the size Icl by M .

The columns of C are activity sequences associated with different signals where these

sequences are functions of the cluster index i. We also define the matrix B = [bkm],

which contains the activity sequences as functions of the time index k = 1, . . . ,K. We

have B = STC where S is the segmentation matrix of the size Icl by K defined earlier.

Initially, we will assume the receiver noise is Gaussian and hence, S04n(f, v) = 0. Under

some assumptions our approach can be extended to nongaussian noise. This will be

explained later. Let us define the three-way array Y with entries

Y (j, n, i) =

∫ j∆f

(j−1)∆f

∫ n∆f

(n−1)∆f
S04(f, v, i)dfdv =

M
∑

m=1

qjnmcim (3.11)

where qjnm =
∫ j∆f
(j−1)∆f

∫ n∆f
(n−1)∆f |Hm(f)|2|Hm(v)|2S04m(f, v)dfdv for j, n = 1, . . . , Jfb.

The number of frequency bins is Jfb = W/∆f , whereW is the total observed bandwidth

and ∆f is the frequency discretization step. Let Y i be the Jfb by Jfb matrix obtained

by fixing the index i in (3.11). We have

Y i =

M
∑

m=1

Qmcim (3.12)

where Qm = [qjnm] is the fourth order spectrum matrix of the m-th signal. These

matrices depend on transmitted signal formats. We consider two classes of transmitted

signals.

Linear modulation formats. We now consider an important class of linear modula-

tions where the m-th transmitted signal has the following form

xm(t) =
∞
∑

k=−∞

akmpm(t− kTm) (3.13)

where akm is an i.i.d. sequence of input symbols, pm(t) is the pulse shape, and Tm is

the symbol period. Using the definition it can be shown that the fourth order spectrum

of xm(t) is

S4m(f1, f2, f3) =
S4am(f1, f2, f3)

Tm
Pm(f1)Pm(f2)Pm(−f3)

∗Pm(f1 + f2 + f3)
∗ (3.14)
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where Pm(f) =
∫∞
−∞ pm(t)e−j2πftdt. Since akm is an i.i.d. sequence S4am(f1, f2, f3) =

γ4am = cum(akm, akm, a∗km, a∗km). Using (3.9) we have

S04m(f, v) = km|Pm(f)|2|Pm(v)|2 (3.15)

where km = γ4am/Tm. It follows that qjnm = kmfjmfnm, where

fnm =
∫ n∆f
(n−1)∆f |Hm(f)|2|Pm(f)|2df . We see that for linear modulation formats Qm is

of rank one. In this case the entries of Y are

Y (j, n, i) =

M
∑

m=1

kmfjmfnmcim. (3.16)

Now we observe that

Y i = FΛiF
T (3.17)

where F = [fjm] and Λi = diag(
[

k1ci1 . . . kM ciM

]

). We see that the matrix F

jointly diagonalizes the matrices Y i for i = 1, . . . , Icl. Under certain conditions the

matrix F can be recovered from the set of matrices Y i for i = 1, . . . , Icl. The problem of

finding F from the set of matrices Y i for i = 1, . . . , Icl is known as joint diagonalization

by congruence [72]. After F has been recovered it is possible to find contributions of

different signals to Y . Thus, using this method we can estimate spectra and activity

sequences of the signals in the observed frequency band.

Let us explain how F can be recovered from Y i for i = 1, . . . , Icl assuming that

Jfb ≥ M and rank(F ) = M . When Jfb > M we can apply dimension reduction and

reduce the problem to Jfb = M . Hence, we can assume Jfb = M and rank(F ) = M .

We define Y 0 =
∑Icl

i=1 αiY i = FΛ0F
T where the vector α =

[

α1 . . . αIcl

]

is chosen

so that Λ0 is invertible. The vector α should be chosen so that α ∈ St \{S1∪· · ·∪SM}

where St is the entire Icl-dimensional space and Sm is the Icl − 1-dimensional subspace

orthogonal to the m-th column of C. Since this union of Icl − 1-dimensional subspaces

cannot fill the entire Icl-dimensional space we know that an appropriate vector α exists.

Therefore it is possible to create an invertible Λ0 unless km = 0 or c1m = · · · = cIcl,m = 0

for some 1 ≤ m ≤ M . If this is the case we can remove the m-th columns from F and

C and consider decomposition of Y into M − 1 terms. Hence, we can assume that Λ0

is invertible. We form the matrices

Y iY
−1
0 = FΛiΛ

−1
0 F−1 (3.18)
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for i = 1, . . . , Icl, which represents Icl simultaneous eigendecompositions. The diagonal

entries of ΛiΛ
−1
0 are cim/

∑Icl
j=1 αjcjm for m = 1, . . . ,M . If cim 6= 0 the m-th diagonal

entry can be written as 1/
∑Icl

j=1 αjcjm/cim. We see that this diagonal entry depends

on the direction of the m-th column of C. Thus, the nonzero diagonal entries of

ΛiΛ
−1
0 are distinct if the corresponding columns in C have distinct directions. In

that case, the columns of F =
[

f1 . . . fM

]

corresponding to the nonzero distinct

diagonal entries of ΛiΛ
−1
0 can be determined up to permutation and scaling from the

eigendecomposition of Y iY
−1
0 . We know that for any m there is some cim 6= 0 for

i = 1, . . . , Icl. Therefore, if the matrix C has no proportional columns, the matrix F

can be recovered by performing the simultaneous eigendecompositions defined in (3.18).

Let us suppose now that the first two columns in C are proportional (i. e., ci1 = βci1

for i = 1, . . . , Icl and some constant β) while all other columns have distinct directions.

In this case the first two diagonal entries are identical in all of the matrices ΛiΛ
−1
0 for

i = 1, . . . , Icl. Then the eigendecompositions of Y iY
−1
0 for i = 1, . . . , Icl can uniquely

recover all the columns of F except f1 and f2. It can recover only span{f1,f2}. In

other words, if any two columns in C are proportional the corresponding two columns

in F cannot be recovered individually and only the subspace spanned by these two

columns is uniquely determined. In general, columns of the matrix F can be recovered

up to permutation and scaling from (3.17) if (1) rank(F ) = M and (2) the matrix C

has no proportional columns. If (1) rank(F ) = M and (2) the matrix C has groups of

proportional columns, we can recover subspaces spanned by the corresponding groups

of columns in F . When the columns of F are determined up to permutation and scaling

from (3.17) we can find contributions of different signals to the three way array Y .

These conditions are well known [73] and they are derived here for completeness.

This type of the matrix recovery by joint diagonalization of a set of given matrices is

the main estimation principle behind important methods for independent component

analysis and blind signal separation (see [19], [72] and references in [74]). Let us explain

this estimation technique from another point of view. We observe that (3.16) represents

decomposition of Y into M three-way rank-one terms [75] [76]. This decomposition is

unique under certain algebraic conditions [77]. The uniqueness conditions from [77] are
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more general than the ones derived above. When the uniqueness conditions hold the

rank-one terms in (3.16) are uniquely determined. In other words, we can uniquely

determine terms in the sum in (3.16), which represent contributions of different trans-

mitted signals to the observed three-way array Y . Thus, the decomposition of Y into

rank-one terms becomes a parameter estimation tool.

We note that rank(F ) = M implies Jfb ≥ M . In our application this condition can

be satisfied if the number of bins Jfb used for the estimation of the fourth order spec-

tral slices is sufficiently high. The condition saying that the matrix C has no groups

of proportional columns requires a certain diversity among activity sequences associ-

ated with different signals. Since different signals normally have completely different

activity sequences, this condition is practically always satisfied in any application. The

condition rank(F ) = M requires a certain form of spectral diversity. This spectral

diversity is generated by use of different pulse shapes and transmit center frequencies

and by different channel transfer functions between the transmitters and the sensor.

The condition rank(F ) = M can break down if two or more transmitters use identical

pulse shapes and the corresponding channel transfer functions are flat in frequency. In

this case there are two or more proportional columns in F and hence, rank(F ) < M .

Let us assume now that rank(F ) = M − 1 because there are two identical received

pulse shapes and hence, there are two proportional columns in F . In that case these

two signals contribute only one rank one term in the sum in (3.16). These two signals

are characterized with one column in F representing their common pulse shape and

one column in C representing activity sequence for both signals. Therefore, in this case

the proposed analysis method is still applicable but now we need to to decompose Y

into M − 1 rank one terms instead of M rank one terms.

In the previous analysis we used the slice S04x(f, v) = S4x(f, v,−v), which is only

one part of the information contained in the fourth order spectrum. Let us now consider

the slice S∆v4x(f, v) = S4x(f, v +∆v,−v) where ∆v is a constant. Let S∆v4(f, v, i) be

the fourth order spectrum slice defined above for the i-th cluster. Equation (3.10) now
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becomes

S∆v4(f, v, i) =

M
∑

m=1

Hm(f)Hm(f+∆v)∗Hm(v+∆v)Hm(v)∗S∆v4m(f, v)cim+S∆v4n(f, v)

(3.19)

where i = 1, . . . , Icl and S∆v4m(f, v) is the fourth order spectrum slice of them-th trans-

mitted signal. Again, assuming the receiver noise is Gaussian, we have S∆v4n(f, v) = 0.

Let us now define the three-way array Y ∆v with entries

Y ∆v(j, n, i) =

∫ j∆f

(j−1)∆f

∫ n∆f

(n−1)∆f
S∆v4(f, v, i)dfdv =

M
∑

m=1

q∆v,jnmcim (3.20)

where qjnm =
∫ j∆f
(j−1)∆f

∫ n∆f
(n−1)∆f Hm(f)Hm(f+∆v)∗Hm(v+∆v)Hm(v)∗S∆v4m(f, v)dfdv.

For linear modulation formats we have

S∆v4m(f, v) = kmPm(f)Pm(f +∆v)∗Pm(v +∆v)Pm(v)∗ (3.21)

which follows from (3.14). It follows that q∆v,jnm = kmf∆v,jmf∗
∆vnm, where f∆v,nm =

∫ n∆f
(n−1)∆f Hm(f)Hm(f +∆v)∗Pm(f)Pm(f +∆v)∗df . In this case the entries of Y ∆v are

Y ∆v(j, n, i) =

M
∑

m=1

kmf∆v,jmf∗
∆v,nmcim. (3.22)

Now we observe that

Y ∆v,i = F∆vΛiF
H
∆v (3.23)

where Y ∆v,i is the i-th slice of Y ∆v, F∆v = [f∆v,jm] andΛi = diag(
[

k1ci1 . . . kMciM

]

).

We see that the matrix F∆v jointly diagonalizes the matrices Y ∆v,i for i = 1, . . . , Icl.

Thus, under similar algebraic conditions to those stated above, it is possible to recover

F∆v from Y ∆v. The entries of F∆v contain information on the phase of Pm(f) and

Hm(f). On the other hand, the entries of F are functions of |Pm(f)| and |Hm(f)|

and hence, they are insensitive to the phase of Pm(f) and Hm(f). We see that the

slices S∆v4x(f, v) = S4x(f, v +∆v,−v) for ∆v 6= 0 also contain useful information and

can be used for signal analysis. By using these slices for different values of ∆v it is

possible to exploit full information from the fourth order spectrum. Numerical algo-

rithms presented here can be used for computing the decomposition defined in (3.16).

Computing the decomposition defined in (3.22) for ∆v 6= 0 requires different numerical
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algorithms since some quantities in (3.22) are complex. We leave this generalization of

the algorithm for future work.

Nonlinear modulation formats. It is not possible to apply the proposed methodology

to nonlinear modulation formats in general. Obviously, nonlinearity is not a property

and therefore, it cannot be treated without introducing additional assumptions. The

proposed analysis method can be generalized when the transmitted signals can be rep-

resented or approximated as finite sums of linearly modulated signals. Let us assume

that the m-th transmitted signal can be represented as a sum of Rm statistically inde-

pendent signals in linear format given by (3.13). Then its fourth order spectrum slice

can be represented as

Qm =

Rm
∑

r=1

krmf (m)
r f (m)T

r = FmDmF T
m (3.24)

where Dm = diag(
[

k1m . . . kRm,m

]

) contains constants defined in (3.15) and Fm =
[

f
(m)
1 . . . f

(m)
Rm

]

contains the associated squared magnitude frequency responses of

the linear signals used to represent the m-th source signal. The entries of Y can be

written as

Y (j, n, i) =

M
∑

m=1

qjnmcim =

M
∑

m=1

Rm
∑

r=1

krmfjrmfnrmcim (3.25)

where Fm(j, r) = fjrm. The matrix slices of the three way array are now

Y i =
[

F 1 . . . FM

]













Λi1 . . . 0

...
. . .

...

0 . . . ΛiM













[

F 1 . . . FM

]T

(3.26)

where Λim = diag(
[

k1mcim . . . kRm,1cim

]

) for m = 1, . . . ,M and i = 1, . . . , Icl. Now

we need to assume that Jfb ≥ R1+· · ·+RM and rank(
[

F 1 . . . FM

]

) = R1+· · ·+RM .

Again, we can assume Jfb = R1 + · · ·+RM and define Y 0 = FΛ0F
T

Y 0 =

Icl
∑

i=1

αiY i =
[

F 1 . . . FM

]













Λ01 . . . 0

...
. . .

...

0 . . . Λ0M













[

F 1 . . . FM

]T

(3.27)
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whereΛ0m =
∑Icl

i=1 αiΛim form = 1, . . . ,M . Again, we can pick the vector
[

α1 . . . αIcl

]

so that Λ0m for m = 1, . . . ,M are invertible and form

Y iY
−1
0 =

[

F 1 . . . FM

]













Λi1Λ
−1
01 . . . 0

...
. . .

...

0 . . . ΛiMΛ−1
0M













[

F 1 . . . FM

]−1

(3.28)

for i = 1, . . . , Icl. Again, we have Icl simultaneous eigendecompositions, but now there

are M groups of repeated diagonal entries in (3.28). These repeated entries appear at

exactly the same positions for all matrices Y iY
−1
0 i = 1, . . . , Icl. Assuming that C

has no proportional columns from (3.28) we can recover span{Fm} for m = 1, . . . ,M .

This conclusion follows from the previous analysis of the joint diagonalization problem.

More precisely, from (3.28) we cannot find Fm but we can find F̃m = FmTm where

Tm is an invertible matrix. This indeterminacy does not prevent us from estimating

contributions of different signals to the observed three way array Y since

Y i =
[

F̃ 1 . . . F̃M

]













T−1
1 Λi1T

T
1
−1

. . . 0

...
. . .

...

0 . . . T−1
M ΛiMT T

M
−1













[

F̃ 1 . . . F̃M

]T

(3.29)

where m = 1, . . . ,M and i = 1, . . . , Icl.

The problem of recovering
[

F 1 . . . FM

]

from the matrices Y i given by (3.26) is

called joint block diagonalization and it arises in some signal processing problems [78]

[79]. Again, we can explain the method from another point of view. Equation (3.25)

represents decomposition of Y intoM block terms [80]. Now each signal contributes one

block term rather than one rank-one term, which was the case with linear modulation

formats. The decomposition into block terms can also be unique under certain algebraic

conditions [80], which are generalization of those from [77]. When these conditions hold

block terms in (3.25), representing contributions of different transmitted signals to Y ,

are uniquely determined and hence, the decomposition of Y into block terms becomes

a parameter estimation tool.



53

Using the operator vecr which transforms real symmetric matrix into a vector [72],

the decomposition into block terms can be represented as

Y V =
[

vecr(Y 1) . . . vecr(Y Icl)

]

= F V KCT (3.30)

where

F V = [vecr(f
(1)
1 f

(1)T
1 ) . . . vecr(f

(1)
R1

f
(1)T
R1

) . . .

vecr(f
(M)
1 f

(M)T
1 ) . . . vecr(f

(M)
RM

f
(M)T
RM

)] (3.31)

and

K =



























































k11 0 . . . 0

...
...

. . .
...

kR1,1 0 . . . 0

0 k12 . . . 0

...
...

. . .
...

0 kR2,2 . . . 0

...
...

. . .
...

0 0 . . . k1,M
...

...
. . .

...

0 0 . . . kRM ,M



























































. (3.32)

We note that decomposition into rank-one terms is a special case of the decomposition

into block terms obtained for R1 = · · · = RM = 1. The contributions of individual

signals can be recovered from Y if (1) rank(
[

F 1 . . . FM

]

) = R1+· · ·+RM and (2) C

has no proportional columns. As explained earlier the second condition stating thatC is

practically always satisfied in any application. We note that rank(
[

F 1 . . . FM

]

) =

R1 + · · · + RM implies Jfb ≥ R1 + · · · + RM , which can be satisfied if the number of

frequency bins Jfb used for estimation of the fourth order spectrum slices is higher than

the total number of rank one terms R1 + · · · + RM in the decomposition. Thus, this

condition requires a certain form of sparsity. The condition rank(
[

F 1 . . . FM

]

) =

R1+ · · ·+RM can be restated as follows. Let us define the subspaces col{Fm} for m =

1, . . . ,M where col{} denotes the column space of its argument matrix. According to the
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definition in [81], rank(
[

F 1 . . . FM

]

) = R1 + · · · + RM implies that the subspaces

col{Fm} for m = 1, . . . ,M are linearly independent. Thus, this condition requires

a certain form of spectral diversity among the received signals. The sources of this

diversity are use of different transmitted signal formats and different center frequencies

and propagation of signals through different channels between the transmitters and the

sensor. If there are two signals with proportional fourth order spectrum slices (i. e.,

Q1 = αQ2 where α is a constant) the proposed method should be used with M − 1

instead of M .

The condition requiring that the subspaces col{Fm} for m = 1, . . . ,M are linearly

independent can break down if for example, rank(
[

F 1 F 2

]

) < R1 + R2. In order to

understand what happens then we consider the more general model of the form (3.30)

with

F =
[

f1 . . . fR

]

, (3.33)

F V =
[

vecr(f1f
T
1 ) . . . vecr(fRf

T
R)

]

, (3.34)

C =
[

c1 . . . cM

]

(3.35)

and the R by M matrix K = [krm] which is not necessarily constrained to the block

form given in (3.32). The entries of the three way array Y are

Y (j, n, i) =

M
∑

m=1

R
∑

r=1

krmfjrfnrcim. (3.36)

The matrix slices of Y are now

Y i =
[

f1 . . . fR

]













∑M
m=1 k1mcim . . . 0

...
. . .

...

0 . . .
∑M

m=1 kRmcim













[

f1 . . . fR

]T

(3.37)

for i = 1, . . . , Icl. Again, we can pick the vector
[

α1 . . . αIcl

]

such that the matrix

Y 0 =
∑Icl

i=1 αiY i is invertible and form

Y iY
−1
0 = F















∑M
m=1

k1mcim
∑Icl

i=1

∑M
m=1

αik1mcim
. . . 0

...
. . .

...

0 . . .
∑M

m=1 kRmcim
∑Icl

i=1

∑M
m=1 αikRmcim















F−1 (3.38)
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where we assumed that Jfb = R and that F is invertible. Again, we obtain the simul-

taneous eigendecompositions. Let us now consider several concrete examples.

In the first example we consider the case where

K =

































k11 0

k21 0

k31 k12

k41 k22

0 k32

0 k42

































. (3.39)

We obtain the following eigendecompositions

Y iY
−1
0 = F diag(Λ(i, :))F −1 (3.40)

where i = 1, . . . , Icl and Λ(i, :) is the i-th column of the matrix

Λ =





































cT
1

∑Icl
i=1

αici1

cT1
∑Icl

i=1
αici1

k31cT1 +k12cT2
∑Icl

i=1
αi(k31ci1+k12ci2)

k41cT1 +k22cT2
∑Icl

i=1
αi(k41ci1+k12ci2)

cT
2

∑Icl
i=1

αici2

cT
2

∑Icl
i=1

αici2





































. (3.41)

The matrix Λ can be recovered by solving the eigendecompositions from (3.40). If C is

invertible the contributions of the two signals can be resolved if we can find the directions

of c1 and c2. We see that col(ΛT ) = span{c1, c2}. The top two rows in Λ have the

same direction as c1 and the bottom two rows in Λ have the same direction as c2.

Assuming that there are no other subsets of the rows of Λ which contain proportional

vectors it is possible to identify the directions of c1 and c2 from Λ.
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In the second example we consider the case where

K =

































k11 0

k21 k12

k31 k22

k41 k32

k51 k42

0 k52

































. (3.42)

We obtain the following eigendecompositions

Y iY
−1
0 = F diag(Λ(i, :))F −1 (3.43)

where i = 1, . . . , Icl and Λ(i, :) is the i-th column of the matrix

Λ =





































cT1
∑Icl

i=1
αici1

k21cT1 +k12cT2
∑Icl

i=1
αi(k21ci1+k12ci2)

k31cT1 +k22cT2
∑Icl

i=1
αi(k31ci1+k22ci2)

k41cT1 +k32cT2
∑Icl

i=1
αi(k41ci1+k32ci2)

k51cT1 +k42cT2
∑Icl

i=1
αi(k41ci1+k32ci2)

cT2
∑Icl

i=1
αici2





































. (3.44)

In this case the rows of Λ representing the directions of c1 and c2 are not repeated

and hence they cannot be identified from Λ. In this example we can identify only

span{c1, c2} = col(ΛT ).

From these two examples we can draw the following conclusion. If the subspaces of

the two signals partially overlap their contributions to Y can be recovered if the size of

the each nonoverlapping portion is at least two. In the first example this condition is

satisfied and hence, we can recover the directions of c1 and c2. Assuming that C is of

full rank and using the recovered directions of c1 and c2 we can find the contributions of

the two signals to Y . In the second example we can find only span{c1, c2}. In order to

recover the contributions of the two signals to Y we need to make additional assump-

tions. For example, this recovery is possible if the two signals transmit nonoverlapping

signals in time.
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In the third example we consider the case where

K =





















































k11 k12 0 0

k21 k22 0 0

k31 k32 0 0

k41 k42 k13 k14

k51 k52 k23 k24

k61 k62 k33 k34

0 0 k43 k44

0 0 k53 k54

0 0 k63 k64





















































. (3.45)

We obtain the following eigendecompositions

Y iY
−1
0 = F diag(Λ(i, :))F −1 (3.46)

where i = 1, . . . , Icl and Λ(i, :) is the i-th column of the matrix

Λ =





























































k11cT1 +k12cT2
∑Icl

i=1
αi(k11ci1+k12ci2)

k21cT1 +k22cT2
∑Icl

i=1
αi(k21ci1+k22ci2)

k31cT1 +k32cT2
∑Icl

i=1
αi(k31ci1+k32ci2)

k41cT1 +k42cT2 +k13cT3 +k14cT4
∑Icl

i=1
αi(k41ci1+k42ci2+k13ci3+k14ci4)

k51cT1 +k52cT2 +k23cT3 +k24cT4
∑Icl

i=1
αi(k51ci1+k52ci2+k23ci3+k24ci4)

k61cT1 +k62cT2 +k33cT3 +k34cT4
∑Icl

i=1
αi(k61ci1+k62ci2+k33ci3+k34ci4)

k43cT3 +k44cT4
∑Icl

i=1
αi(k43ci3+k44ci4)

k53cT3 +k54cT4
∑Icl

i=1
αi(k53ci3+k54ci4)

k63cT3 +k64cT4
∑Icl

i=1
αi(k63ci3+k64ci4)





























































. (3.47)

We see that the top three vectors define a rank two matrix whose row space is span{c1, c2}.

Also, we see that the bottom three vectors define a rank two matrix whose row space is

span{c3, c4}. Assuming any other submatrix containing three rows of Λ is of the rank

three it is possible to identify span{c1, c2} and span{c3, c4} from Λ. However, it is not

possible to identify the directions of c1 and c2 from span{c1, c2} because the subspaces
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used by these two signals completely overlap. Similarly, it is not possible to identify

the directions of c3 and c4 from span{c3, c4}. The problem of identifying subspaces in

a set of vectors appears also in [32] and [82].

In the fourth example we consider the case where

K =





















































k11 k12 0 0

k21 k22 0 0

k31 k32 k13 k14

k41 k42 k23 k24

k51 k52 k33 k34

k61 k62 k43 k44

k71 k72 k53 k54

0 0 k63 k64

0 0 k73 k74





















































. (3.48)

We obtain the following eigendecompositions

Y iY
−1
0 = F diag(Λ(i, :))F −1 (3.49)

where i = 1, . . . , Icl and Λ(i, :) is the i-th column of the matrix

Λ =





























































k11cT1 +k12cT2
∑Icl

i=1
αi(k11ci1+k12ci2)

k21cT1 +k22cT2
∑Icl

i=1
αi(k21ci1+k22ci2)

k31cT1 +k32cT2 +k13cT3 +k14cT4
∑Icl

i=1
αi(k31ci1+k32ci2+k13ci3+k14ci4)

k41cT1 +k42cT2 +k23cT3 +k24cT4
∑Icl

i=1
αi(k41ci1+k42ci2+k23ci3+k24ci4)

k51cT1 +k52cT2 +k33cT3 +k34cT4
∑Icl

i=1
αi(k51ci1+k52ci2+k33ci3+k34ci4)

k61cT1 +k62cT2 +k43cT3 +k44cT4
∑Icl

i=1
αi(k61ci1+k62ci2+k43ci3+k44ci4)

k71cT1 +k72cT2 +k53cT3 +k54cT4
∑Icl

i=1
αi(k71ci1+k72ci2+k53ci3+k54ci4)

k63cT3 +k64cT4
∑Icl

i=1
αi(k63ci3+k64ci4)

k73cT3 +k74cT4
∑Icl

i=1
αi(k73ci3+k74ci4)





























































. (3.50)

In this example we cannot find appropriate submatrices of Λ to identify span{c1, c2}

and span{c3, c4. The top two rows of Λ define span{c1, c2} and the bottom two rows
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define span{c3, c4}. However, any other submatrix containing two rows of Λ is also

of the rank two and hence, there is no way to select the submatrices for identifica-

tion of span{c1, c2} and span{c3, c4}. Therefore, in this example we can identify only

span{c1, c2, c3, c4}. Main conclusion from the last two examples is that in order to

resolve span{c1, c2} and span{c3, c4} the size of the nonovelapping portions of their

subspaces must be at least three. This conclusion can be easily generalized. For ex-

ample, if there were two groups of signals where each group has three signals using the

same subspace then in order to resolve span{c1, c2, c3} and span{c4, c5, c6} the size of

the nonovelapping portions of their subspaces must be at least four and so on.

In order to find contributions of different signals to Y we need to recover the matrices

F , K, and C from Y whose entries are given by (3.36). In order to do this we need to

know the parameters M and R. Let us describe how (at least in theory) the parameters

M and R can be determined from Y . First, we apply vecr operator on (3.12) for

i = 1, . . . , Icl. We have

[

vecr(Y 1) . . . vecr(Y Icl)

]

= QV C
T (3.51)

where

QV =
[

vecr(Q1) . . . vecr(QM )

]

. (3.52)

Assuming that Jfb +
(Jfb

2

)

≥ M , Icl ≥ M , and that QV and C are of full rank we have

rank
([

vecr(Y 1) . . . vecr(Y Icl)
])

= M (3.53)

which can be used to determine M . Next, we show how R can be found from Y . We

rewrite (3.37) as

Y i = F diag(L(i, :))F T (3.54)

where L(i, :) is the i-th row of the matrix

L =
[

l1 . . . lR

]

= CKT . (3.55)

It is very simple to check that

[

Y 1 . . . Y Icl

]

= F (L⊙ F )T (3.56)
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where the symbol ⊙ denotes the Khatri-Rao product defined as [76]

L⊙ F =
[

l1 ⊗ f1 . . . lR ⊗ fR

]

(3.57)

where the symbol ⊗ denotes the Kronecker product [83]. Assuming that Jfb ≥ R,

rank(F ) = R, and rank(L⊙ F ) = R we have

rank
([

Y 1 . . . Y Icl

])

= R (3.58)

which can be used to determine R.

The final problem in recovering the matrices F , K, and C from Y is that the

structure of the matrix K is not known in advance. For example, if the matrix K is

of the form given in (3.32) then in recovering F , K, and C from Y the matrix K

has to be appropriately constrained to obtain the desired solution. In other words,

we need to know which entries of K are not equal to zeros. This is crucial since we

have seen that the number and positions of nonzero and zero entries determine if the

contributions of different signals can be recovered from Y . In general, the contributions

of different signals can be recovered from Y if the matrix K is sufficiently sparse. As

we explained earlier the recovery is possible for different sparsity patterns of the matrix

K. The main problem here is that the sparsity pattern of the matrix K is not known

in advance. This problem is overcome by observing that the desired decomposition

of Y is always obtained for the matrix K which has the smallest possible number of

nonzero entries. Therefore, in recovering the matrices F , K, and C from Y we obtain

the desired solution when the matrix K is constrained to be maximally sparse.

Since we assumed Gaussian sensor noise, there is no noise contribution to Y . We

can extend our approach to any stationary non-Gaussian noise that can be represented

or approximated as a sum of finite number of linear signals. Such noise would contribute

its own block term to Y . Since the noise is stationary the corresponding column in C

would consists of all ones.

Let us now consider the system model where we use only second order spectrum.

Let S2(f, i) be the second order spectrum for the i-th cluster. Assuming statistically
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independent signals over each segment we have

S2(f, i) =

M
∑

m=1

|Hm(f)|2S2m(f)cim + S2n(f) (3.59)

where S2m(f) is the second order spectrum of the m-th transmitted signal, S2n(f) is

the second order spectrum of the sensor noise, and cim ∈ {0, 1} indicates whether the

m-th source is on during the segments of the i-th cluster for i = 1, . . . , Icl. Let us define

the matrix Z with entries

Z(j, i) =

∫ j∆f

(j−1)∆f
S2(f, i)df =

M
∑

m=1

gjmcim + nj (3.60)

where gjm =
∫ j∆f
(j−1)∆f |Hm(f)|2S2m(f)df and nj =

∫ j∆f
(j−1)∆f S2n(f)df for j = 1, . . . , Jfb.

Finally, our system model becomes

Z =
[

G n

] [

C 1

]T

(3.61)

where G = [gjm], n = [nj ], C = [cim] and 1 is a vector of the length Icl containing all

ones. In order to find the contributions of different signals and noise to Z we need to

perform the matrix factorization from (3.61). In general, matrix factorizations are not

unique. In other words, for a given Z the matrices G, n, and C cannot be uniquely

determined without imposing additional constraints on them. In contrast to matrix

factorizations, factorizations of three-way arrays are often unique and hence, they can

be used as parameter estimation tools [76] [84]. These facts explain why we had to use

fourth order spectrum in our application. Finally, we note that, if the matrix C has

been estimated from the decomposition of Y and if rank(
[

C 1

]

) = M + 1, we can

estimate G and n from (3.61).

3.2 Estimation of fourth order spectra

First step in the application of the proposed signal analysis method is estimation of the

fourth order spectrum slices defined in (3.9) from the received signal samples. There are

numerous methods for estimation of second order spectrum (see [34], [35] and references

therein). Methods for second order spectrum estimation of stationary signals have

been extensively studied and their properties are well understood. On the other hand,
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methods for estimation of higher order spectra have been much less studied. Methods

for estimation of third order spectrum can be found in [85] [86] [69]. Methods for

estimation of fourth order spectrum are discussed in [36], [38] and references therein.

As pointed out in [69] methods for estimation of higher order spectra are not well

understood. As will be seen, estimation of the fourth order spectrum slices in our

application has some unique aspects and it is not straightforward. For these reasons

we will give a detailed description of the estimation procedure.

We wish to estimate the fourth order spectrum slices defined in (3.9). The estima-

tion will be done on the discrete time signal r(k) for k = 1, . . . ,K obtained by sampling

r(t) with the sampling period Ts. Each fourth order spectrum slice will be estimated

from the subset of samples of r(k) generated by the same combination of active trans-

mitted signals. In general, this subset consists of several continuous time segments. We

assume that these segments have been localized in time using the proposed segmenta-

tion algorithm. Let us first describe how to estimate the fourth order spectrum slice

on one such continuous time segment with a fixed combination of active transmitters.

Let the samples on this segment be r(k) for k = 1, . . . ,Ks where KsTs is the duration

of the segment. Before proceeding with the estimation procedure we need to discuss

some important matters concerning the statistics of the signals sm(t) from (2.1).

As already mentioned most communication signals are cyclostationary, which means

that their statistics are periodic functions of time. This periodic dependency is caused

by periodically repetitive signal generation mechanisms (e.g., periodic output of infor-

mation bearing waveforms, multiplication with periodic carriers, periodic spreading,

periodic hopping, etc.) [11]. Let s1(t) be persistently active for 0 ≤ t ≤ KsTs and let

the modulation format of this signal be associated with period T1. Let us define the

second order statistic C2s1(t, τ) = E{s1(t+ τ)s1(t)
∗}. If C2s1(t, τ) = C2s1(t+T1, τ) the

signal s1(t) is second order cyclostationary. Let us consider the fourth order statistic

C4s1(t, τ1, τ2, τ3) = cum{s1(t + τ1), s1(t + τ2), s1(t + τ3)
∗, s1(t)

∗}, where the cumulant

operator is defined in [36]. If C4s1(t, τ1, τ2, τ3) = C4s1(t + T1, τ1, τ2, τ3) the signal s1(t)

is fourth order cyclostationary and so on. In general, when we say that a signal is

cyclostationary it means that some of its statistics vary periodically with time. The
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signal s1(t) can be cyclostationary for 0 ≤ t ≤ KsTs only if it is persistently active on

that time interval as we assumed. If during this time interval s1(t) has silent periods

or multiple packet transmissions, this signal cannot be cyclostationary on the time in-

terval because any breaks in signal transmission disrupt periodic variation of statistics

in time.

Since the received signal r(t) is sampled with Ts it is important to understand

relationship between the statistics of s1(t) and those of the discrete time signal s1(k)

obtained by sampling s1(t) with Ts. Let us first consider the case where T1 = N1Ts for

some integer N1. If N1 ≥ 2 the signal s1(k) is cyclostationary with the period N1. If

N1 = 1 statistics of s1(k) become independent of time and hence, s1(k) is a stationary

signal. If the relation T1 = N1Ts does not hold for any integer N1 the signal s1(k)

is either cyclostationary with some period larger than N1 or not cyclostationary at

all. Therefore, the statistics of s1(t) are accurately reflected in the statistics of s1(k) if

T1 = N1Ts where N1 is an integer and N1 ≥ 2. Let us assume now that the signals sm(t)

for m = 1, . . . ,M are cyclostationary with periods Tm for m = 1, . . . ,M . We proceed

under the assumption that the sampling period Ts is chosen so that Tm = NmTs where

Nm is an integer and Nm ≥ 2 for m = 1, . . . ,M .

We now return to the problem of estimation of the fourth order spectrum slice

S04x(f, v) given by (3.9) from the samples r(k) for k = 1, . . . ,Ks. From (3.9) we have

S04x(f, v) = M04x(f, v)− |S2x(f, v)|2 − |M2x(f, v)|2 − Sd2x(f)Sd2x(v) (3.62)

where M04x(f, v)dfdv = E[|dX(f)dX(v)|2 ], S2x(f, v)dfdv = E[dX(f)dX(v)∗ ],

M2x(f, v)dfdv = E[dX(f)dX(v)] and Sd2x(f)df = E[|dX(f)|2]. We see that estimation

of S04x(f, v) requires estimation of M04x(f, v), S2x(f, v) and M2x(f, v). Since Sd2x(f) =

S2x(f, f), we do not have to estimate Sd2x(f) separately.

We first consider the estimation of M04x(f, v). Let us briefly explain its meaning.

The slice M04x(f, v) is obtained from

M4x(f1, f2, f3)df1df2df3 = E[dX(f1)dX(f2)dX(−f3)
∗dX(f1 + f2 + f3)

∗] (3.63)

by setting f1 = f , f2 = v and f3 = −v. The spectrum M4x(f1, f2, f3) is related to the

fourth order statistic R4x(t, τ1, τ2, τ3) = E[x(t + τ1)x(t + τ2)x(t + τ3)
∗x(t)∗]. If x(t) is
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stationary, we have R4x(t, τ1, τ2, τ3) = R4x(τ1, τ2, τ3) and then

M4x(f1, f2, f3) =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
R4x(τ1, τ2, τ3)e

−j2π(f1τ1+f2τ2+f3τ3)dτ1dτ2dτ3. (3.64)

If x(t) is cyclostationary with the period T , we have

R4x(t+ T, τ1, τ2, τ3) = R4x(t, τ1, τ2, τ3) =

∞
∑

q=−∞

R
(q)
4x (τ1, τ2, τ3)e

j2π q

T
t (3.65)

where R
(q)
4x (τ1, τ2, τ3) =

1
T

∫ T
0 R4x(t, τ1, τ2, τ3)e

−j2π q
T
tdt. In this case

M4x(f1, f2, f3) =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
R

(0)
4x (τ1, τ2, τ3)e

−j2π(f1τ1+f2τ2+f3τ3)dτ1dτ2dτ3. (3.66)

These relations between M4x(f1, f2, f3) and R4x(t, τ1, τ2, τ3) can be easily shown using

the methodology from [70]. We estimate M04r(f, v) where the subscript r means that

this spectrum is for the signal r(k) for k = 1, . . . ,Ks as follows. We define the vectors

zn =
[

r(1 + (n− 1)Jd) . . . r((n− 1)Jd + Jfb)

]T

for n = 1, . . . , Nv where Jfb is size

of the sliding window and 1 ≤ Jd ≤ Jfb is the parameter that determines how much

the window is shifted in each step. Next, we compute the vectors yn = FFT{zn} for

n = 1, . . . , Nv and the matrix

Ŷ M4 =
1

Nv

Nv
∑

n=1

(yn ◦ y∗
n) (yn ◦ y∗

n)
T (3.67)

whose entries are the estimates of M04r(f, v) over the Jfb by Jfb frequency grid. Hence,

the size of the sliding window Jfb determines the number of frequency bins in spectrum

estimation. We set Jd = 1 because then all vectors of the size Jfb from the input signal

are used in the estimation procedure.

Next, we consider the estimation of S2x(f, v). But first we need to understand its

meaning. The spectrum S2x(f, v) is related to the second order statistic R2x(t, τ) =

E[x(t + τ)x(t)∗]. If the signal x(t) is stationary we have R2x(t, τ) = R2x(τ). In this

case the function S2x(f, f) is the Fourier transform of R2x(τ) and it is the signal power

spectrum. For f 6= v, S2x(f, v) is correlation between the spectral components at

frequencies f and v. It is well known that for stationary signals S2x(f, v) = 0 when f 6= v

[69]. If the signal x(t) is cyclostationary with the period T then R2x(t+T, τ) = R2x(t, τ).

Hence, this statistic can be expanded as

R2x(t, τ) =
∞
∑

q=−∞

R
(q)
2x (τ)e

j2π q

T
t (3.68)
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where R
(q)
2x (τ) =

1
T

∫ T
0 R2x(t, τ)e

−j2π q

T
tdt. Let us define the spectra

S
(q)
2x (f)df = E[dX(f)dX(f − q/T )∗] (3.69)

for q = . . . ,−2,−1, 0, 1, 2, . . . . It is well known that

S
(q)
2x (f) =

∫ ∞

−∞
R

(q)
2x (τ)e

−j2πfτdτ (3.70)

for q = . . . ,−2,−1, 0, 1, 2, . . . [10]. The spectrum S
(0)
2x (f) is the signal power spec-

trum and S
(q)
2x (f) for q 6= 0 are the second order cyclostationary spectra. We see

that S
(q)
2x (f) are one dimensional slices of S2x(f, v) obtained for f − v = q/T for

q = . . . ,−2,−1, 0, 1, 2, . . . . Therefore, S2x(f, v) contains power spectrum and it may

contain second order cyclostationary spectra if any cyclostationary signals are present.

Let us now make an important point about the second order cyclostationary spectra.

We consider

R
(q)
2x (τ)∆t =

1

T

∫ T

0
R2x(t+∆t, τ)e−j2π q

T
tdt (3.71)

=
ej2π

q

T
∆t

T

∫ T−∆t

−∆t
R2x(t, τ)e

−j2π q

T
tdt = ej2π

q

T
∆tR

(q)
2x (τ)

where 0 ≤ ∆t ≤ T . It follows that also

S
(q)
2x (f)∆t =

∫ ∞

−∞
R

(q)
2x (τ)∆te

−j2πfτdτ = ej2π
q

T
∆t

∫ ∞

−∞
R

(q)
2x (τ)e

−j2πfτdτ = ej2π
q

T
∆tS

(q)
2x (f).

(3.72)

We see that the spectra S
(q)
2x (f) for q 6= 0 are sensitive to the timing parameter ∆t. In

other words, for q 6= 0 the spectra S
(q)
2x (f) computed for different values of ∆t differ

even when the statistic R2x(t, τ) is otherwise perfectly known. We also see that the

power spectrum S
(0)
2x (f) is not sensitive to ∆t. According to (3.62) S04x(f, v) depends

on |S2x(f, v)|2. Therefore, we need to correctly estimate magnitude of the second order

cyclostationary spectra.

In our application the signal r(k) for k = 1, . . . ,Ks consists of stationary noise and

cyclostationary received signals. We assumed that the transmitted signals sm(t) form =

1, . . . ,M are cyclostationary with periods Tm = NmTs form = 1, . . . ,M . It follows that

the signal r(k) for k = 1, . . . ,Ks is cyclostationary withNcom, which is the least common
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multiple of {N1, . . . , NM}. When estimating S2r(f, v) we have to take into account that

it contains the second order cyclostationary spectra, which are sensitive to the timing of

r(k). We define the vectors z
(p)
n =

[

r(p+ (n− 1)Jd) . . . r(p− 1 + (n− 1)Jd + Jfb)

]T

for n = 1, . . . , N
(p)
v where p = 1, . . . , Jd and Jd = NmulNcom where Nmul ≥ 1 is an inte-

ger. For each p we have the set of vectors z
(p)
n for n = 1, . . . , N

(p)
v obtained by sliding

the window with Jd = NmulNcom, which assures that each vector in the set contains

samples with the same timing of r(k). We compute the vectors y
(p)
n = FFT{z(p)

n } for

n = 1, . . . , N
(p)
v and p = 1, . . . , Jd and the matrices

Ŷ
(p)
S2 =

1

N
(p)
v

Nv
∑

n=1

y(p)
n y(p)H

n . (3.73)

The entries of Ŷ
(p)
S2 are the estimates of S2r(f, v)p over the Jfb by Jfb frequency grid

for one value of the discrete timing parameter p, which plays the same role as ∆t in

(3.71) and (3.72). The separate estimate Ŷ
(p)
S2 for each 1 ≤ p ≤ Jd is needed because of

the sensitivity of the cyclostationary spectra to the signal timing given by (3.71) and

(3.72). If we computed one estimate by sliding the window with Jd = 1, as we did in

the estimation of M04r(f, v), we would correctly estimate only the power spectrum slice

S2r(f, f) while the estimates of S2r(f, v) for f 6= v would be close to zero because of

the dependencies in (3.71) and (3.72). In other words, we would completely miss all

the cyclostationary spectra contained in S2r(f, v), which would then produce incorrect

estimates of S04r(f, v) as can be seen from (3.62). The estimates of M04r(f, v) and

the power spectrum S2r(f, f) computed by sliding the window with Jd = 1 are correct

because these spectra are Fourier transforms of statistics that are not sensitive to the

signal timing. From the diagonal entries of the matrices Ŷ
(p)
S2 we compute the vector

ŷS2 =













1
Jd

∑Jd
p=1 Ŷ

(p)
S2 (1, 1)

...

1
Jd

∑Jd
p=1 Ŷ

(p)
S2 (Jfo, Jfo)













(3.74)

whose entries are power spectrum estimates at Jfb frequency bins.

Finally, we consider the estimation of M2x(f, v). The spectrum M2x(f, v) is related

to the second order statistic Rm2x(t, τ) = E[x(t + τ)x(t)]. If the signal x(t) is real we

have Rm2x(t, τ) = R2x(t, τ) and M2x(f,−v) = S2x(f, v). Thus, for real signals these
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two spectra contain the same information. In contrast, for complex signals M2x(f, v)

and S2x(f, v) contain different information. If the signal x(t) is stationary we have

Rm2x(t, τ) = Rm2x(τ). In this case the function M2x(f,−f) is the Fourier transform

of Rm2x(τ) but this is not the signal power spectrum. For stationary signals we have

M2x(f, v) = 0 when f + v 6= 0. If the signal x(t) is cyclostationary with the period T

then Rm2x(t+ T, τ) = Rm2x(t, τ). Hence, this statistic can be expanded as

Rm2x(t, τ) =

∞
∑

q=−∞

R
(q)
m2x(τ)e

j2π q

T
t (3.75)

where R
(q)
m2x(τ) =

1
T

∫ T
0 Rm2x(t, τ)e

−j2π q
T
tdt. Let us define the spectra

M
(q)
2x (f)df = E[dX(f)dX(−f + q/T )] (3.76)

for q = . . . ,−2,−1, 0, 1, 2, . . . . In this case we have

M
(q)
2x (f) =

∫ ∞

−∞
R

(q)
m2x(τ)e

−j2πfτdτ (3.77)

for q = . . . ,−2,−1, 0, 1, 2, . . . . These relations can be shown using the same methodol-

ogy that was used for S2x(f, v) in [10]. We see that M
(q)
2x (f) are one dimensional slices

of M2x(f, v) obtained for f + v = q/T for q = . . . ,−2,−1, 0, 1, 2, . . . . Again, M
(0)
2x (f)

is not sensitive to the signal timing, whereas M
(q)
2x (f) for q 6= 0 are sensitive to the

signal timing in a way similar to (3.71) and (3.72). Hence, our estimation procedure

for M2r(f, v) will be similar to the one used for S2r(f, v). We compute the matrices

Ŷ
(p)
M2 =

1

N
(p)
v

Nv
∑

n=1

y(p)
n y(p)T

n (3.78)

for p = 1, . . . , Jd. The entries of Ŷ
(p)
M2 are the estimates of M2r(f, v)p over the Jfb by

Jfb frequency grid for one value of the discrete timing parameter p, which plays the

same role as in (3.73). Now we can compute the desired estimate of S04x(f, v). We

compute the matrix

Ŷ 0S4 = Ŷ 0M4 −
1

Jd

Jd
∑

p=1

[

Ŷ
(p)
S2 ◦ Ŷ (p)∗

S2

]

− 1

Jd

Jd
∑

p=1

[

Ŷ
(p)
M2 ◦ Ŷ

(p)∗
M2

]

− ŷS2ŷ
T
S2. (3.79)

whose entries are the estimates of S04r(f, v) over the Jfb by Jfb frequency grid.
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We illustrate the proposed estimation procedure with two examples. In the first

example the signal r(k) is complex white circularly symmetric Gaussian noise. This

signal has real valued Gaussian processes as its real and imaginary part and has the

following properties R2r(k,m) = E[r(k + m)r(k)∗] = σ2δkm where σ2 is the signal

variance and δkm is the Kronecker delta function and Rm2r(k,m) = E[r(k+m)r(k)] = 0

for all k and m. This implies that real and imaginary parts have the same statistics

and they are mutually uncorrelated and hence statistically independent [87, sec. 3.2.8].

Figure 3.1 shows the estimate of |S2r(f, v)|. This signal is stationary and hence, we

should have S2r(f, v) = 0 for f 6= v. The one dimensional slice S2r(f, f) is the signal

power spectrum, which should be flat in frequency because the signal is white noise.

Figure 3.2 shows the estimate of |M2r(f, v)|. For this signal we have Rm2r(k,m) =

E[r(k+m)r(k)] = 0 for all k and m and hence, M2r(f, v) = 0 for all f and v. Figure 3.3

and 3.4 show the estimates of M04r(f, v) and S04r(f, v). Since the signal is Gaussian

its fourth order cumulant spectrum is zero and hence, S04r(f, v) = 0 for all f and v.

We see that the estimates shown in Figures 3.1, 3.2, 3.3 and 3.4 agree with the theory.

We also see that S2r(f, v) and M04r(f, v) consist of discrete component along the line

f = v and a smooth background function. Thus, they are not smooth functions of f

and v. On the other hand, S2r(f, v) is a smooth function of f and v.

Figure 3.1: Estimate of the second or-

der spectrum |S2r(f, v)| for complex

Gaussian noise

Figure 3.2: Estimate of the second or-

der spectrum |M2r(f, v)| for complex

Gaussian noise
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Figure 3.3: Estimate of the fourth order

moment spectrum slice M04r(f, v) for

complex Gaussian noise

Figure 3.4: Estimate of the fourth order

cumulant spectrum slice S04r(f, v) for

complex Gaussian noise

In our second example we consider the DBPSK signal with Barker sequence spread-

ing, which is used in 802.11b networks [67]. This signal is of the form (3.13) with

the symbol period T = 1µs. The discrete time signal r(k) is obtained by sampling

the continuous time signal with Ts = 0.05µs. The estimation results for this signal

are shown in Figures 3.5, 3.6, 3.7 and 3.8. This signal is cyclostationary with the pe-

riod T . The spectrum S2r(f, v) has nonzero one dimensional slices at f − v = q/T

for q = . . . ,−2,−1, 0, 1, 2, . . . and it is zero otherwise. The slice obtained for q = 0

is the signal power spectrum and the slices obtained for q 6= 0 are the second order

cyclostationary spectra. The spectrum M2r(f, v) has nonzero one dimensional slices

at f + v = q/T for q = . . . ,−2,−1, 0, 1, 2, . . . and it is zero otherwise. Since the sig-

nal r(k) is complex the one dimensional slices of M2r(f, v) are different from those of

S2r(f, v). Now the signal r(k) is not Gaussian and S04r(f, v) 6= 0. We see that S2r(f, v),

M2r(f, v), and M04r(f, v) are not smooth functions of f and v. The moment spectrum

slice M04r(f, v) consists of a smooth background function and discrete one dimensional

components along the lines f −v = q/T and f +v = q/T for q = . . . ,−2,−1, 0, 1, 2, . . . .

In contrast to this, the cumulant spectrum slice S04r(f, v) is a smooth function of f

and v. In general, moment spectra contain discrete components and are not smooth
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functions of frequency. When cumulant spectra are computed these discrete compo-

nents are subtracted and the resulting spectrum is smooth. More details on this can

be found in [37].

Figure 3.5: Estimate of the second or-

der spectrum |S2r(f, v)| for DBPSK sig-

nal with Barker sequence spreading

Figure 3.6: Estimate of the second or-

der spectrum |M2r(f, v)| for DBPSK

signal with Barker sequence spreading

Figure 3.7: Estimate of the fourth or-

der moment spectrum slice M04r(f, v)

for DBPSK signal with Barker sequence

spreading

Figure 3.8: Estimate of the fourth or-

der cumulant spectrum slice |S04r(f, v)|

for DBPSK signal with Barker sequence

spreading

Our estimation procedure uses the method of time averaging. We slide a window

over the received signal and for each window position in time we compute the FFT

coefficients and approximate the computed statistic by replacing the spectral process
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in the definition with the corresponding FFT coefficients. Final estimate is obtained

by computing the average value over all window positions. Time averaging methods for

power spectrum estimation are well known and widely used [34]. Main difference here is

that some statistics of interest are sensitive to signal timing because of the presence of

cyclostationary signals. When these statistics are computed, the time averaging method

has to be modified as we explained here. Otherwise, we obtain completely incorrect

estimates.

The second class spectrum estimation methods is based on frequency averaging

(smoothing), where the initial estimate is smoothed using various algorithms. Typically,

estimate at any given frequency is computed as an average value over several neigh-

boring frequencies. The estimates described here are obtained without any frequency

smoothing. In some cases frequency smoothing may be needed to reduce variance of the

estimate. Frequency smoothing can be added into our estimation procedure as follows.

First approach is to apply frequency smoothing on the estimates ofM04r(f, v), M2r(f, v)

and S2r(f, v) obtained using the time averaging method and use these smoothed esti-

mates to estimate S04r(f, v). When applying frequency smoothing on the estimates of

M04r(f, v), M2r(f, v) and S2r(f, v) we have to be careful because these spectra are not

smooth themselves and often contain various discrete components. For example, when

smoothing the estimate of S2r(f, v) shown in Figure 3.5 we have to preserve the discrete

one dimensional slices at f−v = q/T for q = . . . ,−2,−1, 0, 1, 2, . . . . Here we cannot use

simple linear methods for smoothing such as those proposed in [85] or [86], because they

would smear any discrete components present in this spectrum. The nonzero one di-

mensional components present in S2r(f, v) can be smoothed along the lines f−v = q/T

for q = . . . ,−2,−1, 0, 1, 2, . . . , but not in any other direction. Similarly, the nonzero

one dimensional components present in M2r(f, v) whose estimate is shown in Figure 3.6

can be smoothed along the lines f + v = q/T for q = . . . ,−2,−1, 0, 1, 2, . . . , but not in

any other direction. Applying smoothing on the estimate of M04r(f, v) shown in Fig-

ure 3.6 is even more complicated because here we have discrete components along the

lines f − v = q/T and f + v = q/T for q = . . . ,−2,−1, 0, 1, 2, . . . . Therefore, applying
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smoothing on the estimates of M04r(f, v), M2r(f, v) and S2r(f, v) is complicated be-

cause of the discrete components present in these spectra. This problem with applying

linear smoothers on the spectra with discrete components was also pointed out in [38],

where the authors propose some modifications of linear smoothing methods in order

to preserve discrete components present in the estimated spectra. The alternative way

to add frequency smoothing into our procedure is to use the estimates of M04r(f, v),

M2r(f, v) and S2r(f, v) obtained using the time averaging method to find an initial

estimate of S04r(f, v) and then apply frequency smoothing on this estimate. Since the

spectrum S04r(f, v) is in most cases a smooth function of f and v [37], we can use the

following linear smoothing method

Ŷ
(fs)
0S4 (i, j) =

1

(2Lsm + 1)2

i+Lsm
∑

p=i−Lsm

i+Lsm
∑

q=i−Lsm

Ŷ 0S4(p, q) (3.80)

where i = 1, . . . , Jfb, j = 1, . . . , Jfb, Ŷ 0S4 is our initial estimate given by (3.79), Ŷ
(fs)
0S4

is the smoothed estimate and Lsm is the parameter controlling how much frequency

smoothing is applied.

Another approach for fourth order spectrum estimation is to use the fact that

S4r(f1, f2, f3) defined in (3.3) is the Fourier transform of C4r(m, l, k) = cum(r(n +

m), r(n + l), r(n + k)∗, r(n)∗). Using r(k) for k = 1, . . . ,Ks we need to estimate

C4r(m, l, k) for −Llag ≤ m, l, k ≤ Llag where Jfb = 2Llag + 1. We apply three di-

mensional FFT on C4r(m, l, k) to obtain S4r(f1, f2, f3) and then we find S04r(f, v) =

S4r(f, v,−v). This approach requires more computations since we have to compute the

whole fourth order spectrum first and then extract the desired slice. When estimating

C4r(m, l, k) we cannot use the procedure for stationary signals outlined in [36, ch. 4]

because it ignores any cyclostationary spectra present in M2r(f, v) and S2r(f, v) and

thus, produces incorrect estimates. Therefore, this procedure also has to be modified

to accommodate cyclostationary signals.

So far we have considered the problem of fourth order spectrum estimation using

the samples of r(k) from one continuous time segment. Let us now consider the same

problem where we have samples from two or more disjoint time segments. Let the l-th

continuous segment contain the samples r(k) forKl < k ≤ Kl+Ks,l where l = 1, . . . , Lcs
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and 1 ≤ K1 < K1+Ks,1 < K2 < K2+Ks,2 < · · · < KLcs < KLcs+Ks,Lcs ≤ K. We first

assume for simplicity that these samples were generated by one transmitter transmitting

Lcs packets during the observation interval. We assume that the transmitted signals

during different time segments are statistically identical except for the possible variation

in timing of cyclostationary statistics across the segments. In other words, the timing

parameter ∆t that appears in (3.71) may be different for each segment. We know

that M04r(f, v) and S
(0)
2r (f) are not sensitive to the signal timing. We also know that

changes in ∆t only affect phases of the entries of S2r(f, v) and M2r(f, v) according to

(3.72). Since S04r(f, v) = M04r(f, v) − |S2r(f, v)|2 − |M2r(f, v)|2 − S
(0)
2r (f)S

(0)
2r (v), it

follows that S04r(f, v) is not sensitive to the signal timing. This analysis assumed one

cyclostationary signal. Let us now assume the above defined segments are generated

as a sum of Msg transmitted signals where each segment has the same combination

of active transmitted signals. Each transmitter transmits the same signal during all

the segments, but the timing of the cyclostationary statistics may vary across the

segments. We further assume that the transmitted signals are statistically independent

on each of the segments. Since S04r(f, v) is one slice of the fourth order cumulant

spectrum S4r(f1, f2, f3) and the signals are statistically independent we have for each

segment S04r(f, v) =
∑Msg

m=1 S04m(f, v) where S04m(f, v) is the spectrum slice of the

m-th individual signal. Since we already know that each S04m(f, v) for m = 1, . . . ,Msg

is insensitive to the timing of cyclostationary statistics it follows that S04r(f, v) is also

insensitive to this effect. Therefore, if the above defined segments of r(k) are generated

by a same combination of active transmitted signals we can use the samples from

different segments to estimate S04r(f, v) even if the timing parameters of cyclostationary

statistics of individual signals vary across the segments. The spectrum S04r(f, v) can

be estimated from the above defined segments containing the samples of r(k) for Kl <

k ≤ Kl +Ks,l where l = 1, . . . , Lcs as follows. We compute the estimates Ŷ 0S4,lusing

(3.79) for each of the segments where l = 1, . . . , Lcs. Then we find the estimate for all

the segments as

Ŷ 0S4 =
Lcs
∑

l=1

ωlŶ 0S4,l (3.81)
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where ωl = Ks,1/
∑Lcs

q=1 Ks,q. The final estimate is obtained by applying frequency

smoothing defined by (3.80) on Ŷ 0S4 from (3.81). This estimate is computed for the

set of segments containing the samples of r(k) generated by the same combination of

active transmitted signals. Let us assume that there are Icl such sets of segments in

the signal r(k) for k = 1, . . . ,K where each set of segments corresponds to one fixed

combination of transmitted signals. We apply the described estimation procedure on

each set of the segments of r(k) and denote the resulting estimates Ŷ i for i = 1, . . . , Icl.

These matrices are arranged in the Jfb by Jfb by Icl three way array Ŷ , which is an

estimate of Y defined in (3.11). The estimate Ŷ is needed for application of the signal

analysis method proposed in the previous section.

Our estimation procedure assumes that the possible set of values of the periods

Tm for m = 1, . . . ,M associated with the cyclostationary transmitted signals is known.

This knowledge is needed for selection of the sampling period Ts which is used to obtain

the discrete time signal r(k) for k = 1, . . . ,K from the continuous time signal r(t) from

(2.1). The sampling period must satisfy Tm = NmTs where Tm is the period associated

with the transmitted signal sm(t) from (2.1) and Nm is an integer such that Nm ≥ 2 for

m = 1, . . . ,M . If this condition is not satisfied the statistics of r(k) may be completely

different from those of r(t) as explained earlier. Obviously, in this case the proposed

analysis is not meaningful. The above condition on the sampling period is implicitly

assumed in any type of statistical analysis of cyclostationary signals. The knowledge

of the periods Tm is also needed for selection of the parameter Jd that determines the

shifts of the sliding window in estimation of S2r(f, v) and M2r(f, v). As explained

earlier Jd = NmulNcom where Ncom is the least common multiple of {N1, . . . , NM} and

Nmul ≥ 1 is an integer. If we have no knowledge on the possible values of the periods Tm

it is not possible to select appropriate values for Ts and Jd and the proposed estimation

procedure cannot be applied. This estimation procedure also requires selection of the

number of frequency bins Jfb and the smoothing factor Lsm from (3.80). Increasing Jfb

improves frequency resolution, but it also increases variance of the obtained estimate.

Increasing Lsm reduces the variance, but it also introduces bias in the resulting estimate.
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3.3 Computational methods

Using the procedure from the previous section we can compute the estimate Ŷ . In this

section we develop numerical algorithms for computing estimates of the matrices F , C

and K from Ŷ . These algorithms are needed for practical application of the fourth

order spectrum based analysis method proposed earlier. There are various algorithm

for fitting of three way arrays to different types of models [84] [76] [88] [89] [90]. Since

our problem has some unique aspects, none of these algorithms can be directly applied

here.

We start with the following weighted least squares criterion

Cwls =

Jfb
∑

j=1

Jfb
∑

n=j

Icl
∑

i=1

γi

(

Ŷ (j, n, i) −
M
∑

m=1

R
∑

r=1

krmfjrfnrcim

)2

(3.82)

where Ŷ (j, n, i) is the observed (estimated) value given by Ŷ (j, n, i) = Y (j, n, i) +

E(j, n, i) where E(j, n, i) is the estimation error. In (3.82) we also used the symmetry

Ŷ (j, n, i) = Ŷ (n, j, i). One reasonable choice for weights is γi =
∑K

k=1 Ŝ(i, k)/K where

Ŝ is the estimated matrix of the segmentation sequences. This choice makes sense

because the matrix Ŷ i is estimated from the samples of r(k) located at time instants

where the i-th row of Ŝ has ones. We seek the parameters F = [fjr], C = [cim], and

K = [krm] that minimize Cwls subject to the constraints fjr ≥ 0 and cim ≥ 0. In other

words, we seek the estimates satisfying

[F̂ , Ĉ, K̂] = argmin
F≥0,C≥0,K

Cwls(F ,C,K). (3.83)

If we multiply the r-th column of F with some constant α 6= 0 and divide the r-th row

of K with α2 the entries of Y from (3.37) do not change. Also, if we multiply the m-th

column of C with some constant α 6= 0 and divide the m-th column of K with α the

entries of Y from (3.37) do not change. These facts imply that the optimization problem

(3.83) does not have a unique solution unless we impose additional constraints on the

estimated parameters. The simplest possibility is to impose unit l1 norm constraints

on the columns of F and C. Thus, we seek the estimates

[F̂ , Ĉ, K̂] = argmin
F≥0,C≥0,K,1TF=1T ,1TC=1T

Cwls(F ,C,K) (3.84)
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where 1 denotes the vector of all ones of the appropriate size.

In order to minimize the function Cwls(F ,C,K) defined in (3.82) we need to know

the parameters M and R. In theory, these parameters can be determined from the

ranks of the matrices defined in (3.53) and (3.58). If Y is perfectly known M and R

can be found from SVDs of the matrices in (3.53) and (3.58). In any practical situation

only an estimate Ŷ , containing some amount of error, is available. In that case M and

R can be found as effective ranks of the matrices given by (3.53) and (3.58) where Y

is replaced with Ŷ . These problems are very difficult themselves and require special

algorithms such as information theoretic criteria for signal detection [91]. We shall

discuss this problem further in the next section. In this section the parameters M and

R are assumed to be known.

The optimization problem defined in (3.84) may not have a unique solution. Out

of all possible solutions we seek the one where the matrix K has the largest possible

number of zero entries. Hence, we seek the estimates

[F̂ , Ĉ, K̂] = argmin
F≥0,C≥0,K,1TF=1T ,1TC=1T ,min ||K||0

Cwls(F ,C,K) (3.85)

In other words, we select the solution where the matrix K is maximally sparse. Since it

is very difficult to find this solution directly, instead of (3.85) we consider the following

optimization problem

[F̂ , Ĉ, K̂] = argmin
F≥0,C≥0,K,1TF=1T ,1TC=1T

[Cwls(F ,C,K) + β||K ||1] (3.86)

where the parameter β controls the influence of the added regularization term. The

solution of (3.86) is a compromise between minimizing Cwls(F ,C,K) and keeping

||K||1 as small as possible. Intuitively, l1 norm is nearest to l0 norm and hence, we

expect that the solution with the minimal ||K||1 should be close to the one with the

minimal ||K||0. The advantage of considering (3.86) instead of (3.85) is that the former

problem is much simpler to solve. In other words, the problem (3.86) is an analytically

tractable relaxation of the problem (3.85). This technique of substituting l0 norm with

l1 norm is widely used for enforcing sparsity constraints [92] [93]. The matrix K can

be represented as

K = Kp −Kn (3.87)



77

where the matrices Kp and Kn have only nonnegative entries. Using (3.87) we get

[F̂ , Ĉ, K̂p, K̂n] = (3.88)

argmin
F≥0,C≥0,Kp≥0,Kn≥0,1TF=1T ,1TC=1T

[Cwls(F ,C,Kp,Kn) + β(||Kp||1 + ||Kn||1)].

The technique used for transforming (3.86) into (3.88) is well known [33] [94].

Our first step in solving the optimization problem (3.88) is to take into account

the nonnegativity constraints using logarithmic barrier function, which is a well known

technique for transforming a problem with inequality constraints into an unconstrained

problem. A very good overview of this technique can be found in [56, ch. 11]. We

define the parameter vector

p =
[

p1 . . . pNpar

]T

=
[

vec(F )T vec(C)T vec(Kp)
T vec(Kn)

T
]T

(3.89)

and express the equality constraints 1TF = 1T and 1TC = 1T as Aeqp = 1 where Aeq

is a 2M by Npar matrix of zeros and ones where Npar = JfbR + IclM + 2RM is the

total number of unknown parameters. We consider the new criterion function

Cbf (p) = Cwls(p)− α

Npar
∑

r=1

log pr + β

Npar
∑

r=JfbR+IclM+1

pr (3.90)

where α is a positive constant, which regulates influence of the added logarithmic terms.

When any of the parameters with the nonnegativity constraint, say pr, approaches zero

its logarithmic term tends to negative infinity. Hence, Cbf tends to plus infinity, which

prevents that parameter from becoming zero or negative. Our optimization problem

now becomes

p̂ = argmin
Aeqp=1

Cbf (p). (3.91)

The parameter α should be chosen so that Cwls(p̂) ≫ Clog(p̂) and Creg(p̂) ≫ Clog(p̂)

where Clog(p) = −α
∑Npar

r=1 log pr and Creg(p) = β
∑Npar

r=JfbR+IclM+1 pr. in other words,

the logarithmic terms should be used for enforcing the nonnegativity constraints without

affecting the computed solution significantly.

Let us try to solve (3.91) using Newton’s method. Starting from an initial point we

update parameter vector p in each step as follows. Let p0 be the current parameter
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vector. We approximate the objective function around the current point using quadratic

approximation

Cbf (p0 +∆p) ≈ Cbf (p0) + g(p0)
T∆p+

1

2
∆pTH(p0)∆p (3.92)

where g(p) is the gradient and H(p) is the Hessian of Cbf (p). The updated parameter

vector is

p = p0 + η∆p (3.93)

where the step ∆p minimizes the quadratic approximation (3.92) under the constraint

Aeqp = 1 and η is the step size. Since the equality constraint must be satisfied in every

iteration, we have Aeqp = Aeq(p0 + ∆p) = Aeqp0 = 1, which implies Aeq∆p = 0.

Thus, we need to solve

min
∆p,Aeq∆p=0

g(p0)
T∆p+

1

2
∆pTH(p0)∆p (3.94)

Solution of the problem (3.94) is well known [56, pp. 526]. We form the Lagrangian

L(∆p,λ) = g(p0)
T∆p+ 1

2∆pTH(p0)∆p+λTAeq∆p where λ is the vector of Lagrange

multipliers, compute its gradient and set the gradient to zero. We obtain





H(p0) AT
eq

Aeq 0









∆p

λ



 =





−g(p0)

0



 (3.95)

where the second equation takes into account the equality constraints. The optimal

step ∆p is found by solving (3.95). This procedure is equivalent to elimination of

equality constraints and performing the minimization in (3.94) over ∆p ∈ Null(Aeq).

The solution for ∆p computed form (3.95) is valid if ∆pTH(p0)∆p > 0 for any ∆p ∈

Null(Aeq). More detailed analysis of this method can be found in [56, Ch. 10].

Next, we need to compute the gradient g(p) and the Hessian H(p) of the criterion

function Cbf (p) given by (3.84). Let us define the vectors

ŷ =
[

vecr(Ŷ 1)
T . . . vecr(Ŷ Icl)

T
]T

y(p) =
[

vecr(Y 1)
T . . . vecr(Y Icl)

T
]T

(3.96)

where we emphasized the functional dependence of the model vector y(p) on the pa-

rameter vector. The functional dependence is given by (3.36) and (3.89). Now we
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have

Cbf (p) =

Neq
∑

q=1

wq [ŷq − yq(p)]
2 − α

Npar
∑

r=1

log pr + β

Npar
∑

r=JfbR+IclM+1

pr (3.97)

where Neq = Icl(Jfb +
(Jfb

2

)

) is the total number of observations, ŷq and yq(p) are q-th

entries of ŷ and y(p) respectively, pr is the r-th entry of p and wq is the q-th diagonal

entry of the matrix

Γ = diag
([

γ1 . . . γ1 . . . γIcl . . . γIcl

])

. (3.98)

Using (3.84) and (3.97) we find the gradient of Cbf (p) as

g(p) = −2J(p)TΓ [ŷ − y(p)]− αglog(p) + βgreg(p) (3.99)

where J(p) =
[

∂yq(p)
∂pr

]

for q = 1, . . . , Neq, r = 1, . . . , Npar is the Jacobian matrix [55]

of y(p),

glog(p) =
[

p−1
1 . . . p−1

Npar

]T

(3.100)

and

greg(p) =
[

0 . . . 0 1 . . . 1

]T

. (3.101)

The Hessian of Cbf (p) is

H(p) = 2J(p)TΓJ(p)− 2

Neq
∑

q=1

wq [ŷq − yq(p)]Gq(p) + αH log(p) (3.102)

where Gq(p) =
[

∂2yq(p)
∂pr∂pv

]

for r, v = 1, . . . , Npar is the Hessian of the function yq(p) and

H log(p) = diag
([

p−2
1 . . . p−2

Npar

])

. (3.103)

We recall that the solution for ∆p found by solving (3.95) is valid only if the Hessian

H(p0) is positive definite on Null(Aeq). Let us assume now that the update for the

parameter vector is computed using (3.93) with ∆p found by solving (3.95). Using the

analysis form [56, Ch. 10], we have for a sufficiently small η

Cbf (p0 + η∆p) ≈ Cbf (p0)− η∆pTH(p0)∆p (3.104)
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where ∆p ∈ Null(Aeq). We see that if H(p0) is positive definite on Null(Aeq) then

∆p found from (3.95) is a descent direction for Cbf (p). In other words, for a sufficiently

small η we can achieve Cbf (p) ≤ Cbf (p0). On the other hand, if H(p0) is indefinite on

Null(Aeq) then ∆p found from (3.95) is not necessarily a descent direction for Cbf (p)

and we may not be able to achieve Cbf (p) ≤ Cbf (p0) for any η. We see that the

second term on the right hand side of (3.102) is in general indefinite and hence, H(p) is

also indefinite. Hence, using ∆p computed from (3.95) where H(p) is computed using

(3.102) does not lead to a convergent algorithm. One way for dealing with this problem

is to use modified Newton’s methods, where indefinite Hessian H(p) is replaced with

a positive definite matrix, which is close to the original Hessian in certain sense. Some

methods for doing this can be found in [55, sec. 4.4.2]. An obvious way to do this in

our application is to replace the Hessian H(p) with its positive definite part

[H(p)]pd = 2J(p)TΓJ(p) + αH log(p). (3.105)

The step ∆p is computed using (3.95) where H(p) is replaced with its [H(p)]pd. With

positive definite Hessian on Null(Aeq) the computed step ∆p represents a descent

direction and thus, leads to a convergent algorithm.

Finally, we need to select the step size η in (3.93). If the quadratic approximation

in (3.92) holds exactly we should use η = 1 because then the optimization problem is

solved in one step. In general, (3.92) holds only approximately and hence, using η = 1

to compute the updated parameter vector may not lead to Cbf (p) ≤ Cbf (p0). Also the

logarithmic barrier function is only approximated in (3.92) and hence, using η = 1 may

violate the nonnegativity constraints. Therefore, we need a procedure for selection of

the step size η in (3.93). This procedure is also known as line search [56]. Here, we use

a very simple line search where we compute the updated parameter vector as

p = p0 + µv∆p (3.106)

where 0 < µ < 1 and v = 0, 1, 2, ..., Vat . We start with v = 0 and keep increasing v

until all nonnegativity constraints are satisfied and Cbf (p) < Cbf (p0). These conditions

can be satisfied for a sufficiently small step length since ∆p is a descent direction for

Cbf (p). The line search procedure is the final part of the algorithm.
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Let us summarize the algorithm for solving (3.86). Starting from a random initial

point, which satisfies all constraints from (3.86), we iteratively update the parameter

vector p defined by (3.89). In each iteration we compute J(p) as partial derivatives of

model equations (3.36), H(p) using (3.105), and g(p) using (3.99). Then we compute

∆p by solving equations (3.95) and update the parameter vector using line search

(3.106). The iterations are repeated until convergence. The algorithm converges to a

local minimum of the criterion function Cbf (p). The global minimum can be found

from the results obtained by running the algorithm from different initial points.

Now we recall that the problem (3.86) is a simplification of our original problem

defined in (3.86). Using the computed solution of (3.86) we would like to find the

solution of the original problem. Let p̂0 be the obtained solution of (3.86) and let F̂ 0,

Ĉ0, and K̂0 be the corresponding matrices found from p̂0 using (3.89) and (3.87). The

solution p̂0 is computed for the regularization parameter β chosen so that Cwls(p̂0) ≫

Creg(p̂0). It is important to understand that for β = 0 the problem (3.86) may have

a continuum of solutions instead of a unique solution. Since our numerical algorithm

is a modification of Newton’s method it can work only if the Hessian is nonsingular at

the solution. If there is a continuum of solutions the Hessian is singular around any

such solution point and hence, applying our algorithm would be problematic. In order

to avoid this problem we had to use β > 0 which assures that the solution is unique.

In order to identify zero entries of K̂0 we use the following iterative procedure. We

find the entry in K̂0 with the smallest absolute value and compute the new solution of

(3.86) where this entry in K is constrained to be zero, p̂0 is the initial point and the

parameter β chosen so that the influence of the regularization term is negligible. This

solution is found using the iterative algorithm described above. Let this new solution

be p̂1. If

Cwls(p̂1)− Cwls(p̂0)

Cwls(p̂0)
< γ (3.107)

where γ is a suitable threshold, we set p̂0 = p̂1 and compute the corresponding matrices

F̂ 0, Ĉ0, and K̂0. In the second iteration we find the entry with the smallest absolute

value on the subset of the entries K̂0 which have not been tested yet and repeat the

same procedure. This testing procedure is repeated until all entries of K̂0 have been
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tested.

The algorithm for solving (3.86) does not take into account that cim ∈ {0, 1}. This

constraint can be taken into account by an iterative algorithm where in each iteration,

starting from some initial point, the existing estimates F̂ and K̂ would be updated

using the algorithm for solving (3.86) and Ĉ would be updated using the technique

from [28]. However, this type of algorithm would require an accurate initial point for Ĉ

which is not available in our application. This is why we computed the estimates with

imposing only cim ≥ 0. Let F̂ 0, Ĉ0, and K̂0 be the estimates obtained after solving

(3.86) and the testing procedure for determining zero entries in K. In the next step

we project the entries of Ĉ0 onto {0, 1} alphabet which is a simple clustering problem.

Using this estimate Ĉ with binary entries we compute the final estimates of F and the

nonzero entries of K

[F̂ , K̂] = argmin
F≥0,K,1TF=1T

Cwls(F , Ĉ,K) (3.108)

which can be solved using the algorithm developed for solving (3.86) with the initial

point F̂ 0 and K̂0.

Let us summarize the algorithm for computing F̂ , Ĉ, and K̂ from Ŷ . First, we

obtain our initial estimates by solving (3.86). Second, we determine zero entries in K

using the described testing procedure. Third, we project the entries of the estimate of

C onto {0, 1} alphabet and compute the final estimates for F and K by solving (3.108).

Let us assume that we have computed Ĉ from Ŷ . Now it is possible to find power

spectra of the received signals and noise. Let Ẑ be a Jfb by Icl matrix where the

i-th column of Ẑ is a power spectrum estimate computed from the received samples

belonging to the i-th cluster. We define the criterion function

C
(so)
wls =

Jfb
∑

j=1

Icl
∑

i=1

γi

(

Ẑ(j, i) −
M
∑

m=1

gjmcim − nj

)2

(3.109)

where the weights γi are the same as those in (3.82). The parameters of interest can

be estimated by solving

[Ĝ, n̂] = argmin
G≥0,n≥0

C
(so)
wls (G,n, Ĉ) (3.110)
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where Ĉ has been estimated from Ŷ . The problem (3.110) can be solved using the

same method that was used for solving (3.86).

3.4 Numerical examples

We illustrate the proposed algorithm with three simulation examples. In all three

examples we consider a setup with one sensor and two sources, whose locations are

shown in Figure 3.9. Again, the channels between the sensor and the sources are

transfer functions measured in the ORBIT room in WINLAB for the setup shown in

Figure 3.9 [66]. Thus, using this technique the real world scenarios are mapped in the

simulations.
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Figure 3.9: Locations of the sen-

sor(blue) and sources(red). Distances

are in meters.
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Figure 3.10: Power trace of the received

signal computed with the time resolu-

tion T = 10µs

Example 1. Both sources are transmitting DBPSK signals with Barker sequence

spreading used in 802.11b systems [67]. The sources transmit with equal power in the

same channel, which is observed by the sensor. Total observed bandwidth is W =

20MHz, the sampling period is Ts = 0.05µs. Figure 3.10 shows power trace of the

received signal at the sensor, where each point is the average power computed over

NT = 200 consecutive samples, which corresponds to the interval of T = NTTs = 10µs.

Figure 3.11 shows spectrogram of the received signal computed with the same time

resolution of T = 10µs. The total observation time on this example is 5ms. We see
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resolution T = 10µs
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Figure 3.12: Segmentation sequences

estimated by applying the segmenta-

tion algorithm on the received signal
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Figure 3.13: Diagonal slices of the re-

covered fourth order spectra
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Figure 3.14: Recovered activity se-

quences

a typical 802.11 traffic: one source is sending packets and the other one is replying

with acknowledgments. Received signal at the sensor is corrupted with additive white

Gaussian noise. We define SNR for each source-sensor pair as the ratio of the average

received source signal power (when the source is on) at the sensor and the average sensor

noise power. The SNR values in the example shown in Figure 3.10 are 0 and 5.4 dB.

First, we apply our segmentation algorithm on the received signal which recovers the

segmentation sequences shown in Figure 3.12. The received signal consists of segments
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Figure 3.15: Recovered power spectra
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Figure 3.16: Recovered activity se-

quences
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Figure 3.17: Criterion function versus

the parameter R for M = 2
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Figure 3.18: Criterion function versus

the parameter M for R = 5

where each segment contains one of three different types of signals. The top graph

shows the sequence containing segments with sensor noise only, the middle graph shows

the sequence containing segments with the first received signal plus sensor noise and the

bottom graph shows the sequence containing segments with the second received signal

plus sensor noise. Using these segmentation sequences we estimate the three-way array

Ŷ where Jfb = 200 and Icl = 3. Now we wish to apply the proposed computational

algorithm on Ŷ . But before we can do that we need to determine the parameters M

and R. In order to understand the effect of R we fix M = 2 and apply our algorithm
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Figure 3.19: Detection rate of the cor-

rect number of clusters
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Figure 3.20: Segmentation error rate
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Figure 3.21: Normalized mean absolute

errors for estimates of the columns of F
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Figure 3.22: Normalized mean absolute

errors for estimates of the columns ofK

for different values of R. Figure 3.17 shows the minimum value of the criterion function

Cwls versus R. We see that the curve in Figure 3.17 becomes very flat when R > 2.

Next, we fix R = 5 and apply our algorithm for different values of M . Figure 3.18 shows

the minimum value of the criterion function Cwls versus M . We see that the curve in

Figure 3.18 becomes almost completely flat when M > 2, which implies that M = 2 is

a reasonable estimate. From the curve in Figure 3.17 we see that R = 2 is a reasonable

estimate. We know thatM = 2 and R = 2 are correct estimates because in this example

there are two linearly modulated signals. We see from the curve in Figure 3.18 that the

parameterM can be correctly estimated without knowing the true value of R. Similarly,
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the parameter R can be estimated from the curve showing the minimum values of the

criterion function versus R for M = R which is very similar to the curve shown in

Figure 3.17. Thus, the parameter R can be estimated without knowing the true value

of M . In this example the estimates for M and R are obtained by visual inspection of

the curves showing the minimum values of the criterion function versus M and R. In

order to obtain a fully automated algorithm it is necessary to develop numerical criteria

for estimation of M and R from the above mentioned curves. These numerical criteria

must determine the points when the curves shown in Figure 3.18 and 3.17 become

sufficiently flat. Thus, such criteria would determine if any given signal or any of its

rank-one terms can be detected or not. Obviously, if a signal is sufficiently weak its effect

on the criterion function is negligible and hence, it cannot be detected. We leave the

problem of designing these numerical criteria for future work. As mentioned earlier the

parameters M and R can be estimated as effective ranks of the matrices from (3.53) and

(3.58) where Y is replaced with Ŷ . However, this approach does not take into account

any application specific constraints on the terms into which Ŷ is decomposed. On the

other hand, the curves showing the minimum values of the criterion function versus M

and R take into account any application specific constraints and hence, this approach

is more appropriate here. A similar approach was used for some other model order

selection problems [95]. Another parameter needed for the computational algorithm is

the threshold γ from (3.107). The value of this parameter is chosen from the curve

shown Figure 3.17. Let us denote this curve with Cmin(R) and let R̂ be the estimated

value of R. Then we select γ = (Cmin(R̂)− Cmin(R̂+ 1))/Cmin(R̂).

Applying the proposed computational algorithm on Ŷ with M = 2 and R = 2

we estimate fourth order spectrum slices for each of the signals and the corresponding

activity sequences. Figure 3.13 shows diagonal entries of the estimated fourth order

spectrum slices. These diagonal entries are kurtosis values at different frequency bins.

Figure 3.14 shows the estimated activity sequences. We see that the contributions of the

two signals have been correctly recovered. Since the sensor noise is Gaussian it does not

contribute to Ŷ any terms that can be modeled. However, the presence of noise affects

the estimated parameters because it increases the estimation errors in Ŷ . Next, we
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estimate the power spectra matrix Ẑ where Jfb = 200 and Icl = 3. Using the recovered

activity sequences from Ŷ we estimate power spectra for each of the received signals

and noise. Figure 3.15 shows the estimated power spectra and Figure 3.16 shows the

corresponding activity sequences. We see from Figure 3.15 that the estimated power

spectra of the two received signals are very different even though the two signals use

the same modulation format. These differences are caused by the frequency selective

channels between the transmitters and the sensor. Sensor noise contributes its own

rank one term to Ẑ. The estimated noise power spectrum is relatively flat, which was

expected because the sensor noise was white in this example.

Next, we study behavior of the algorithm for a range of SNR values. At each SNR

point we perform 100 runs. In each run we generate new realizations of the signals and

noise, apply our segmentation algorithm on the received signal, estimate Ŷ and compute

F̂ , Ĉ, and K̂ from Ŷ . In order to asses performance of the segmentation algorithm at

each SNR point we compute the percentage of runs when the true number of clusters is

detected. The results are shown in Figure 3.19. We see that the algorithm works up to

the SNR value when the two nearest clusters merge and cannot be resolved any more.

Figure 3.20 shows the segmentation error rate. We see that the rate is approximately

constant for sufficiently high SNR values. When SNR approaches the threshold value

the two nearest clusters start to have a significant overlap which causes a steep increase

in the observed error rate. In order to asses performance of the algorithm for computing

F̂ , Ĉ, and K̂ from Ŷ we use normalized mean absolute estimation error. Let us explain

how this error is computed for the estimate of the first column of F =
[

f1 f2

]

. Let

f̂
(n)

1 for n = 1, . . . , N be the estimates of f1 obtained at one SNR value for N different

realizations of the signals and noise. The normalized mean absolute estimation error

for this subset of parameters is defined as
∑N

n=1 ||f̂ (n)
1 − f1||1/(N ||f 1||1) where f1

contains true values of the estimated parameters. Figure 3.21 shows the estimation

errors for the estimates of the columns of F . At high SNR values the estimation errors

cannot fall below some floor values because these estimates are obtained from Ŷ which

always contains some amount of error. These errors in Ŷ are caused by estimation

from a finite sample size and they exist even if the SNR is very high. When the SNR
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approaches the threshold value the estimates of the entries of Ŷ become less and less

accurate which causes a steep increase of the estimation errors shown in Figure 3.21.

Figure 3.22 shows the estimation errors for the estimates of the columns of K. We see

that these estimates behave similarly to the estimates of the columns of F .
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Figure 3.23: Spectrogram of the re-

ceived signal computed with the time

resolution T = 10µs
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Figure 3.24: Segmentation sequences

estimated by applying the segmenta-

tion algorithm on the received signal
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Figure 3.25: Diagonal slices of the re-

covered fourth order spectra
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Figure 3.26: Recovered activity se-

quences

Example 2. In this example the transmitter nearer to the sensor is transmitting

DBPSK signals with Barker sequence spreading and the other transmitter is trans-

mitting GFSK signal with frequency hopping used in Bluetooth systems [96]. Each
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Figure 3.27: Recovered power spectra
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Figure 3.28: Recovered activity se-

quences

2 3 4 5 6 7 8 9 10
1.85

1.855

1.86

1.865

1.87

1.875
x 10

6

number of rank−one terms

cr
ite

rio
n 

fu
nc

tio
n

Figure 3.29: Criterion function versus

the parameter R for M = 3
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Figure 3.30: Criterion function versus

the parameter M for R = 6

Bluetooth packet is transmitted over one of 79 different channels, where each chan-

nel is approximately 1 MHz wide. The spectrogram of the received signal computed

with time resolution of T=10µs is shown in Figure 3.23. The sensor observes one 20

MHz wide channel over the total observation time of 5ms. During this time the DBPSK

transmitter transmits three and the Bluetooth transmitter transmits two packets. Both

Bluetooth packets collide with 802.11b packets as can be seen in Figure 3.23. The SNR

for the DBPSK signal is 0 dB. The two Bluetooth packets are transmitted over two dif-

ferent 1 MHz wide channels. Thus, the Bluetooth transmitter uses two different signals
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in the observed time-frequency slot. Each of these two signals uses GFSK, which is a

form of frequency modulated signal with Gaussian pulse shaping [97]. The SNR values

for the two GFSK signals are 5.7 and 10.5 dB. This difference in SNR values is caused

by the frequency selective channel between the Bluetooth transmitter and the sensor.

First, we apply our segmentation algorithm on the received signal which recovers the

four segmentation sequences shown in Figure 3.24. Hence, Icl = 4 for this example. The

top sequence in Figure 3.24 contains the segments with the sensor noise only, the sec-

ond sequence contains the segments with the DBPSK signal and sensor noise, the third

sequence contains the segment with the first GFSK signal, the DBPSK signal, and the

sensor noise and the fourth sequence contains the segment with the second GFSK signal,

the DBPSK signal, and the sensor noise. Using the estimated segmentation sequences

we estimate Ŷ with Jfb = 200 and Icl = 4. Next, we need to determine the parameters

M and R. First, we fix M = 3 and apply the computational algorithm on Ŷ for dif-

ferent values of R. Figure 3.29 shows the minimum value of the criterion function Cwls

for different values of R. We see that for R > 6 the curve in Figure 3.29 becomes very

flat. In the second experiment, we fix R = 6 and apply the computational algorithm

on Ŷ for different values of M . Figure 3.30 shows the minimum value of the criterion

function Cwls for different values of M . We see that for M > 3 the curve in Figure 3.30

becomes very flat. From these two experiments we see that M = 3 and R = 6 are

reasonable estimates of these two parameters. The estimate M = 3 is correct because

there is one DBPSK signal and two GFSK signals in the observed time-frequency slot.

Applying the computational algorithm on Ŷ with M = 3 and R = 6 recovers the fourth

order spectrum slices whose diagonal entries are shown in Figure 3.25 and the activity

sequences shown in Figure 3.26. The top graphs in these two figures correspond to the

first GFSK signal, the middle graphs correspond to the second GFSK signal and the

bottom graphs correspond to the DBPSK signal. The estimated matrix K̂ is of the

block form (3.32) with R1 = 2, R2 = 3, and R3 = 1. Since R3 = 1 the recovered fourth

order spectrum of the DBPSK signal is a rank-one matrix. This makes sense because

the DBPSK signal is linearly modulated which implies that its fourth order spectrum

slice is also in theory a rank-one matrix. Since R1 = 2 and R2 = 3 the recovered fourth



92

order spectrum of the first GFSK signal is a rank-two matrix and the recovered fourth

order spectrum of the second GFSK signal is a rank-three matrix. In general, GFSK

signal in nonlinear and its fourth order spectrum slice is not a rank-one matrix. In

this example, the spectrum of the first GFSK signal is approximated with a rank-two

matrix and the spectrum of the second GFSK signal is approximated with a rank-three

matrix. In theory, the ranks of two matrices are higher than two or three but these

additional rank-one terms are negligible in this example. This can be seen from Fig-

ure 3.29 where increasing R beyond R1 + R2 + R3 = 6 does not cause any significant

drop in the minimum value of the criterion function. The SNR of the second GFSK

signal is significantly higher than that of the first GFSK signal. This explains why the

recovered spectrum of the first signal is a rank-two matrix and the recovered spectrum

of the second signal is a rank-three matrix. Finally, we estimate the power spectra ma-

trix Ẑ with Jfb = 200 and Icl = 4. Using the recovered activity sequences from Ŷ we

estimate power spectra for each of the received signals and noise. Figure 3.27 shows the

estimated power spectra and Figure 3.28 shows the corresponding activity sequences.

We see that the contributions of different signals have been recovered correctly despite

the collisions between the signals. In this example the SNR values were fixed. When

observed over a range of SNR values the algorithm exhibits the same type of threshold

behavior as in the first example. If the SNR values are sufficiently small so that the

two nearest clusters cannot be resolved any more the algorithm breaks down. In this

example the two nearest clusters are the one containing time intervals with noise only

and the one containing time intervals with the DBPSK signal plus noise. Since this

situation is the same as in the first example the threshold SNR value of the DBPSK

signal at which the algorithm breaks down is the same as in the first example (around

−5dB).

Example 3. In this example the transmitter nearer to the sensor is transmitting

DBPSK signals with Barker sequence spreading and the other is transmitting OFDM

signal used in 802.11a/g systems [67]. The sensor observes one 20 MHz wide channel

over the observation interval of 5ms. The SNR values are 0 for the DBPSK signal

and 6.7 dB for the OFDM signal. The transmitted packets from the two sources are
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Figure 3.31: Spectrogram of the re-

ceived signal computed with the time

resolution T = 10µs
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Figure 3.32: Segmentation sequences

estimated by applying the segmenta-

tion algorithm on the received signal
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Figure 3.33: Diagonal slices of the re-

covered fourth order spectra
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Figure 3.34: Recovered activity se-

quences

interleaved in time and there are no collisions as can be seen from the spectrogram

shown in Figure 3.31. First, we apply our segmentation algorithm on the received

signal which recovers the three segmentation sequences shown in Figure 3.32. Hence,

Icl = 3 for this example. The top sequence in Figure 3.32 contains the segments with the

sensor noise only, the second sequence contains the segments with the DBPSK signal

and sensor noise, and the third sequence contains the segment with the OFDM signal

and the sensor noise. Using the estimated segmentation sequences we estimate Ŷ with
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Figure 3.35: Recovered power spectra
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Figure 3.36: Recovered activity se-

quences
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Figure 3.37: Criterion function versus

the parameter R for M = 2
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Figure 3.38: Criterion function versus

the parameter M for R = 21

Jfb = 200 and Icl = 3. Next, we need to determine the parameters M and R. First,

we fix M = 2 and apply the computational algorithm on Ŷ for different values of R.

Figure 3.37 shows the minimum value of the criterion function Cwls for different values

of R. In the second experiment, we fix R = 21 and apply the computational algorithm

on Ŷ for different values of M . Figure 3.38 shows the minimum value of the criterion

function Cwls for different values of M . We see that for M > 2 the curve in Figure 3.38

becomes very flat. The estimate M = 2 is correct because there are two signals in

this example. Applying the computational algorithm on Ŷ with M = 2 and R = 21
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recovers the fourth order spectrum slices whose diagonal entries are shown in Figure 3.33

and the activity sequences shown in Figure 3.34. The top graphs in these two figures

correspond to the OFDM signal and the bottom graphs correspond to the DBPSK

signal. The estimated matrix K̂ is of the block form (3.32) with R1 = 20 and R2 = 1.

Since R2 = 1 the recovered fourth order spectrum of the DBPSK signal is a rank-one

matrix. Since R1 = 20 the recovered fourth order spectrum of the OFDM signal is a

matrix of the rank twenty. This type of OFDM signal consists of 52 carriers where each

carrier is one linearly modulated signal. Hence, the fourth order spectrum slice of the

OFDM signal should be of the rank 52. However, the curve shown in Figure 3.37 drops

very slowly for R > 21. This can be explained as follows. Different OFDM carriers

are attenuated differently by the frequency selective channel. On the other hand, Ŷ is

estimated from a finite sample size and it always contains a some amount of error. The

contributions to Ŷ of the OFDM carriers which are not attenuated significantly by the

channel is much larger then the estimation error contained in Ŷ and they can be easily

detected. However, some OFDM carriers are attenuated significantly by the channel

and their contributions to Ŷ are of the same order of magnitude as the estimation error

contained in Ŷ and hence, they are difficult to detect. These facts explain why the rate

of decrease of the curve in Figure 3.37 becomes smaller as R increases. In this example

it is not trivial to estimate R because the rate of decrease of the curve in Figure 3.37

reduces gradually. One reasonable estimate is R = 21. We see that increasing R beyond

21 leads to very small decreases of the minimum value of the criterion function, which

implies that any additional rank-one terms contributed by the OFDM signal are of the

same order of magnitude as the estimation error contained in Ŷ and thus, they cannot

be detected. Finally, we estimate the power spectra matrix Ẑ with Jfb = 200 and

Icl = 3. Using the recovered activity sequences from Ŷ we estimate power spectra for

each of the received signals and noise. Figure 3.35 shows the estimated power spectra

and Figure 3.36 shows the corresponding activity sequences. We note that in this

example the recovered fourth order spectrum slices reveal the difference between the

signal with single carrier modulation and the signal with multicarrier modulation. This

difference cannot be seen from the power spectra of these two signals. In this example
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the SNR values were fixed. When observed over a range of SNR values the algorithm

exhibits the same type of threshold behavior as in the previous examples. Again, the

two nearest clusters are the one containing time intervals with noise only and the one

containing time intervals with the DBPSK signal plus noise. Hence, the threshold SNR

value of the DBPSK signal at which the algorithm breaks down is the same as in the

previous two examples (around −5dB).

From these specific examples we can draw the following conclusion about perfor-

mance of the proposed signal analysis algorithm in general. The algorithm consists of

the segmentation step and the fourth order spectrum based analysis step. The algo-

rithm has two main limitations. The segmentation algorithm works correctly while all

clusters present in the received signal can be resolved. Usually, as SNR values decrease

at some point the two nearest clusters become impossible to resolve and the algorithm

breaks down. This is the first limitation of the algorithm. In the fourth order spectrum

based analysis part we can detect only sufficiently strong signals. As a signal becomes

weaker its influence on the criterion function reduces. As the influence on the criterion

function reduces at some point the signal or some of its rank-one components become

impossible to detect. This is the second limitation of the algorithm. These limitations

can be overcome by using multiple sensors if available.

3.5 Conclusion and future work

In the previous chapter we proposed an algorithm for localizing in time statistically ho-

mogeneous segments in the received signal. In this chapter we have shown how spectra

and the associated activity sequences can be estimated using fourth order spectra of

the segments localized in the first step. Thus, using the proposed analysis method each

individual signal can be localized in time and frequency. The proposed method requires

only one sensor. As already noted some topics are left for future work. The method

described in this chapter uses only partial information form fourth order spectrum.

It is possible to extend the method so that it uses full information from fourth order

spectrum. The second topic for future work is development of numerical algorithm for

estimation of the number of signals and the number of the rank-one terms comprising
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the signals.

The method proposed in this chapter is based on spectral analysis where the under-

lying signals are projected onto complex exponentials. This approach is very general

and it can be applied to many types of real world signals. However, in some case this

approach results in a large number of rank-one terms needed to represent the underlying

signals and then the method may not be very practical. In those cases it is necessary

to project the underlying signals onto different basis functions which produce simpler

signal representations. Therefore, finding appropriate representations for real world

communication signals is another interesting topic for future work.
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Chapter 4

Algorithm with Multiple Sensors

In this chapter we assume that multiple sensors are available. First, we consider the sce-

nario with multiple packet based transmitters and multiple sensors. Using the proposed

segmentation algorithm and the fourth order spectrum based analysis it is possible to

estimate for each transmitter its activity sequence in time and the received second and

fourth order spectra at different sensors. We outline a distributed algorithm which uses

observations from multiple sensors for estimation of these quantities. From the received

second order spectra of each identified transmitted signal it is possible to estimate the

magnitude frequency responses of the channels between the transmitter and the sen-

sors and the transmitted signal spectrum. For realistic channels the formulated blind

deconvolution problem if often ill conditioned and then the solutions obtained using

existing algorithms are useless. We show that a useful solution can be obtained using

the l1 norm regularization and propose a numerical algorithm for the single input mul-

tiple output blind deconvolution. The estimated channel transfer function between the

transmitter and the sensors depend on the transmitter location relative to the sensors.

Therefore, multiple sensors enable transmitter localization, which is not possible using

a single sensor.

4.1 Outline of the algorithm

Let us assume that there is a network of Q sensors observing a frequency band used by

M packet based radio transmitters. Our goal is to develop a distributed algorithm for

the sensor network for localization of packet based radio transmitters in space, time,

and frequency. We proceed under two assumptions. First, we assume that there is
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a dedicated control channel for communication between the sensors. Our second as-

sumption that the sensors perform the measurements synchronously in time. Achieving

time synchronization in wireless networks is a separate research problem which will not

be considered here. Some of the available techniques for time synchronization achieve

accuracy of about 1µs [98] [99]. Our algorithm consists of the following steps.

(1) All sensors observe the same frequency band over the same time window. Each

sensor collects samples of the received signal over the observed time window. Received

signal samples at the q-th sensor are rq(k) where k = 1, . . . ,K and q = 1, . . . , Q. At

the q-th sensor we apply our segmentation algorithm on rq(k) which produces the seg-

mentation matrix Ŝq and the matrix Dq which contains the pairwise distances between

the identified clusters. The q-th sensor transmits Ŝq and Dq to all other sensors, which

can be done using one broadcast message. This process is repeated for q = 1, . . . , Q.

At each sensor we perform the fusion of Ŝq for q = 1, . . . , Q which produces the final

segmentation matrix Ŝ.

(2) At the q-th we estimate Ŷ q and Ẑq from rq(k) using the computed segmentation

matrix Ŝ. Next, we apply our parameter estimation algorithm on Ŷ q which produces

the estimates F̂ q, K̂q, and Ĉq. The q-th sensor transmits F̂ q, K̂q, and Ĉq to all other

sensors, which can be done using one broadcast message. This process is repeated for

q = 1, . . . , Q. At each sensor we perform the fusion of Ĉq for q = 1, . . . , Q which

produces the final estimates of activity sequences Ĉ.

(3) At the q-th sensor we estimate Ĝq =
[

ĝq1 . . . ĝqM

]

from Ẑq and Ĉ. The

q-th sensor transmits Ĝq to all other sensors, which can be done using one broadcast

message. This process is repeated for q = 1, . . . , Q. At each sensor, from the vectors ĝqm

for q = 1, . . . , Q we estimate power spectrum of the m-th transmitter Sm(f) and the set

of channel transfer functions |Hqm(f)|2 for q = 1, . . . , Q. The algorithm for computing

these estimates will be presented in the next section. The estimation procedure is

repeated for m = 1, . . . ,M which is the last step of our algorithm.
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4.2 SIMO blind deconvolution

In this section we consider the scenario with one transmitter and Q sensors. The

received signals at the sensors are

rq(t) =

∫ ∞

0
hcq(τ)s(t− τ)dτ (4.1)

where s(t) is the transmitted signal and hcq(t) is impulse response of the channel be-

tween the q-th sensor and the transmitter for q = 1, . . . , Q. The received signal rq(t) is

sampled with the period Ts. Assuming that s(t) is bandlimited to [−W/2,W/2] it can

be represented as [100, pp. 150]

s(t) =
∞
∑

n=−∞

s(nTs)gr(t− nTs) (4.2)

where Ts = 1/W and g(t) = Ts
sinπt/Ts

πt . By inserting (4.2) into (4.1) we get the discrete

time model

rq(k) =

∞
∑

n=−∞

s(n)hq(k − n) (4.3)

where rq(k) = rq(kTs), s(n) = s(nTs), and hq(n) =
∫∞
0 hcq(τ)gr(nTs − τ)dτ . We see

that hq(n) is, in general, nonzero for −∞ ≤ n ≤ ∞ and therefore, it is not a meaningful

model for any real world channel. This unrealistic discrete time impulse response hq(n)

resulted from assuming that s(t) is perfectly bandlimited to [−W/2,W/2]. In practice,

s(t) is only approximately bandlimited to [−W/2,W/2]. Let us try to derive a more

realistic discrete time model. From (4.1) we get

rq(kTs) =

∞
∑

n=0

∫ nTs+Ts/2

nTs−Ts/2
hcq(τ)s(kTs − τ)dτ (4.4)

where we assumed that hcq(t) = 0 for t < 0. Assuming that s(t) = s(kTs) for kTs −

Ts/2 < t ≤ kTs + Ts/2 we obtain

rq(k) =
∞
∑

n=0

hq(n)s(k − n) (4.5)

where hq(n) =
∫ nTs+Ts/2
nTs−Ts/2

hcq(τ)dτ which can be expressed as hq(n) =
∫∞
0 hcq(τ)gr(nTs−

τ)dτ where gr(t) = 1 for −Ts/2 < t ≤ Ts/2 and gr(t) = 0 otherwise. Now we have

obtained a causal discrete time impulse response. However, we note that the equality
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in (4.5) holds only approximately where the approximation becomes more accurate as

Ts gets smaller. In contrast to this, the equality in (4.3) holds exactly. If we assume

that

hcq(t) =

Lc
∑

n=0

aq,nδ(t− τq,n), (4.6)

which is a reasonable model for many real world channels [97, ch. 5], we get from (4.5)

rq(k) =
L
∑

n=0

hq(n)s(k − n) (4.7)

where LTs > τq,Lc for q = 1, . . . , Q. From (4.7) we obtain

R2q(k, l) =

L
∑

n=0

L
∑

m=0

hq(n)hq(m)∗R2s(k −m, l − n+m) (4.8)

where R2q(k, l) = E[rq(k+l)rq(k)
∗] and R2s(k, l) = E[s(k+l)s(k)∗]. If s(k) is stationary

(i. e., R2s(k, l) = R2s(l)), then it follows from (4.8) that R2q(k, l) = R2q(l). In this case

we obtain from (4.8)

R2q(l) =
L
∑

p=−L

R2hq(p)R2s(l − p) (4.9)

where R2hq(p) =
∑L−p

n=0 hq(n + p)hq(n)
∗ for p ≥ 0 and R2hq(p) = R2hq(−p)∗ for p < 0.

If s(k) is cyclostationary with the period Nc (i. e., R2s(k + Nc, l) = R2s(k, l)), then

it follows from (4.8) that R2q(k + Nc, l) = R2q(k, l). Now, the equation in (4.8) still

holds if R2q(l) is replaced with R
(0)
2q (l) =

1
Nc

∑Nc−1
k=0 R2q(k, l) and R2s(l) is replaced with

R
(0)
2s (l) =

1
Nc

∑Nc−1
k=0 R2s(k, l).

Our deconvolution problem consists in recovering the sequences R2s(k) and R2hq(k)

for q = 1, . . . , Q from the sequences observed at the sensors R2q(k) for q = 1, . . . , Q.

In order to understand why this problem can be solved we apply Z-transform on (4.9)

which yields

S2q(z) = Hq(z)Hq(z
−∗)∗S2s(z) (4.10)

where S2q(z) =
∑∞

k=−∞R2q(k)z
−k, Hq(z) =

∑L
k=0 hq(k)z

−k, and S2s(z) =
∑∞

k=−∞R2s(k)z
−k.

We see from (4.10) that each S2q(z) is a product of two terms: S2s(z), which is common

for all sensors, and Hq(z)Hq(z
−∗)∗, which is different for each sensor. Therefore, if there

is no zero common to all the channels Hq(z) for q = 1, . . . , Q it is possible to factor
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S2q(z) into Hq(z)Hq(z
−∗)∗ and S2s(z) up to a scaling factor. The scaling ambiguity ap-

pears because, if we replace S2s(z) with kS2s(z) where k > 0 and Hq(z) with Hq(z)/
√
k,

there is no change in S2q(z) in (4.10). If all Hq(z) for q = 1, . . . , Q contain the common

zero z0 then the common factor for all S2q(z) becomes (1− z0z
−1)(1 − z∗0z)S2s(z) and

hence, in this case it is not possible to recover correctly Hq(z)Hq(z
−∗)∗ and S2s(z)

from S2q(z). We observe that the proposed method requires at least two sensors (i. e.,

Q ≥ 2). For Q = 1 it is not possible to recover H1(z)H1(z
−∗)∗ and S2s(z) from S21(z)

without imposing additional assumptions on H1(z) or S2s(z).

This type of single input multiple output (SIMO) deconvolution problem appears

in a completely different application in [101] and [102] where identifiability conditions

were studied. The main identifiability condition is that the channel transfer functions

have no common zeros, which agrees with our analysis above. An additional identifia-

bility condition is that the source signal has a sufficient number of modes [102], which

means that the source signal must have nonzero spectral components over the observed

frequency range. In our application the channel terms Hq(z)Hq(z
−∗)∗ can be recovered

only over the range of frequencies where S2s(z) has nonzero components.

Using the proposed method we can recover Hq(z)Hq(z
−∗)∗ for q = 1, . . . , Q and

S2s(z). From Hq(z)Hq(z
−∗)∗ we can recover Hq(z) if we assume that Hq(z) is a mini-

mum phase transfer function. However, the minimum phase assumption is not neces-

sarily true for wireless channels. Hence, using the proposed method we can correctly

recover the magnitude of Hq(z) but, in general, we cannot recover the phase of Hq(z).

This limitation appeared because we considered only the power spectra at the sensors

S2q(z), which are not sensitive to the phase of Hq(z). In order to recover the phase of

Hq(z), in addition to the power spectra, we need to consider second order cyclostation-

ary spectra or fourth order spectra at the sensors because these statistics are sensitive

to the phase of Hq(z). We leave this extension of the algorithm for future work.

We need a numerical algorithm for solving the formulated deconvolution problem.

In practice the observed quantities R2q(k) or S2q(z) are not available and they must be

replaced with their estimates. Let R̂2q(k) for k = 0,±1,±2 . . . ,±Kr and q = 1, . . . , Q

be the available estimates. In order to solve the deconvolution problem we seek the
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estimates of R2s(k) and R2hq(k) which minimize the following criterion function

Cls =

Q
∑

q=1

Kr
∑

k=0

|R̂2q(k)−
L
∑

p=−L

R2hq(p)R2s(k − p)|2 (4.11)

where we used the fact R2q(k) = R2q(−k)∗ and considered only k ≥ 0. The criterion

function does not have a unique minimum point because of the scaling ambiguity men-

tioned earlier. In order to remove this scaling ambiguity we assume R2s(0) = 1, which

is equivalent to
∫ 0.5
−0.5 S2s(e

j2πf )df = 1. Now we wish to minimize Cls(p) where

p =
[

pT
1 . . . pT

Q pT
s

]T

(4.12)

where

pq =
[

R2hq(0) Re{R2hq(1)} . . . Re{R2hq(L)} Im{R2hq(1)} . . . Im{R2hq(L)

]T

(4.13)

for q = 1, . . . , Q and

ps =
[

Re{R2s(1)} . . . Re{R2s(Kr + L)} Im{R2s(1)} . . . Im{R2hq(Kr + L)}
]T

.

(4.14)

While minimizing Cls(p) we have to take into account
∑L

k=−LR2hq(k)e
−j2πfk ≥ 0 and

∑Kr+L
k=−(L+Kr)

R2s(k)e
−j2πfk ≥ 0 for −0.5 ≤ f ≤ 0.5. The constraints on R2hq(k) can be

taken into account at the finite number of frequencies fr = r/Nf for r = 0, . . . , Nf − 1

and expressed as Ahpq ≥ 0 for q = 1, . . . , Q where

Ah =













1 2 cos 2πf1 . . . 2 cos 2πf1L 2 sin 2πf1 . . . 2 sin 2πf1L

...
...

...
...

...
...

...

1 2 cos 2πfNf
. . . 2 cos 2πfNf

L 2 sin 2πfNf
. . . 2 sin 2πfNf

L













. (4.15)

Assuming R2s(0) = 1 the constraint on R2s(k) can be expressed as Asps+1 ≥ 0 where

As =













2 cos 2πf1 . . . 2 cos 2πf1(Kr + L) 2 sin 2πf1 . . . 2 sin 2πf1(Kr + L)

...
...

...
...

...
...

2 cos 2πfNf
. . . 2 cos 2πfNf

(Kr + L) 2 sin 2πfNf
. . . 2 sin 2πfNf

(Kr + L)













.

(4.16)

Thus, our optimization problem is to minimize Cls(p) subject to Ahpq ≥ 0 for q =

1, . . . , Q and Asps + 1 ≥ 0.
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When the channels Hq(z) for q = 1, . . . , Q have no common zeros our deconvolution

problem has a unique solution which can be found by minimizing Cls(p). The quality

of the obtained solution depends on the conditioning of the problem. When R2q(k) is

replaced with R̂2q(k) some perturbation of R2q(k) is created. If the problem is well

conditioned the obtained solution is robust to the perturbation of R2q(k). On the other

hand, if the problem is ill conditioned the obtained solution is very sensitive to the

perturbation of R2q(k). It turns out that this type of blind deconvolution problem can

be ill conditioned in some practical situations. In order to deal with this problem we

consider the following criterion function

Crls(p) = Cls(p) + λ

Q
∑

q=1

||pq||1 (4.17)

where the parameter λ ≥ 0 controls the strength of the added regularization term. The

solution obtained by minimizing Crls(p) is a compromise between minimizing Cls(p)

and minimizing the regularization term. It was observed that this type of l1 norm

regularization term favors sparse solutions. Hence, it is used in problems where among

multiple possible solution we wish to select the simplest or sparsest solution [92] [103]

[94] [33]. This type of l1 norm regularization is also used in deconvolution problems

[104] [105]. However, in these deconvolution problems the input signal is assumed to

be known. Our deconvolution problem is fundamentally different since the input signal

R2s(k) is not known and must be estimated along with the channel parameters R2qh(k).

Hence, the methods from [104] or [105] cannot be applied to our problem.

Our first step in solving the problem of minimizing Crls(p) is to express

pq = uq −





0

vq



 (4.18)

where uq ≥ 0, vq ≥ 0, q = 1, . . . , Q and we use the fact that R2hq(0) ≥ 0. This

transformation is a standard step in solving problems with l1 norm regularization [94]

[33]. The constraints Ahpq ≥ 0 can be expressed as

[

Ah −Ahc

]





uq

vq



 ≥ 0 (4.19)



105

whereAhc contains the last 2L columns of Ah (i. e., Ah =
[

1 Ahc

]

) and q = 1, . . . , Q.

If we define the parameter vector

r =
[

uT
1 vT

1 . . . uT
Q vT

Q pT
s

]T

(4.20)

the criterion function can be expressed as

Crls(r) = Cls(r) + λ
[

1T 0T
]

r (4.21)

where 1 is a vector of Q(4L + 1) ones and 0 is a vector of 2(Kr + L) zeros. Our

optimization problem is

r̂ = argmin
Ainr+b≥0

Crls(r) (4.22)

where

Ain =





















































Ãh 0 . . . 0 0

0 Ãh . . . 0 0

...
...

...
...

...

0 0 . . . Ãh 0

0 0 . . . 0 As

I 0 . . . 0 0

0 I . . . 0 0

...
...

...
...

...

0 0 . . . I 0





















































, (4.23)

where Ãh =
[

Ah −Ahc

]

, I is a 4L+ 1 by 4L+ 1 identity matrix and

b =













0

1

0













(4.24)

where the top 0 is a vector of QNf zeros, 1 is a vector of Nf ones and the bottom 0 is

a vector of Q(4L+ 1) zeros.

In order to solve (4.22) we follow the same procedure used in the previous chapter.

Our first step is to eliminate the inequality constraints using the logarithmic barrier

function method. We define c =
[

c1 . . . cNin

]T

= Ainr + b where Nin = (Q +
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1)Nf +Q(4L+1) is the total number of inequality constraints and consider the criterion

function

Cbf (r) = Crls(r)− α

Nin
∑

i=1

log ci (4.25)

where α is a small positive constant which controls the influence of the added logarithmic

terms. When the i-th inequality constraint is about to be violated ci approaches zero

and its logarithmic term tends to negative infinity. Then Cbf (r) tends to plus infinity,

which prevents that parameter from becoming zero or negative. Now our optimization

problem is to minimize Cbf (r). Again, we will use Newton’s method starting from an

initial point for r. At each iteration we update the parameter vector using

r = r0 − ηH(r0)
−1g(r0) (4.26)

where r0 is the parameter vector from the previous iteration, η is the step size, g(r) is

the gradient and H(r) is the Hessian of Cbf (r). Next, we need to compute g(r) and

H(r). Let us define the vectors

ŷ =
[

ŷT
1 . . . ŷT

Q

]T

y(r) =
[

yT
1 . . . yT

Q

]T

(4.27)

where

ŷq =
[

R̂2q(0) Re{R̂2q(1)} . . . Re{R̂2q(Kr)} Im{R̂2q(1)} . . . Im{R̂2q(Kr)}
]T

yq(r) =
[

R2q(0) Re{R2q(1)} . . . Re{R2q(Kr)} Im{R2q(1)} . . . Im{R2q(Kr)}
]T

.

(4.28)

In (4.28) we emphasized the functional dependence of the model vector y(r) on the

parameter vector. The functional dependence is given by (4.9). The criterion function

can be expressed as

Cbf (r) =

Neq
∑

n=1

[ŷn − yn(r)]
2 − α

Nin
∑

m=1

log cm + λ

Q(4L+1)
∑

m=1

rm (4.29)

where Neq = Q(2Kr + 1) is the total number of observations, ŷm and ym(r) are the

m-th entries of ŷ and y(r) respectively, cm is the m-th entry of c = Ainr + b and rm
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is the m-th entry of r. The gradient of Cbf (r) is

g(r) = −2J(r)T [ŷ − y(r)]− αAT
in













c−1
1

...

c−1
Nin













+ λ





1

0



 (4.30)

where J(r) =
[

∂yn(r)
∂rm

]

for n = 1, . . . , Neq, m = 1, . . . , Npar, where Npar = Q(4L+ 1) +

2(Kr + L), is the Jacobian matrix [55] of y(r), 1 is a vector of Q(4L + 1) ones and 0

is a vector of 2(Kr + L) zeros. The Hessian of Cbf (r) is

H(r) = 2J(r)TJ(r)− 2

Neq
∑

n=1

[ŷn − yn(r)]Gn(r) + αAT
in













c−2
1 . . . 0

...
. . .

...

0 . . . c−2
Nin













Ain (4.31)

where Gn(r) =
[

∂2yn(r)
∂rm∂rk

]

for m,k = 1, . . . , Npar is the Hessian of the function yn(r).

We see from (4.31) that the first and third terms are positive definite matrices while the

second term in the sum is in general indefinite. The iterations from (4.26) cannot be

used if H(r0) is indefinite because then H(r0)
−1g(r0) may not be a descent direction

for Cbf (r). Again we use a modified Newton’s method where the true Hessian H(p) in

(4.26) is replaced with its positive definite part

[H(r)]pd = 2J(r)TJ(r) + αAT
in













c−2
1 . . . 0

...
. . .

...

0 . . . c−2
Nin













Ain. (4.32)

After this modification it is possible to select a sufficiently small step size η such that

Cbf (r) < Cbf (r0). This is possible since [H(r0)]
−1
pd g(r0) is a descent direction for

Cbf (r). In order to select the step size we compute the updated parameter vector as

r = r0 − µv [H(r0)]
−1
pd g(r0) (4.33)

where 0 < µ < 1 and v = 0, 1, 2, ..., Vat . We start with v = 0 and keep increasing v until

all inequality constraints are satisfied and Cbf (r) < Cbf (r0). The step size selection is

the final part of the algorithm.

Let us summarize the algorithm for solving (4.22). Starting from a random initial

point, which satisfies all inequality constraints from (4.22), we iteratively update the
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parameter vector r as follows. In each iteration we compute J(r) as partial derivatives

of model equations (4.9), [H(r)]pd using (4.32), g(r) using (4.30), select the step size

using the proposed line search procedure and update the parameter vector using (4.33).

The iterations are repeated until convergence. The algorithm converges to a local

minimum of the criterion function Cbf (r). The global minimum of Cbf (r) can be found

from the results obtained by running the algorithm from different initial points.

As already mentioned this type of SIMO blind deconvolution problem was studied

in [101] and [102] where certain algebraic solutions were proposed. Main problem with

these solutions is that they produce estimates which do not minimize any meaningful

criterion function. We see from (4.11) that in our application some amount of estimation

error is always present. Since the algebraic solutions do not minimize any meaningful

criterion function they are not robust in the presence of such modeling errors. Another

problem with these algebraic solutions is that they cannot take into account any appli-

cation specific constraints such as nonnegativity or sparsity. Therefore, if the amount

of estimation error is high or the problem is ill conditioned the algebraic solutions are

often useless. These facts explain why a new numerical algorithm was needed. The

proposed algorithm produces estimates by minimizing a meaningful criterion function

and allows incorporation of various application specific constraints.

4.3 Numerical example

We consider the setup with one transmitter four sensors shown in Figure 2.16. The

transmitter transmits the same type of signal that was described in section 2.3 and

used to study the segmentation algorithm. Channel transfer functions between the

transmitter and the sensors are measured in ORBIT room in WINLAB for the setup

shown in Figure 2.16 [66]. These channel transfer functions are used in our simulations.

Figure 2.17 shows an example of power traces of the received signals at the sensors.

Using the steps outlined in section 4.1 at each sensor we can estimate the power spec-

trum of the received source signal. Figure 4.1 shows the estimated power spectra for

SNR = 10dB where SNR1 = SNR+8.42dB, SNR2 = SNR+5.44dB, SNR3 = SNR,

and SNR4 = SNR + 5.44dB. From these four power spectra we wish to estimate the
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Figure 4.1: Estimated PSDs at four

sensors for SNR=10dB
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Figure 4.2: Normalized squared estima-

tion error of the channel estimates vs.

regularization parameter
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Figure 4.4: Normalized squared estima-

tion error of the channel estimates vs.

regularization parameter

source power spectrum and magnitude frequency responses of the channels between the

source and the sensors. In order to use the proposed algorithm we need to know the

length of the impulse responses L. We examined the impulse responses from [66] and

determined that they all become practically zero after 2µs. Since in our simulations

Ts = 0.05µs we select L = 39. We apply our algorithm with Kr = 120 and L = 39

for different values of the regularization parameter λ. For each value of λ we compute
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Figure 4.5: Objective function vs. reg-

ularization parameter
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term and the regularization term vs.

regularization parameter
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PSD for SNR=10 dB and and observa-

tion time of 5ms

the normalized square estimation error of the estimated channel parameters defined as

||pch − p̂ch||22/||pch||22 where pch =
[

pT
1 . . . pT

Q

]T

. Figure 4.2 the normalized squared

estimation error versus λ. We see that for very small values of λ the estimation error

is very high and hence, the obtained estimates are useless. This can be explained by

the fact that the problem is extremely ill conditioned. The estimation error present

in the power spectra Figure 4.1 and in the corresponding autocorrelation sequences

affects the computed solution severely and thus, causes the huge estimation error. As λ
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Figure 4.10: True and estimated source

PSD for SNR=30 dB and and observa-

tion time of 5ms
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Figure 4.12: True and estimated source

PSD for SNR=30 dB and and observa-

tion time of 50ms

increases the channel parameter estimation error drops and reaches its minimum for a

certain value of λ. Further increase of λ increases the estimation error because the reg-

ularization term becomes too strong and restricts the estimated parameters too much.

When λ is very large the estimated parameters p̂ch tend to zeros and the normalized

estimation error shown in Figure 4.2 tends to one. Figure 4.3 shows Crls(r̂), where the

criterion function Crls(r) is defined in (4.21) and r̂ is the estimated parameter vector,

for different values of λ. When λ tends to zero Crls(r̂) becomes constant and equal
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Figure 4.14: True and estimated source

PSD for SNR=30 dB and and observa-

tion time of 250ms
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Figure 4.16: True and estimated source

PSD for SNR=30 dB and and observa-

tion time of 1250ms

to Cls(r̂). As λ increases the minimum value of Crls(r) also increases because of the

constraints imposed on the estimated parameter vector r̂ and because of the increas-

ing influence of the regularization term. When λ is very large the estimated channel

parameters in r̂ tend to zeros and Crls(r̂) becomes approximately constant. From Fig-

ure 4.2 and 4.3 we see that we obtain a useful estimate r̂ when λ is sufficiently large

and the influence of the regularization term on Crls(r̂) becomes noticeable. This can

be seen more clearly from Figure 4.4 and 4.5 where the relevant parts of the curves
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from Figure 4.2 and 4.3 are shown. The the criterion function defined in (4.21) can be

represented as Crls(r) = Cls(r) + Creg(r) where Creg(r) = λ
[

1T 0T
]

r. When λ is

selected so that Cls(r̂) ≫ Creg(r̂) the influence of the regularization term is negligible

and the computed solution r̂ is useless because the problem is ill conditioned. The in-

fluence of the regularization becomes noticeable when Creg(r̂) is comparable to Cls(r̂).

Therefore, one reasonable strategy is to select λ such that Cls(r̂) = Creg(r̂). Figure 4.6
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shows the ratio Cls(r̂)/Creg(r̂) for different values of λ. We see that this ratio decreases

as λ increases. Therefore, we can start with some small λ and keep increasing it until

Cls(r̂) = Creg(r̂). The vector r̂ obtained for λ such that Cls(r̂) = Creg(r̂) is the output

of our algorithm. Figure 4.7 and 4.8 show the estimates obtained for SNR=10 dB and

and the observation time of 5ms. We see that the estimates contain some estimation

error which is caused by the estimation errors in the input autocorrelation sequences

R̂2q(k). Figure 4.9 and 4.10 show the estimates obtained for SNR=30 dB and and

the observation time of 5ms. We do not see a significant improvement because the

estimation errors in R̂2q(k) is caused by the finite sample size. This error can be re-

duced by increasing the observation time which can be seen from the estimates shown

in Figure 4.11 through 4.16. Next, we study the behavior of the algorithm for a range

of SNR values. At each SNR point we perform 10 runs where in each run we generate

independent realizations of the signal and noise and apply our algorithm. For each SNR

point we compute the mean normalized mean squared error of the channel estimates

defined as
∑Nat)

i=1 ‖|pch − p̂
(i)
ch ||22/||pch||22 where p̂

(i)
ch is the channel estimate obtained in

the i-th run and Nat is the total number of runs. This error is computed first for

the channel estimates obtained for λ selected so that Cls(r̂) = Creg(r̂) and then for

the channel estimates obtained for λ which minimizes ||pch − p̂
(i)
ch ||2 in each run. In

our simulations the value of λ which minimizes ||pch − p̂
(i)
ch ||2 is possible to find since

pch is known. In real world applications pch is not known and hence, this method for

selection of λ cannot be used. Figure 4.17 shows normalized mean squared error of

the channel estimates versus SNR for the fixed observation time of 5ms. We see that

the curve obtained for the values of λ computed using our approach is relatively close

to the curve obtained for the optimal values of λ. As SNR increases the estimation

error reduces, as expected. At very high SNR values the estimation error does not

tend to zero because of the estimation errors in the input autocorrelation sequences

R̂2q(k) which are caused by the finite sample size. Figure 4.18 shows the values of λ

computed using our approach and the optimal values of lambda versus SNR. We see

that the two curves are relatively close and have similar decreasing trends. Figure 4.19

shows normalized mean squared error of the channel estimates versus the observation
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time length for SNR = 10dB. As observation time length increases the estimation

errors in the input autocorrelation sequences R̂2q(k) decrease which in turn reduces the

error of the estimated parameters shown in Figure 4.19. Figure 4.20 shows the values

of λ computed using our approach and the optimal values of λ versus observation time

length. Again, the two curves exhibit similar decreasing trends. As observation time

length increases the estimation errors in R̂2q(k) decrease and thus, the perturbation of

the estimated parameters gets smaller. Hence, the value of λ needed to obtain useful

parameter estimates decreases as observation time length increases.

We see that the magnitude frequency responses of the channels in this example

are complicated functions of frequency, which is always the case in a rich multipath

environment. In this type of environment each transmitter location has with a high

probability its distinct set of channel transfer functions. Therefore, the recovered chan-

nel transfer functions uniquely identify the transmitter location. However, the mapping

between the transmitter location and the corresponding channel transfer functions is

very complicated and unknown in practical applications. Hence, it is very difficult to

estimate the transmitter location from the recovered channel transfer functions.

Recovered transmitted signal spectrum provides information about the type of the

used signal and hence, it can be used for signal identification. Similarly, fourth and

higher order spectra can also be used for signal identification. Since the received signals

spectra in this example are severely distorted by the frequency selective channels it

would be difficult to use them for signal identification. Instead, it is much better to use

the recovered transmitted signal spectrum obtained after the deconvolution. If multiple

sensors are available this technique can be applied in systems for automatic modulation

recognition [106] for combating performance degradation caused by multipath.

We have illustrated our algorithm using one specific example. However, if we use

other channel transfer functions from [66] we obtain very similar results. Our main

conclusion is that SIMO blind deconvolution problems for real world channels cannot

be solved using algebraic methods from [101] and [102]. These algorithms are useful

only for very simple channels which can be modeled with a small number of coefficients

(say, L < 5). Even then the algebraic methods are not robust to any perturbation
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caused by noise or modeling errors which are always present in practical applications.

Real world channels often require much larger number of coefficients (e. g., L = 39)

and the resulting problems are often ill conditioned. In this environment the algebraic

solutions are completely useless. In this work we have developed an algorithm which

obtains a useful solution to the SIMO blind deconvolution problem by minimizing a

least squares criterion function with the l1 norm regularization.

4.4 Conclusion and future work

In this chapter we proposed a distributed algorithm which uses observations form mul-

tiple sensors. Using the segmentation algorithm and the fourth order spectrum based

analysis method we can estimate spectra and the associated activity sequences of the

individual signals at each sensor. Thus, for each transmitted signal we can estimate its

received power spectrum at each sensor. We proposed a blind deconvolution algorithm

which from the received power spectra estimates channel transfer functions between

each sensor and the transmitter and the transmitted signal power spectrum. From the

estimated channel transfer functions we can estimate the transmitter location. The

problem of estimation of the transmitter location from the recovered channel transfer

functions is an interesting topic for future work.

Let us now summarize the work done in this thesis. We proposed certain algorithms

for analysis of packet based radio signals. Using these algorithms for each transmitted

we can estimate its second and fourth order spectrum, its activity sequence in time

and the location of its transmitter in space. From these estimated quantities we can

form a comprehensive picture of radio spectrum usage in space, time and frequency.

As already explained, the obtained information on spectrum usage can be used in some

important practical applications.
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