

Copyright

by

Hani Hasan Mustafa Saleh

2009

The Dissertation Committee of Hani Hasan Mustafa Saleh
certifies that this is the approved version of the following dissertation:

Fused Floating-Point Arithmetic For DSP

Committee:

Earl E. Swartzlander, Jr., Supervisor

Mircea Driga

Mohamed Gouda

Michael Orshansky

Nur Touba

Fused Floating-Point Arithmetic For DSP

by

Hani Hasan Mustafa Saleh, B.S.; M.S.

Dissertation

Presented to the Faculty of the Graduate School of

the University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

May, 2009

In the Name of Allah, Most Gracious, and Most Merciful,

To my parents, my wife, my children and all of my six brothers.

v

Acknowledgements

First, I want to thank Allah (Arabic for the God) for providing me the will, the

time and the energy to accomplish this work. I am grateful to my mother for guiding my

steps on the path of achievements since my infanthood, my father for raising me up and

being my model till his last breath, my brothers Yousef, Rami, Ali, Suleiman,

Mohammad and Mutei for taking care of me and supporting me always, my children

Shushu, Yousuf and Yahya for their love and support and special thanks and gratitude to

my beloved wife Eman for her love, support, and patience during the course of this work;

I really appreciate the sacrifice that my wife and children made to facilitate this work and

their prayers throughout this endeavor.

I would like to thank my advisor, Professor Earl E. Swartzlander, Jr. for his

guidance, understanding and support throughout the course of this research. Working

with him has been a great experience and great fun. Thanks to my committee members

for their ideas and invaluable feedback. I would like also to thank Professor Adnan Aziz

for his guidance and support. Thanks to the Electrical and Computer Engineering staff for

their assistance.

I would like to express my gratitude to my colleagues at the University of Texas

at Austin, Bassam Mohammad and Baker Mohammad, as well as special thanks to my

colleagues while I was at University of Texas at San Antonio for their encouragement

and assistance; special thanks to Adnan Suleiman, Adel Husain, Amjad Odetallah,

Khaldoun Batyneh, and Hassan Ali. Also, special thanks to my proofreaders Akif Ali,

Athar Tayyeb, Baker Mohammad, Bryan Dobbs, Dan Cermak, Jonathan Tong, Scott

Holmes, Richard Umberhocker, Clay Douglass, Stephan Kulik, III and Paul Adeleke, for

great feedback, as well as special thanks to Khader Mohammad for his assistance with

the backend tools and libraries. In addition, special thanks to my colleagues and

managers at my current and previous places of employment for their understanding and

encouragement.

vi

Finally, I am indebted to my colleagues at my previous place of employment, Carl

Lemonds, Dimitri Tan and Eric Quinnell, for all the knowledge they shared with me

about floating-point hardware design.

vii

Fused Floating-Point Arithmetic for DSP

Publication No. _____________________

Hani Hasan Mustafa Saleh, Ph.D.
The University of Texas at Austin, 2009

Supervisor: Earl E. Swartzlander, Jr.

Floating-point arithmetic is attractive for the implementation for a variety of

Digital Signal Processing (DSP) applications because it allows the designer and user to

concentrate on the algorithms and architecture without worrying about numerical issues.

In the past, many DSP applications used fixed point arithmetic due to the high cost (in

delay, silicon area, and power consumption) of floating-point arithmetic units.

In the realization of modern general purpose processors, fused floating-point

multiply add units have become attractive since their delay and silicon area is often less

than that of a discrete floating-point multiplier followed by a floating point adder. Further

the accuracy is improved by the fused implementation since rounding is performed only

once (after the multiplication and addition).

This work extends the consideration of fused floating-point arithmetic to

operations that are frequently encountered in DSP. The Fast Fourier Transform is a case

in point since it uses a complex butterfly operation. For a radix-2 implementation, the

butterfly consists of a complex multiply and the complex addition and subtraction of the

same pair of data. For a radix-4 implementation, the butterfly consists of three complex

multiplications and eight complex additions and subtractions. Both of these butterfly

viii

operations can be implemented with two fused primitives, a fused two-term dot-product

unit and a fused add-subtract unit.

The fused two-term dot-product multiplies two sets of operands and adds the

products as a single operation. The two products do not need to be rounded (only the sum

is normalized and rounded) which reduces the delay by about 15% while reducing the

silicon area by about 33%.

For the add-subtract unit, much of the complexity of a discrete implementation

comes from the need to compare the operand exponents and align the significands prior

to the add and the subtract operations. For the fused implementation, sharing the

comparison and alignment greatly reduces the complexity. The delay and the arithmetic

results are the same as if the operations are performed in the conventional manner with a

floating-point adder and a separate floating-point subtracter. In this case, the fused

implementation is about 20% smaller than the discrete equivalent.

ix

Table of Contents

Acknowledgements..v

Fused Floating-Point Arithmetic for DSP...vii
Table of Contents .. ix

List of Figures...xii
List of Tables ..xv

Chapter 1 Introduction ..1
1.1 Motivation..1
1.2 Problem Description ..2
1.3 Dissertation Overview ...4

Chapter 2 Background ..5
2.1 Computer Arithmetic Overview ..5
2.2 Fixed-Point Representation Overview and Implementation Issues ...5

2.2.1. Fixed-Point Precision Loss and Overflow...6
2.3 An Overview of the IEEE-754 Floating-Point Standard ...7
2.4 An Overview of the Floating-Point Fused Multiply-Add (FMA) Operation [14]9
2.5 Other Fused Arithmetic Units ..10
2.6 The Fast Fourier Transform (FFT) Algorithm...11
2.7 Summary..13

Chapter 3 Research Approach and Design Methodology............................14
3.1 Research Approach ..14
3.2 High-Level Modeling...16
3.3 RTL Digital Design Using Verilog HDL...17
3.4 The EDA Tools Used in The ASIC Implementation Flow..18
3.5 Functional Verification Using Simulation ...20
3.6 ASIC Implementation Flow...21

3.6.1. Dynamic Power Estimation Detailed Methodology ..28
3.7 The 45nm CMOS Technology Process Used to Implement the Primitive and the
Derived Units ...30

3.8 Notes About ASIC Standard-Cell Libraries and ASIC Flows ..31
Chapter 4 Floating-Point Fused Add-Subtract Unit33
4.1 Introduction..33
4.2 Floating-Point Adder Design ...34

4.2.1. Basic Floating-Point Addition Algorithm ...34
4.3 Fused Add-Subtract Unit Design Approachs...37
4.4 Implementation Results ...40

4.4.1. Floating-Point Adder (FPA) Unit ..40

x

4.4.1.1. Timing ..44
4.4.1.2. Place and Route Results ...44
4.4.1.3. Power and Energy Estimation Results..47
4.4.2. Serial Add-Subtract (Serial AS) Unit ..47
4.4.2.1. Timing ..48
4.4.2.2. Place and Route Results ...49
4.4.2.3. Power and Energy Estimation Results..52
4.4.3. Parallel Add-Subtract (Parallel AS) Unit ..52
4.4.3.1. Timing ..52
4.4.3.2. Place and Route Results ...53
4.4.3.3. Power and Energy Estimation Results..56
4.4.4. Fused Add-Subtract (Fused AS) Unit..56
4.4.4.1. Timing ..56
4.4.4.2. Place and Route Results ...57
4.4.4.3. Power and Energy Estimation Results..60

4.5 Add-Subtract Unit Implementation Results Summary ..61

Chapter 5 Floating-Point Fused Two-Term Dot-Product Unit......................65
5.1 Introduction..65
5.2 Floating-Point Multiplier Design...68

5.2.1. Basic Floating-Point Multiplier Algorithm ...69
5.3 Fused DP Unit Design Approach...71
5.4 Dot-Product Unit Implementation Results...76

5.4.1. Floating-point Multiplier (FPM) Unit ...77
5.4.1.1. Timing ..79
5.4.1.2. Place and Route Results ...80
5.4.1.3. Power and Energy Estimation Results..83
5.4.2. Floating-point Two-Term Serial Dot-Product (Serial DP) Unit84
5.4.2.1. Timing ..85
5.4.2.2. Serial DP Place and Route Results ...85
5.4.2.3. Power and Energy Estimation Results..88
5.4.3. Floating-point Two-Term Parallel Dot-Product (Parallel DP) Unit88
5.4.3.1. Timing ..88
5.4.3.2. Place and Route Results ...89
5.4.3.3. Power and Energy Estimation Results..91
5.4.4. Floating-point Two-Term Fused Dot-Product (Fused DP) Unit91
5.4.4.1. Timing ..91
5.4.4.2. Place and Route Results ...92
5.4.4.3. Power and Energy Estimation Results..95

5.5 Dot-Product Unit Implementation Results Summary ..96

Chapter 6 Floating-Point Fused Radix-2 and Radix-4 FFT Butterfly Units102
6.1 Radix-2 FFT Butterfly ...102

6.1.1. Radix-2 Butterfly Design Approach..103
6.2 Radix-4 FFT Butterfly ...105

xi

6.3 Butterfly Unit Implementation Results ..108
6.3.1. Floating-point Discrete Parallel Radix-2 FFT Butterfly..109
6.3.1.1. Timing ..109
6.3.1.2. Place and Route Results ...110
6.3.1.3. Power and Energy Estimation Results..113
6.3.2. Floating-point Fused Radix-2 FFT Butterfly Unit...114
6.3.2.1. Timing ..114
6.3.2.2. Place and Route Results ...114
6.3.2.3. Power and Energy Estimation Results..117
6.3.3. Floating-point Discrete Parallel Radix-4 FFT Butterfly Unit................................117
6.3.3.1. Timing ..118
6.3.3.2. Place and Route Results ...118
6.3.3.3. Power and Energy Estimation Results..121
6.3.4. Floating-point Fused Radix-4 FFT Butterfly...122
6.3.4.1. Timing ..122
6.3.4.2. Place and Route Results ...123
6.3.4.3. Power and Energy Estimation Results..125

6.4 Butterfly Unit Implementation Results Summary ...126
6.5 Butterfly Unit Error Analysis...131

Chapter 7 Conclusion..138
7.1 The Key Contributions...138
7.2 Future Research ...144

Bibliography ...145

VITA...149

xii

List of Figures
Figure 1. FFT Spectrum Calculation Using: Double Precision Floating-Point, Single
Precision Floating-Point and 12-bit Fixed-Point Without and With Scaling 7
Figure 2. Block Diagram of a Floating-point Fused Multiply-add Unit, reduced from [14] 10
Figure 3. Radix-2 Butterflies 12
Figure 4. 8-point Radix-2 DIT FFT 12
Figure 5. 8-point Radix-2 DIF FFT 12
Figure 6. Research Flow 15
Figure 7. Verilog HDL for a 2:1 Multiplexer 18
Figure 8. Functional Verification Using Simulation 21
Figure 9. Implementation Sub-Flow 24
Figure 10. Analysis Sub-Flow 27
Figure 11. The Floating-Point Fused Add-Subtract Unit Concept 34
Figure 12. A Conventional Floating-Point Adder 37
Figure 13. Conventional Parallel Realization of an Add-Subtract Unit 38
Figure 14. Conventional Serial Realization of an Add-Subtract Unit 38
Figure 15. Floating-Point Fused Add-Subtract Unit 39
Figure 16. Align Circuit 41
Figure 17. Significand Adder Circuit 42
Figure 18. Normalization Circuit 42
Figure 19. Rounding Circuit 43
Figure 20. Finalization Circuit 43
Figure 21. Floating-Point Adder Unit Routing 45
Figure 22. Floating-Point Adder Unit Placement with the Critical Timing Path
Highlighted 46
Figure 23. Serial AS Micro-Architecture 48
Figure 24. Serial AS Unit Routing 50
Figure 25. Serial AS Unit Placement with Critical Path Highlighted 51
Figure 26. Parallel AS Unit Routing 54
Figure 27. Parallel AS Unit Placement with Critical Timing Path Highlighted 55
Figure 28. Fused AS Unit Routing 58
Figure 29. Fused AS Unit Placement with Critical Timing Path Highlighted 59
Figure 30. Add-Subtract Unit Delay Comparison 61
Figure 31. Add-Subtract Unit Area Comparison 62
Figure 32. Add-Subtract Unit Power Consumption Comparison 63
Figure 33. Add-Subtract Unit Energy Consumption Comparison 64
Figure 34. Two-Term Dot-Product Serial Implementation 66
Figure 35. Two-Term Dot-Product Parallel Implementation 66
Figure 36. The Fused DP Unit Concept 67
Figure 37. Complex Multiplier Computation 68
Figure 38. Basic Floating-Point Multiplier 70
Figure 39. Conventional Floating-Point FMA unit [14] 72
Figure 40. Floating-Point Fused Two-Term Dot-Product Unit 73
Figure 41. Floating-Point Fused Multiply-Add Unit Exponent Compare Circuit 74
Figure 42. Floating-Point Fused Two-Term Dot-Product Unit Exponent Compare Circuit 75
Figure 43. LZA Circuit Concept [39] 75

xiii

Figure 44. Floating-Point Fused Two-Term Dot-Product Unit Alignment Circuit 76
Figure 45. Radix-8 Booth Significand Multiplier 78
Figure 46. Partial Product Summation Tree (Using One Hot Encoding) 79
Figure 47. FPM Unit Routing 81
Figure 48. FPM Unit Placement with the Critical Timing Path Highlighted 82
Figure 49. Serial DP Micro-Architecture 84
Figure 50. Serial DP Unit Routing 86
Figure 51. Serial DP Unit Placement 87
Figure 52. Parallel DP Unit Routing 89
Figure 53. Parallel DP Unit Routing 90
Figure 54. Fused DP Unit Routing 93
Figure 55. Fused DP Unit Placement 94
Figure 56. Two-Term Dot-Product Unit Delay Comparison 97
Figure 57. Two-Term Dot-Product Unit Area Comparison 98
Figure 58. Two-Term Dot-Product Unit Power Consumption Comparison 99
Figure 59. Two-Term Dot-Product Unit Energy Consumption Comparison 100
Figure 60. Radix-2 FFT Butterfly Unit Concept 102
Figure 61. Parallel Implementation of Radix-2 Decimation in Frequency FFT Butterfly
Unit 103
Figure 62. Serial Implementation of Radix-2 Decimation in Frequency FFT Butterfly
Unit 104
Figure 63. Fused Radix-2 Decimation in Frequency FFT Butterfly Unit 105
Figure 64 Radix-4 Decimation in Time FFT Butterfly Unit 106
Figure 65 Parallel Implementation of Radix-4 Decimation in Time FFT Butterfly Unit 107
Figure 66 Fused Radix-4 Decimation in Time FFT Butterfly Unit 108
Figure 67. Floating-Point Discrete Parallel Radix-2 FFT Butterfly Unit Routing 111
Figure 68. Floating-Point Discrete Parallel Radix-2 FFT Butterfly Unit Placement 112
Figure 69. Floating-Point Fused Radix-2 Butterfly Unit Routing 115
Figure 70. Floating-Point Fused Radix-2 Butterfly Unit Placement 116
Figure 71. Floating-Point Discrete Parallel Radix-4 FFT Butterfly Unit Routing 119
Figure 72. Floating-Point Discrete Parallel Radix-4 FFT Butterfly Unit Placement 120
Figure 73. Floating-Point Fused Radix-4 Butterfly Unit Routing 123
Figure 74. Floating-Point Fused Radix-4 Butterfly Unit Placement 124
Figure 75. Butterfly Unit Delay Comparison 127
Figure 76. Butterfly Unit Area Comparison 128
Figure 77. Butterfly Unit Power Comparison 129
Figure 78. Butterfly Unit Energy Consumption Comparison 130
Figure 79. Error Analysis Experiments Block Diagram 132
Figure 80. Radix-2 Butterfly Unit Errors Using 64K Random Input Vector 133
Figure 81. Radix-4 Butterfly Unit Errors Using 64K Random Input Vector 134
Figure 82. Radix-2 64K FFT Based on Discrete and Fused Radix-2 Butterflies Errors
Using 64K Random Input Vector 135
Figure 83. Radix-4 64K FFT Based on Discrete and Fused Radix-4 Butterflies Errors
Using 64K Random Input Vector 136
Figure 84. FFT Butterflies Error Simulation Max and Average Error 137
Figure 85. 64K FFT Error Simulation Max and Average Error 137
Figure 86. Add-Subtract Unit Comparison 139
Figure 87. Two-Term Dot-Product Function Design Options Comparison 140

xiv

Figure 88. Radix-2 FFT Butterfly Design Options Comparison 141
Figure 89. Radix-4 FFT Butterfly Design Options Comparison 142
Figure 90. FFT Butterflies Error Simulation Max and Average Error as a Percentage of
the Discrete Radix-4 BF Error 143
Figure 91. 64K FFT Error Simulation Max and Average Error as a Percentage of the
Discrete Radix-4 FFT Error 143

xv

List of Tables
Table 1. IEEE-754 Storage Layout [1] 8
Table 2. Basic Floating-Point Adder Algorithm Latency 36
Table 3. Floating-Point Adder Critical Timing Path 44
Table 4. Floating-Point Adder Area Distribution 47
Table 5. Floating-Point Adder Total Power Distribution 47
Table 6. Serial AS Critical Timing Path 49
Table 7. Serial AS Area Distribution 52
Table 8. Serial AS Average Power Distribution 52
Table 9. Parallel AS Critical Timing Path 53
Table 10. Parallel AS Area Distribution 55
Table 11. Parallel AS Total Power Distribution 56
Table 12. Fused AS Critical Timing Path 57
Table 13. Fused AS Area Distribution 60
Table 14. Fused AS Average Power Distribution 60
Table 15. Add-Subtract Unit Delay Comparison for Performing Simultaneous Add and
Subtract on Two Operands 61
Table 16. Add-Subtract Unit Area Comparison 62
Table 17. Add-Subtract Unit Power Consumption Comparison 63
Table 18. Add-Subtract Unit Energy Consumption Comparison 64
Table 19. Radix-8 Booth Encoding Table 79
Table 20. Floating-Point Multiplier Critical Timing Path 80
Table 21. FPM Area Distribution 83
Table 22. FPM Unit Average Power Distribution 83
Table 23. Serial DP Critical Timing Path 85
Table 24. Serial DP Unit Area Distribution 87
Table 25. Serial DP Power Distribution 88
Table 26. Parallel DP Unit Critical Timing Path 88
Table 27. Parallel DP Area Distribution 90
Table 28. Parallel DP Unit Average Power Distribution 91
Table 29. Fused DP Unit Critical Timing Path 92
Table 30. Fused DP Unit Area Distribution 95
Table 31. Fused DP Unit Power Distribution 95
Table 32. Two-Term Dot-Product Unit Delay Comparison 97
Table 33. Two-Term Dot-Product Unit Area Comparison 98
Table 34. Two-Term Dot-Product Unit Power Consumption Comparison 99
Table 35. Two-Term Dot-Product Unit Energy Consumption Comparison 100
Table 36. Floating-Point Discrete Parallel Radix-2 FFT Butterfly Critical Timing Path 110
Table 37. Floating-Point Discrete Parallel Radix-2 FFT Butterfly Unit Area Distribution 113
Table 38. Floating-Point Discrete Parallel Radix-2 FFT Butterfly Unit Power Distribution 113
Table 39. Floating-Point Radix-2 Fused Butterfly Critical Timing Path 114
Table 40. Floating-Point Radix-2 Fused Butterfly Unit Area Distribution 117
Table 41. Floating-Point Radix-2 Fused Butterfly Unit Power Distribution 117
Table 42. Floating-Point Discrete Parallel Radix-4 FFT Butterfly Critical Timing Path 118
Table 43. Floating-Point Radix-4 Discrete Parallel FFT Butterfly Unit Area Distribution 121
Table 44. Floating-Point Radix-4 Discrete Parallel FFT Butterfly Unit Power Distribution 121

xvi

Table 45. Floating-Point Fused Radix-4 FFT Butterfly Critical Timing Path 122
Table 46. Floating-Point Fused Radix-4 FFT Butterfly Unit Area Distribution 125
Table 47. Floating-Point Fused Radix-4 FFT Butterfly Unit Power Distribution 125
Table 48. Butterfly Unit Delay Comparison 127
Table 49. Butterfly Unit Area Comparison 128
Table 50. Butterfly Unit Power Comparison 129
Table 51. Butterfly Unit Energy Consumption Comparison 130
Table 52. Input and Output Data Range for the Error Analysis Experiments 132

1

Chapter 1 Introduction

Many applications can use floating-point hardware to perform DSP tasks in real

time and hence overcome the limitations imposed by the use of fixed-point numeric

systems.

1.1 Motivation

Fixed-point arithmetic has been used for the longest time in computer arithmetic

calculations due to its ease of implementation compared to floating-point arithmetic and

the limited integration capabilities of available chip design technologies in the past. The

design of binary fixed-point adders, multipliers, subtracters, and dividers is covered in

numerous textbooks and conference papers. However, advanced technology applications

require a data space that ranges from the infinitesimally small to the infinitely large. Such

applications require the design of floating-point hardware. A floating point number

representation can simultaneously provide a large range of numbers and a high degree of

precision. As a result, a portion of most microprocessors is often dedicated to hardware

for floating point computation.

Floating-point arithmetic is attractive for the implementation for a variety of

Digital Signal Processing (DSP) applications because it allows the designer and user to

concentrate on the algorithms and architecture without worrying about numerical issues

such as scaling, overflow, and underflow. In the past, many DSP applications used fixed-

point arithmetic due to the high cost (in time, silicon area and power consumption) of

floating-point arithmetic units.

Unlike fixed-point arithmetic, each computer company developed their own

standards for the floating-point representation in electronic machines until the IEEE-754

standard was introduced in 1985 [1]. This is a standard which is widely used to represent

floating-point numbers in electronic machines. The IEEE committee is working on a

revised version called the IEEE 754r [2].

2

In the realization of modern general purpose processors, fused floating-point

multiply-add units [3]- [5] have become attractive since their delay and silicon area is

often less than that of a discrete floating-point multiplier followed by a floating-point

adder. Further, the accuracy is improved by the fused implementation since rounding is

performed only once (after the full precision multiplication and addition).

1.2 Problem Description

In order to build special purpose DSP hardware in today’s systems on chips

(SOC), many floating point primitives such as floating-point adders and floating-point

multipliers are needed.

In many of the DSP algorithms (specifically, fast Fourier transforms), the addition

and subtraction results for the same two operands are needed at the same time. Currently

this can be done with a single adder and two cycles (one for the add and one for the

subtract) or with two discrete adders and one cycle.

The sum of the products of two pairs of operands is a very frequent operation

which needs two floating-point multiplies and one floating-point add to be performed. To

perform these operations there are two approaches in use currently. The first approach is

to use a single floating-point multiplier and a single floating-point adder with storage to

perform the operations in sequential fashion, which is attractive from an area and power

perspective, but too slow for many applications. The other common approach is to use

two multipliers and an adder to perform these operations in parallel. This provides the

needed speed, however, the high area and power consumption have a major impact on

many applications such as mobile and handheld devices.

To address the need for performing operations that are frequently encountered in

DSP’s at high speeds while saving power and area, this proposal extends the

consideration of fused floating-point arithmetic by introducing two new fused floating-

point primitive units; a fused floating-point add-subtract (fused AS) unit that performs

addition and subtraction on the same two operands simultaneously, and a fused two-term

3

dot-product (fused DP) unit that multiplies two sets of operands and adds the products as

a single operation.

For the fused add-subtract unit, much of the complexity of a discrete

implementation comes from the need to compare the operand exponents and align the

significands prior to the add and the subtract operations. For the fused implementation,

sharing the comparison and alignment greatly reduces the complexity. The delay and the

arithmetic results are exactly the same as if the operations are performed in the

conventional manner with a floating-point adder and a separate floating-point subtracter.

In this case, the fused implementation is substantially smaller than the discrete parallel

equivalent.

For the fused two-term dot-product unit, the two products do not need to be

normalized and rounded (only the sum is normalized and rounded) which reduces the

delay, the silicon area and the power consumption.

The fast Fourier transform is a case in point; it uses a butterfly operation. For

radix-2 decimation in frequency implementation, the butterfly operation consists of the

complex addition and subtraction of two inputs followed by a complex multiplication.

For a radix-4 decimation in time implementation, the butterfly operation consists of three

complex multiplications followed by four complex additions and subtractions of the same

four pairs of data. Both of these butterfly operations can be implemented with the two

fused primitives, a fused two-term dot-product and a fused add-subtract unit. The result is

faster butterfly execution using smaller silicon area and consuming less power.

To show the benefits of the proposed units, this dissertation presents the

implementations of four units: a conventional floating-point adder (FPA), a conventional

floating-point multiplier (FPM), a floating-point fused add-subtract (fused AS) unit, and a

floating-point fused dot-product (fused DP) unit. Then radix-2 and radix-4 FFT

butterflies are realized using both the conventional floating-point primitives (FPA and

FPM), and using the new primitives (fused AS and fused DP units). The implementation

results for the designs that use the new primitives show substantial speedup with a

savings in area and power.

4

1.3 Dissertation Overview

This dissertation is divided into several chapters. This chapter presented a brief

overview of the problem targeted by this research. The second chapter covers some

related background materials including computer arithmetic, fixed-point representation

hardware implementation issues, a brief description of the IEEE-754 standard, an

overview of the fused multiply-add (FMA) operation, the use of fused arithmetic in

previous research and the FFT. The third chapter presents the research methodology and

implementation flow. The fourth, fifth, and sixth chapters present four new fused

floating-point units that are IEEE-754 single-precision compliant for the speed up of DSP

algorithms:

o Floating-Point Fused Add-Subtract Unit

o Floating-Point Fused Two-Term Dot-Product Unit

o Floating-Point Radix-2 FFT Fused Butterfly Unit

o Floating-Point Radix-4 FFT Fused Butterfly Unit

Finally, the seventh chapter presents conclusions and suggestions for future work.

5

Chapter 2 Background

This chapter covers some related materials necessary for the understanding of the

following chapters. It introduces fixed-point computer arithmetic and its limitations, the

IEEE-754 floating-point standard, and current usage of combined (fused) arithmetic

functions, presents a quick introduction to the Fast Fourier Transform (FFT), floating-

point and FFT error analysis.

2.1 Computer Arithmetic Overview

Computer arithmetic is concerned with the hardware realization of mathematical

formulas, algorithms, and complex models from a theoretical world. Hardware functions

calculate arithmetic’s in both fixed-point and scientific notations (floating-point) [6].

2.2 Fixed-Point Representation Overview and Implementation

Issues

In computing, a fixed-point number representation is a real data type for a number

that has a fixed number of digits after (and sometimes before) the radix point. Fixed-point

number representations are much less complicated (and less computationally demanding)

than floating point number representations [6]. Fixed-point numbers are useful for

representing fractional values, usually in base 2, when the executing processor has no

floating point unit (FPU) or if fixed-point provides improved performance or accuracy for

the application at hand [7].

A fixed-point number may be written as I.F, where I represents the integer part, '.'

is the radix point, and F represents the fractional part. In binary fixed-point numbers,

each magnitude bit represents a power of two, while each fractional bit represents an

inverse power of two [7].

6

2.2.1. Fixed-Point Precision Loss and Overflow
Information may be lost in fixed point operations when they produce results that

have more bits than the operands [8]. For instance, the result of fixed point multiplication

could potentially have as many bits as the sum of the number of bits in the two operands.

In order to fit the result into the same number of bits as the operands, the answer must be

rounded or truncated [9]. If this is the case, the choice of which bits to keep is very

important. For instance when multiplying two fixed point numbers with the same format,

with I integer bits, and F fractional bits, the answer could have up to 2*I integer bits, and

2*F fractional bits [9].

Most fixed-point multiplication procedures use the same result format as the

operands. This has the effect of keeping the middle bits; the I least significant integer

bits, and the F most significant fractional bits. Fractional bits below this value represent a

relatively minor precision loss. If any integer bits are lost, however, the value will be

radically inaccurate. This is considered to be an overflow, and needs to be avoided in

embedded calculations [10]- [12].

To show the effect of the number system selection on the error Figure 1 shows a

simulation of an FFT spectrum of a sinusoidal signal using:

o Double-precision floating-point-numbers

o Single-precision floating-point-numbers

o Fixed-point numbers (width = 12, fraction = 10) with no scaling

o Fixed-point numbers (width = 12, fraction = 10) with scaling, where the

intermediate results are shifted right as many times as needed to avoid

overflow. The final answer is multiplied by 2 raised to the power of

number of left shifts needed by scaling to avoid overflow.

The error of the double-precision system is the least; the error of the single-

precision system is intermediate while the error of the fixed-point system is the worst. If

no scaling is used with the fixed-point system, the results are totally wrong.

7

Figure 1. FFT Spectrum Calculation Using: Double Precision Floating-Point, Single
Precision Floating-Point and 12-bit Fixed-Point Without and With Scaling

2.3 An Overview of the IEEE-754 Floating-Point Standard

The IEEE-754 floating-point standard is the most common real numbers

representation in today’s microprocessors, including Intel-based PC's, Macintoshes, and

most Unix platforms [13]. IEEE floating point numbers have three basic components: a

sign, an exponent, and a significand. The significand is composed of the fraction and an

implicit leading digit (explained below). The exponent base (2) is implicit and is not

stored [1].

8

Table 1 shows the layout for single (32-bit) precision IEEE standard floating-

point values. The number of bits for each field are shown (the bit position are shown in

square brackets):

Table 1. IEEE-754 Storage Layout [1]

 Sign Exponent Fraction

Single Precision 1 [31] 8 [30-23] 23 [22-00]

The Sign Bit [13]

The sign bit is interpreted as follows: zero denotes a positive number and one

denotes a negative number. Flipping this bit changes the sign of the number.

The Exponent [13]

The exponent is the component of a binary floating-point number that signifies

the integer power to which two is raised in determining the value of the represented

number.

The Significand [13]

The significand also known as the mantissa, represents the precision bits of the

number. In the IEEE standard [1], it is composed of an implicit leading integer one, an

implicit radix point and the fraction bits.

Ranges of Floating-Point Numbers [1]

The range of single precision IEEE floating point numbers is 1262−± to
23 127(2 2) 2−± − × which is approximately equal to 3810−± to 383 10± × .

Special Values [13]

The IEEE standard reserves exponent field values of all zeros and all ones to

denote special values in the floating-point scheme.

9

Zero [13]

Zero is not directly representable in the normal format, due to the assumption of a

leading one (it is necessary to specify a true zero significand to yield a value of zero).

Zero is a special value denoted with an exponent field of all zeros and a fraction of zero.

Note that -0 and +0 are distinct values, though they both compare as equal.

Infinity [13]

The values +infinity and -infinity are denoted with an exponent of all ones and a

fraction of zero. The sign bit distinguishes between negative infinity and positive infinity.

Being able to denote infinity as a specific value is useful because it allows operations to

continue past overflow situations. Operations with infinite values are well defined in

IEEE floating point standard.

Not a Number [13]

The value NaN (Not a Number) is used to represent a value that does not

represent a real number. NaN's are represented by an exponent of all ones and a non-zero

fraction.

Denormalized [13]

If the exponent is all zeros, but the fraction is non zero then the value is

denormalized. The units designed in this research do not support denormalized numbers.

2.4 An Overview of the Floating-Point Fused Multiply-Add (FMA)

Operation [14]

In 1990, IBM introduced the floating-point fused multiply-add operation on the

RISC System 6000 (IBM RS/6000) chip [3], [4]. IBM recognized that several advanced

applications, specifically those with dot products, are routinely performed with a floating-

point multiplication, A x B, immediately followed by a floating-point addition, (A x B)

result + C, ad infinitum. To increase the performance of these applications, a new unit

was created that merged a discrete floating-point multiplier and floating-point adder into

10

a single hardware block—the floating-point fused multiply-add unit. This floating-point

arithmetic unit, shown in Figure 2, executes the equation (A x B) + C in a single

instruction.

Figure 2. Block Diagram of a Floating-point Fused Multiply-add Unit, reduced
from [14]

With the continued demand for 3D graphics, multimedia applications, and new

advanced processing algorithms, the IEEE has included the fused multiply-add operation

into the 754-2008 standard [2]. Even though the fused multiply-add architecture has

troublesome latencies, high power consumption, and a performance degradation with

single-instruction execution, more and more microprocessor designs implement floating-

point fused multiply-add units in their silicon [4]- [5].

2.5 Other Fused Arithmetic Units

For floating-point applications apart from the FMA, no publications or patents

were found which use fusing. There are many patents which merge multiple fixed-point

arithmetic functions to speed up or reduce the area and power consumption, but since this

research is concerned with floating-point, these are not relevant.

11

2.6 The Fast Fourier Transform (FFT) Algorithm

Fourier analysis is a family of mathematical techniques, based on decomposing

signals into sinusoids. The Discrete Fourier Transform (DFT) is used with digitized

signals [15]. The DFT of a sequence of N complex numbers is given by:

21

0

, 0,..., 1
iN kn

N
k n

n

X x e k N
π−

=

= = −∑ (1)

The Discrete Fourier Transform (DFT), can be calculated in many ways, such as

solving simultaneous linear equations or correlation. The Fast Fourier Transform (FFT) is

an efficient method for calculating the DFT. While it produces the same result as the

other approaches, it often reduces the computation time by a factor of ten or more for

large sequences [15].

There are two flavors of the FFT algorithm; decimation in time (DIT) where the

time domain sequence is split into even and odd parts for processing, or decimation in

frequency (DIF) where the frequency components are divided into even and odd parts for

processing. The DIF and DIT are both equivalent algorithms and it is straight forward to

convert from one to the other. Both the DIT and DIF can accept inputs either in order or

in bit reversed order to produce bit reversed or in order outputs, respectively.

Figure 3 shows the radix-2 DIT FFT and DIF FFT butterflies, which are the basic

computation element in performing the FFT. Figure 4 shows the data flow diagram for

performing a radix-2 DIT FFT, while Figure 5 shows the data flow diagram for

performing a radix-2 DIF FFT.

The X0 - X8 are the input data samples, k
NW are the twiddle factors for butterflies

which is given by equation:

2 / 2 2cos sink i k N
N

k kW e i
N N

π π π− ⎛ ⎞ ⎛ ⎞= = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (2)

12

Figure 3. Radix-2 Butterflies

0X

4X

2X

6X

1X

5X

3X

7X

0Y

2Y

3Y
4Y

1Y

5Y

6Y

7Y

Figure 4. 8-point Radix-2 DIT FFT

0X

4X

2X

6X

1X

5X

3X

7X

2Y

3Y

4Y

1Y

5Y

6Y

7Y

0Y

Figure 5. 8-point Radix-2 DIF FFT

13

2.7 Summary

In this chapter, the necessary background material needed to understand the

remaining chapters was briefly covered, including a quick introduction to fixed-

point and floating point number systems. The fast Fourier transform was

introduced as well.

14

Chapter 3 Research Approach and Design
Methodology

This chapter presents the research approach and the overall design flow and

methodology. The general approach of performing the research is presented, then the

design and implementation flow. The tools that were used are also described.

3.1 Research Approach

The goal of this research is to investigate the application of fused floating-point

arithmetic for speeding up digital signal processing algorithms. Figure 6 shows the

general steps taken for performing this research work. The process is summarized as:

1. Study literature about IEEE floating-point arithmetic concepts, architectures, and

implementations.

2. Study literature about fused multiply-add arithmetic unit concepts, architectures

and implementations.

3. Create the architecture for the fused add-subtract and fused dot-product units.

4. Prove the concept by modeling the primitive units (FPA, FPM, fused DP and

fused AS) in Matlab high-level language.

5. Design the primitive units (FPA, FPM, fused DP and fused AS) in Verilog RTL

language.

6. Verify the units using System Verilog testbenches and employing random

stimulus generation techniques to cover a wide input range.

7. Implement the units using ASIC standard cells implementation flows where the

units are mapped to a standard-cell library using synthesis, placement and routing

tools.

8. Perform timing analysis on the implementations using a static timing analysis

tool with extracted parasitics data from the laid-out designs.

15

Figure 6. Research Flow

16

9. Perform power consumption estimation at the gate level using the extracted

parasitics from the laid-out designs.

10. Utilize primitive units RTL models (from step 5) to build RTL models for the

following units:

o Serial Add-Subtract (serial AS) Unit

o Parallel Add-Subtract (parallel AS) Unit

o Serial Dot-Product (serial DP) Unit

o Parallel Dot-Product (parallel DP) Unit

o Discrete Radix-2 FFT Butterfly (discrete radix-2 BF) unit

o Discrete Radix-4 FFT Butterfly (discrete radix-4 BF) unit

o Fused Radix-2 FFT Butterfly (fused radix-2 BF) unit

o Fused Radix-4 FFT Butterfly (fused radix-4 BF) unit

11. Repeat steps 6 to 9 for all the derived units listed in step 10.

3.2 High-Level Modeling

The primitive units (FPA, FPM, fused DP and fused AS), and the derived units

(serial AS, parallel AS, serial DP, parallel DP, discrete radix-2 BF, discrete radix-4 BF,

fused radix-2 BF, and fused discrete radix-4 BF) architectural concepts were initially

verified by modeling the functionality using the Matlab high level modeling language.

High-level modeling has many merits:

• It is a fast way to verify the functionality of the new concept.

• It is easy and fast to evaluate different architectures and fine tuning of

specific architecture design options.

• A high-level model is used as an abstract model of the design to generate

input stimulus and expected results.

17

3.3 RTL Digital Design Using Verilog HDL

The primitive units (FPA, FPM, fused DP and fused AS), and the derived units

(serial AS, parallel AS, serial DP, parallel DP, discrete radix-2 BF, discrete radix-4 BF,

fused radix-2 BF, and fused discrete radix-4 BF) were designed from scratch using

Verilog hardware description language (Verilog HDL). The functionality of the HDL

designs was verified using simulation and was mapped into a technology-specific gate

level implementation using synthesis.

The Verilog language is one of the IEEE standardized and widely used HDL

languages [16]- [18]. Verilog HDL can be used to model the system at abstract level

where the functionality is modeled using high-level constructs or at the register transfer

level (RTL) where the register boundaries are explicitly defined including the

combinational logic enclosed by them or at the structural-level where the connection

between logic gates (primitives) is described. The RTL level (used to model the

primitive units and the derived units) is best for describing the micro-architecture and

controlling the implementation details for a synthesize flow. Figure 7 shows an example

Verilog model for a 2:1 multiplexer using Verilog HDL structural and RTL descriptions.

18

Figure 7. Verilog HDL for a 2:1 Multiplexer

3.4 The EDA Tools Used in The ASIC Implementation Flow

To implement the primitive units (FPA, FPM, fused DP and fused AS), and all of

the derived units (serial AS, parallel AS, serial DP, parallel DP, discrete radix-2 BF,

discrete radix-4 BF, fused radix-2 BF, and fused discrete radix-4 BF) the following

electronic design aiding (EDA) tools were used:

MathWorks Matlab [36]: Matlab is a high-level modeling tool, and a

programming language. It enables fast modeling of complex algorithms in an easy high

level language. Matlab was used to verify the concepts and to build abstract models for

19

the primitive units and the derived units designs. Also it was used to generate the

reference output for the error analysis experiments.

Synopsys VCS Simulator [37]: Synopsys VCS is an RTL functional simulator

that can simulate Verilog, VHDL, and System C models. It has advanced capabilities that

aid in the verification and test coverage of the simulated designs. It was used to verify the

functionality of the primitive units and the derived units RTL models.

Synopsys Design Compiler Ultra (DC Ultra) [37]: Synopsys DC Ultra is a

hardware synthesis tool. It maps an RTL hardware description model using a standard

cell library into a gate-level netlist that describes the design at the structural

(connectivity) level. The output design is composed of cells that exist in the standard-cell

library. The synthesis tool output generation is controlled by area, delay and power

constraints. DC ultra was used to map the RTL models of the primitive units, and the

derived units to gate-level netlists based on the standard-cells that are available in the

technology libraries.

Synopsys Integrated Circuit Compiler (ICC) [37]: Synopsys IC Compiler is a

physical implementation tool that takes a gate-level netlist, a floorplan and the standard-

cell library as inputs, and generates a placed-and-routed design. It includes floor-

planning, placement, clock tree synthesis, routing, metal fill and chip-finishing. ICC is

widely adopted and recognized as the industry standard for physical implementation. The

output is influenced by placement, area, power and delay constraints that control the

generated design. ICC was used to place and route the primitive units and the derived

units.

Synopsys PrimeTime (PT) [37]: Synopsys PrimeTime is the industry standard

tool for timing sign-off. It delivers accurate timing signoff analysis that helps pinpoint

timing problems prior to tapeout. A gate-level netlist, timing constraints, extracted

parsitics and standard-cell libraries, are needed to sign-off the timing of the placed-and-

routed design. PT was used to sign-off the timing of the primitive, and the derived units.

Synopsys Star-RCXT [37]: Synopsys Star-RCXT is an RLC parasitic extraction

tool. The tool inputs are the process definition file, and a physical placed-and-routed

20

design database (Synopsys Milkyway physical design database or the industry standard

GDSII physical design database). Star-RCXT extracts the input design gate and wire

parasitics that are necessary to perform gate-level timing analysis, and simulation based

gate-level power estimation. Star-RCXT was used to extract the parasitics of the laid-out

designs of the primitive units and the derived units.

Synopsys PrimePower [37]: Synopsys PrimePower is a chip-level dynamic

power analysis tool. The tool inputs are a gate-level netlist, a switching activity file

(SAIF) generated from the gate-level simulation, a standard-cell technology library and

the extracted RC parasitics. PrimePower estimates the power consumption of the design

based on the switching activity of the nets and the power-characterization data of the

standard-cell library. PrimePower is integrated within Synopsys DC Ultra and ICC and

can be invoked from inside these tools. PrimePower was used to estimate the power

consumption of the primitive units and the derived units.

Synopsys Formality [37]: Synopsys Formality checks the equivalence of two

versions of the design (i.e., RTL model versus gate-level model) to prove that they are

functionally equivalent using static (non-vector based) techniques.

3.5 Functional Verification Using Simulation

The correct functional behavior of the primitive units (FPA, FPM, fused DP and

fused AS) and the derived units (serial AS, parallel AS, serial DP, parallel DP, discrete

radix-2 BF, discrete radix-4 BF, fused radix-2 BF, and fused radix-4 BF) was verified by

comparing the simulation output of the RTL models to an abstract model that was created

using System Verilog high level constructs. Figure 8 shows the flow used for performing

functional verification for the primitive and the derived units. A System Verilog random

stimulus generator is used to generate valid inputs that cover the full range of IEEE

single-precision numbers. The stimulus is then applied to the RTL and the abstract

models simultaneously and the outputs are compared. If the outputs are equal the

simulation passes for the executed testcase, otherwise it fails.

21

 Figure 8. Functional Verification Using Simulation

3.6 ASIC Implementation Flow

At present there are three digital chip design flows in use in the industry:

• Circuit Design Flow: In this flow all of the circuits are designed at the

transistor level. The functionality and timing are verified using transistor

level simulation tools (SPICE). This flow typically produces the best

area, speed, and the lowest power consumption. However, this flow is

slow and requires large number of specialized circuit design and layout

engineers. A design engineer using this flow can handle few thousand

transistors (hundreds of gates) needing few months to produce the final

design. At present this flow is used by the chip industry to design high-

22

density, timing and area-critical circuits such as: SRAM memories and

register files and some very specialized arithmetic circuits.

• Hand placement Flow: In this flow a technology process dependent

standard-cell library is used. The design RTL model is mapped to gates

by design engineers and hand-placed and optimized. The functionality

and timing are verified using gate-level level simulation and analysis

tools. This flow typically produce good area, speed and low-power

consumption. A design engineer can handle few thousands gates designs

needing few months to produce the final design. However, this flow is

not suitable for designs incorporating millions of gates. Moreover, this

flow typically requires large teams and has a relatively slow time to

market. At present, this flow is used by the chip industry to design

performance-critical blocks, such as: high speed arithmetic blocks or

data-path elements.

• Automatic Synthesis, Place and Route Flow (ASIC design flow): In this

flow a technology process dependent standard-cell library is used. The

RTL models are mapped to gates, placed, and routed using gate-level

EDA tools. The results from this flow depend on the quality and

sophistication level of the EDA tools used, as well as the design

constraints provided to these tools. Using typical industry-standard EDA

tools result in area, delay and power consumption close to those of the

hand-placement approach. This design flow produces the fastest time to

market. A design engineer using this flow can “design” blocks with sizes

that can go up to hundreds of thousands of gates. At present, this flow is

used in the industry to design most of the chips, as long as it meets the

allocated area, delay and power consumption budgets.

The ASIC design flow was used to implement the primitive units (FPA, FPM,

fused DP and fused AS), and the derived units (serial AS, parallel AS, serial DP, parallel

23

DP, discrete radix-2 BF, discrete radix-4 BF, fused radix-2 BF, and fused discrete radix-4

BF).

The ASIC design flow used in this research is composed of two main sub-flows:

the implementation sub-flow, and the analysis sub-flow.

The implementation sub-flow (shown in Figure 9) includes the following

steps:

1. Synthesis: The Verilog RTL models of the primitive and the derived

units are mapped into a technology specific library (described in

Section 3.7) using the Synopsys Ultra DC synthesis tool. The output of

this step is a gate level netlist that is used by the placement and routing

tool.

2. Floorplan: The floorplan defines the design size, the pre-placement of

macros, and the placement of the primary input/output ports. For a full

chip design, floorplanning of any sub-block is based on the placement

of the sub-block relative to other sub-blocks, and its connectivity. For

the primitive and derived units designed in this dissertation, the

following floorplan methodology was used:

o Each unit was implemented as a standalone block that can be

used as part of a full-chip design.

o The size of each unit (i.e., floorplan size) was a design

parameter. It was forced to be 135% of the area of a first pass

implementation using the Synopsys ICC minimum physical

constraints (MPC) mode. As a result, the overall utilization was

~75% of the total unit (floorplan) area. The remaining 25% of

the floorplan area was left for routing - a reasonable value for

ASIC design flows in the industry.

24

Figure 9. Implementation Sub-Flow

25

o The placement of primary inputs and outputs was automatic.

The tool was allowed to choose the initial placement using the

MPC mode. In addition, after the first pass of design

placement, an automatic inputs/outputs placement optimization

is performed.

o The inputs/outputs on the top and bottom edges of the design

were placed on metal layer three.

o The inputs/outputs on the right and left sides of the design were

placed on metal layer four.

3. Placement: In this step, placement of the gate-level netlist (of the

primitive and derived units) is done in the floorplan generated in step 2

using Synopsys ICC. Synopsys ICC optimizes the placement based

on the design constraints to achieve the placement with lowest overall

design area, power consumption and best timing.

4. Routing: A nine metal layers process (described in Section 3.7) was

used to route the primitive and derived units. The placed designs of the

primitive and derived units were routed using Synopsys ICC. The

lower 6 process metal layers were used for routing, and the remaining

top 3 metal layers were left to be used by chip-level power and clock

routing (this is an industry standard practice for similar designs). The

goal of this step is to produce a 100% connected design, with no

process design rules violations (i.e., DRC clean), and to generate a

layout versus schematic equivalent (i.e., LVS clean) design.

26

The analysis sub-flow (shown in Figure 10) includes the following steps:

1. RC parasitics extraction using Synopsys Star-RCXT: The base

technology libraries information (described in Section 3.7), in addition

to the routing of the primitive and derived designs are used by

Synopsys Star-RCXT to extract wiring resistance, capacitance, and the

gates input/output parasitics.

2. Static timing analysis (STA) using Synopsys PT: For all of the

primitive and derived units, the gate-level netlist, the design

constraints, and the extracted RC parasitics (from step 1 above) are

used by synopsys PT to verify timing and performance targets. The

maximum possible operating frequency is determined in this step.

Also the designs are verified to be free from any setup, hold and/or

other timing violations that may limit the operating frequency.

3. Power analysis using Synopsys PrimePower: The RC parasitics, the

gate-level netlist, and a carfully designed stimulus are used by

Synopsys PrimePower to estimate the power consumed by the

primitive and the derived unit designs. The stimulus used needs to be

designed carefully to make sure it represents the mainstream usage of

the design, otherwise the power estimates will be skewed toward an

unrealistic usage pattern (the power estimation flow is described in

detail in Section 3.6.1).

4. Formal Verification using Synopsys Formality: The RTL model is

compared to the final gate level netlist to verify that they are

functionally equivalent.

27

FPA, FPM, Fused AS, Fused DP, Serial AS, Parallel AS, Serial DP,
Parallel DP, Discrete radix-2 BF, Discrete Radix-4 BF, Fused Radix-2
BF and Fused Radix-4 BF

RC
Extraction Tool

(Synopsys Star-RCXT)

A

B

OU
T

Static Timing
Analyzer

(Synopsys PT)

...0010010101…

...0011010101...

...0001010101...

Power Analysis Tool
(Synopsys

PrimePower)

Figure 10. Analysis Sub-Flow

28

3.6.1. Dynamic Power Estimation Detailed Methodology
To estimate the power consumption of the circuits of the primitive units (FPA,

FPM, fused DP and fused AS), and the power consumption of the circuits of the derived

units (serial AS, parallel AS, serial DP, parallel DP, discrete radix-2 BF, discrete radix-4

BF, fused radix-2 BF, and fused discrete radix-4 BF) the following methodology was

used:

1. Stimulus selection: The following factors were considered to design the

input stimulus :

a. Input data switching rate and switching distribution over time

determines the power consumption [42].

b. There is no universal model or method for selecting the input

stimulus that works for different type of circuits under different

usage scenarios. Many publications have proposed a statistical

model for determining the appropriate switching rate for

combinational and sequential circuits [42]- [43]. According to [42]

for combinational designs a switching rate around 40% and

switching distribution (percentage of the simulation time where the

signals are changing states) around 40% is acceptable for

evaluating the power consumption of combinational logic such as

ALU’s and other arithmetic circuits.

c. The FPA, the FPM, the fused DP and fused AS primitive units, and

the parallel AS, the parallel DP, the discrete radix-2 BF, the

discrete radix-4 BF, the fused radix-2 BF, and the fused discrete

radix-4 BF derived units are purely combinational. The serial AS

and the serial DP derived units are dominated (more than 87% is

combinational) by combinational logic. As a result, in this research

an input pattern was used with the input bits switching twice every

29

four cycles (50% data switching rate and 50% switching

distribution) which is slightly more aggressive than the

recommended range in [42]- [43].

d. This research goal is not to determine the absolute power

consumption figures (determined largely by the input pattern) for

the primitive and the derived units. This research is concerned with

comparing the relative power consumption of the various design

options of the primitive and the derived units.

e. The primitive and the derived units were driven with the same

input patterns which leads to accurate relative power consumption

comparison because all the equivalent design units were exposed

to the same input patterns.

2. Stimulus generation using Matlab:

a. A large set of 100,000 random numbers that covers the full range

of IEEE single precision floating-point numbers was generated.

b. The “RANDC” function was used to generate these numbers

which guaranties that the same number will not repeat.

c. The randomly generated numbers were studied using Matlab, and

each individual bit of the generated numbers changed states from

0 1 0 every 4 cycles.

3. Simulation using Synopsys VCS:

a. For each of the primitive and derived design units, the gate level

netlist was simulated using the stimulus generated in step 1 above.

b. A value change dump file was produced from the simulation and

converted to a “SAIF” file (it contains information about the toggle

rate per time unit for each signal in the design, in addition to the

static probability of having the signal stuck at logic one).

4. Power estimation using Synopsys PrimePower:

30

a. For each of the primitive and derived design units, the “SAIF” file

generated in step 3, the gate level netlist, and the placed-and-routed

design extracted parasitics were used by Synopsys PrimePower to

estimate the average consumed power.

b. The average power consumption was used as the design unit

average power consumption value. It is reported in Chapters 4 to 6

of this dissertation.

3.7 The 45nm CMOS Technology Process Used to Implement the

Primitive and the Derived Units

In a semiconductor manufacturing process, many processes and dozens of steps

are needed to create an integrated circuit [38]. Some of the important characteristics of a

semiconductor manufacturing process are:

• Channel-Length of the minimum size transistor that can be fabricated, the

smaller the transistor size the faster, lower power and more dense chips

could be produced. Technology processes are tagged by this parameter, for

example a 45nm technology process is capable of fabricating transistors

with a channel length of 45nm.

• Number of Interconnect layers: The more transistors that are packed on a

chip, the more interconnect layers that are needed to connect them.

Modern processes use from 7-11 metal layers depending on the target

application.

• Target application: Technology processes at certain technology node have

many flavors based on the target products. For high speed

microprocessors, a high-performance process is used that is usually tuned

to create the maximum possible transistor speed (usually at the expense of

extra power consumption). For mobile applications, a low-leakage, and

low-power process is used, the process is tuned to sacrifice speed and

performance to produce lower power designs.

31

• Bulk CMOS manufacturing technology and silicon on insulator (SOI)

manufacturing technology are the industry dominant technologies for

digital designs.

An industrial 45nm technology process was used in this research to deign the

primitive units (FPA, FPM, fused DP and fused AS), and the derived units (serial AS,

parallel AS, serial DP, parallel DP, discrete radix-2 BF, discrete radix-4 BF, fused radix-2

BF, and fused discrete radix-4 BF), The technology process that was used has the

following characteristics:

• A 45nm high-performance industry-standard semiconductor

manufacturing process.

• A 9-metal layer process, with the lower six metal layers used for routing

the units and the top three layers reserved for the clock routing and power

distribution.

• A bulk CMOS process.

• The standard-cells used to map the primitive and the derived units RTL

models to gate-level netlists are designed for high-performance

applications.

3.8 Notes About ASIC Standard-Cell Libraries and ASIC Flows

Application-specific integrated circuits (ASIC) are integrated circuits designed for

a specific application. The ASIC design flow includes the design of a large set of

standard-cells for a specific technology node. This standard-cell library is designed

according to the target product and could have many flavors, such as: low-power cells

with slower speed, or fast cells at the expense of higher power consumption.

The standard-cells are characterized at the transistor level for power, delay,

transition time and noise. The information that describes the standard-cell library (i.e.,

32

functionality, area, power, transition time, delay, etc.) is listed in databases are used by

the synthesis tools to map the RTL models to the appropriate gates.

A standard-cell library typically includes many logic gates: NAND gates, NOR

gates, X-OR gates, inverters, multiplexers, latches, flops-flops, and much more. Many

versions of the same gate (NANDx1, NANDx2, NANDx3, …etc…) are usually included

based on the intended drive capability. For example, a technology-library may have eight

logic NAND gates that differ in their output transistor sizes, gate area, gate delay, input

and output transition time and their current drive capabilities. The quality of the standard-

cell library determines the quality of the synthesized design.

The design area, delay and power constraints, as well as the floorplan (macro

placement and input/output port locations) influence the selection of certain standard-

cells to implement a function. RTL design mapping is a function of the technology-

library, floorplan, and implementation constraints. Changing the floorplan may result in a

smaller (or bigger) size of the overall pure silicon gates used to realize a design due to a

reduction (or increase) in number of gates, and/or wire lengths that a gate needs to drive.

33

Chapter 4 Floating-Point Fused Add-Subtract
Unit

A floating-point fused add-subtract unit is presented that performs simultaneous

floating-point add and subtract operations on a common pair of single-precision floating-

point data in about the same time that it takes to perform a single addition with a

conventional floating-point adder. This unit uses the IEEE-754 single-precision format

and supports all rounding modes. When placed and routed in the automatic synthesis

ASIC implementation design flow described in Section 3.6 and the 45nm standard cell

libraries described in Section 3.7, the fused add-subtract unit is only about 56% larger

than a conventional floating-point adder, and consumes 50% more power than the

conventional floating-point adder.

4.1 Introduction

 This chapter introduces the floating-point fused add-subtract unit. The design and

implementation results using the automatic synthesis ASIC implementation design flow

described in Section 3.6 and the industry standard 45nm process described in Section 3.7

are presented.

In many DSP algorithms both the sum and difference of a pair of operands are

needed for subsequent processing. This is required, for example, in computation of the

FFT butterfly operation. In traditional floating-point hardware these operations may be

performed in a serial fashion which limits the throughput. The use of a fused add-subtract

(fused AS) unit accelerates the butterfly operation. Alternatively, the addition and

subtraction may be performed in parallel with two floating-point adders which is

expensive (in silicon area and in power consumption).

This chapter presents the implementation of the floating-point fused add-subtract

unit shown in Figure 11. The fused add-subtract unit performs the following operations:

34

x a b
y a b

= +
= −

 (3)

Figure 11. The Floating-Point Fused Add-Subtract Unit Concept

4.2 Floating-Point Adder Design

The most frequent floating-point operations are addition and subtraction, and

together they account for 55% of the total floating-point operations in typical scientific

applications [22]. Both addition and subtraction use the floating-point adder. Techniques

to reduce the latency and increase the throughput of the floating-point adder have

therefore been the subject of much previous research [23]- [28].

Due to its many inherently serial component operations, floating-point addition

can have a longer latency than floating-point multiplication. Pipelining is a commonly

used method to increase the throughput of the adder, but it does not reduce the latency.

Previous research has provided algorithms to reduce the latency by performing some of

the operations in parallel. This parallelism is achieved at the cost of additional hardware.

The minimum achievable latency using such algorithms in high clock-rate

microprocessors has been three cycles, with a throughput of one add per cycle.

4.2.1. Basic Floating-Point Addition Algorithm
The straightforward basic floating-point addition algorithm requires the most

serial operations. It has the following steps [22]:

35

1. Exponent subtraction: Perform subtraction of the exponents to form the

absolute difference a bE E d− = .

2. Alignment: Right shift the significand of the smaller operand by d bits.

The larger exponent is denoted fE .

3. Significand addition: Perform addition or subtraction according to the

effective operation. The result is a function of the op-code and the signs of

the operands.

4. Conversion: Convert a negative significand result to a sign-magnitude

representation. The conversion requires a two's complement operation,

including an addition step.

5. Leading-one detection: Determine the amount of left shift needed in the

case of subtraction yielding cancellation. For addition, determine whether

or not a 1-bit right shift is required. Then priority-encode the result to

drive the normalizing shifter.

6. Normalization: Normalize the significand and update fE appropriately.

7. Rounding: Round the final result by conditionally adding 1-ulp as required

by the IEEE standard. If rounding causes an overflow, perform a 1-bit

right shift and increment fE .

The latency of this algorithm is large, due to its many long length components.

The steps describing the latency of this algorithm are listed in Table 2. Figure 12 shows

the block diagram of an architecture that realizes this algorithm.

36

Table 2. Basic Floating-Point Adder Algorithm Latency

Step Operation

Latency Step
Dependency

1 Exponent subtraction 1 Exponent subtract delay None

2
Right shift smaller
operand significand

1 Significand full-length shift delay Step 1

3
Significand addition

1 Full-length significand addition delay Step 2

4
Sign-magnitude
conversion

1 Full-length significand addition delay Step 3

5 Leading-one detection 1 Leading-one detection delay Step 4

6
Normalization

1 Full-length shift operation delay Steps 1 and 4

7
Rounding

1 Full-length significand addition delay
+ 1-bit right shift

Steps 1, 5 and
6

37

Figure 12. A Conventional Floating-Point Adder

4.3 Fused Add-Subtract Unit Design Approachs

There are two design approaches that can be taken with discrete floating-point

adders to realize the add-subtract function. These are the parallel implementation shown

in Figure 13 where two adders operate in parallel (one adding and one subtracting) and

the serial implementation shown in Figure 14 where a single adder is used twice (once

adding and once subtracting) with the same operands.

38

a b+
a

b

a b−

Figure 13. Conventional Parallel Realization of an Add-Subtract Unit

b

a
a b+

a b−

Figure 14. Conventional Serial Realization of an Add-Subtract Unit

In a parallel conventional implementation of the fused add-subtract (such as that

shown in Figure 13) two floating-point adders are used to perform the operation. This

approach is fast, however, the area and power overhead is large because two floating-

point add/subtract units are used.

In a serial conventional implementation of the fused add-subtract (such as that

shown in Figure 14) one floating-point adder/subtracter is used to perform the operation

in addition to a storage element to store the addition or subtraction result. This approach

is very efficient in terms of area. However, due to the serial execution of both operations,

the time needed to get both results is twice the time needed by the parallel approach. Also

since a storage element is used, it adds slightly to the area and power overhead.

39

Moreover, power is consumed for a longer time due to executing the add/sub operation

twice.

The architecture of the fused add-subtract unit is derived from the floating-point

add unit. The exponent difference, significand shift and exponent adjustment functions

can be performed once with a single set of hardware, with the results shared by both the

add and the subtract operations. New add and normalize blocks are needed for the new

subtract operation. Figure 15 shows the architecture of the fused add-subtract unit, the

blocks with white background are the same blocks used for a single floating-point add

operation. The blocks with green background are additional blocks used to perform the

subtract operation, and the blocks with yellow background are similar to the floating-

point add blocks, but with extended functionality to calculate the sign and exponent for

the new subtract operation.

Figure 15. Floating-Point Fused Add-Subtract Unit

40

4.4 Implementation Results

To study the merits of the fused add-subtract unit, the following units were

designed:

• Basic Floating-Point Adder (FPA)

• Serial Floating-Point Add-Subtract Unit (serial AS)

• Parallel Floating-Point Add-Subtract Unit (parallel AS)

• Floating-Point Fused Add-Subtract Unit (fused AS)

This section presents the implementation results of the above units using the

implementation flow described in Chapter 3.

4.4.1. Floating-Point Adder (FPA) Unit
The basic floating-point adder (FPA) was designed using the architecture of the

adder shown previously in Figure 12. The basic floating-point adder is composed of the

following main sub-circuits:

Align Circuit: This circuit (shown in Figure 16) detects the difference between

the exponents of the two operands and aligns the significands of the two operands for

addition or subtraction by shifting the smaller significand by an amount proportional to

the difference between the exponents of the two operands.

41

Compare the Exponents

Shifter

A B
Significand B

Significand A

Shift Amount

Larger
Exponent

Smaller
Operand
Aligned

Significand
Shift

Amount

MUX2:1

Larger
Operand

Significand

MUX2:1

Figure 16. Align Circuit

Significand Add/Subtract Circuit: This circuit (shown in Figure 17) performs

the addition or subtraction operation of the significands. It detects the effective operation

based on the signs of the two operands and the intended operation. It also generates guard

and presticky bits that aid in the proper rounding of the final results.

42

Figure 17. Significand Adder Circuit

Normalization Circuit: This circuit (shown in Figure 18) detects the number of

leading zeros in the significand adder result, and left-shifts the sum to have a leading one

in the left-most digit for IEEE floating-number format compliance. It also generates

exponent correction value, as well as round and sticky bits that are used by the rounding

circuit.

Figure 18. Normalization Circuit

43

Rounding Circuit: This circuit (shown in Figure 19) rounds the final result

according to the selected IEEE rounding mode.

Figure 19. Rounding Circuit

Finalization Circuit: This circuit (shown in Figure 20) assembles the final sign,

exponent and final significand to generate the results. Also, it generates overflow, zero

and other special flags required by IEEE compliant adders.

Figure 20. Finalization Circuit

44

4.4.1.1. Timing
The FPA was implemented using the automatic synthesis ASIC implementation

design flow described in Section 3.6 and the 45nm standard cell libraries described in

Section 3.7. The placed-and-routed FPA computes a floating-point addition in 1.64ns.

The critical timing path of the FPA is detailed in Table 3.

Table 3. Floating-Point Adder Critical Timing Path

Sub-Circuit Latency (ns)
 Input External Delay 0.1
Allign 0.4
Significand Adder 0.2
Normalizer 0.4
Rounder 0.2
Assembler 0.2
Output External Delay 0.1
Total 1.64

4.4.1.2. Place and Route Results
Figure 21 shows the placed-and-routed FPA. The FPA occupies an area of 72μm

by 72μm with 75% utilization for gates/circuits, and the remaining 25% for routing.

45

Figure 21. Floating-Point Adder Unit Routing

Figure 22 shows the FPA placement. The major FPA sub-circuits are colored

differently and the critical timing path is highlighted.

46

Figure 22. Floating-Point Adder Unit Placement with the Critical Timing Path
Highlighted

The pure gates area of the FPA is 3,811μm2. Table 4 lists the area distribution of

the main FPA sub-circuits.

47

Table 4. Floating-Point Adder Area Distribution

Unit Area (μm2) %
Align 1,404 36.8
Significand Adder 738 19.4
Normalizer 989 26
Rounder 317 8.3
Assembler 321 8.4
Special Case Detection 42 1.1
Total 3,811 100

4.4.1.3. Power and Energy Estimation Results
Table 5 lists the power consumption of the FPA sub-circuits using the power

estimation methodology described in Section 3.6.1.

Table 5. Floating-Point Adder Total Power Distribution

Unit Average Power (mW) %
Align 2.53 37.9
Significand Adder 1.76 26.4
Normalizer 1.52 22.8
Rounder 0.47 7.1
Assembler 0.43 6.5
Special Case Detection 0.04 0.7
Total 6.76 100.00

The energy consumption of the FPA unit can be calculated by multiplying the

delay of the FPA unit by its power consumption which results in 11.5 pJ.

4.4.2. Serial Add-Subtract (Serial AS) Unit
Figure 23 shows the micro-architecture of the serial add-subtract unit (serial AS).

One adder/subtracter is used to perform the addition and subtraction operations in serial

fashion. Serial add and subtract operations need at least two clock cycles. A finite state

machine controls the operation of the serial AS unit.

48

b

a
a b+

a b−

Figure 23. Serial AS Micro-Architecture

4.4.2.1. Timing
The serial AS was implemented using the automatic synthesis ASIC

implementation design flow described in Section 3.6 and the 45nm standard cell libraries

described in Section 3.7. The placed-and-routed design computes a floating-point

addition or subtraction in 1.7ns. The critical timing path of the serial AS is detailed in

Table 6. To generate the addition and the subtraction results of the two operands, two

clock cycles are needed totaling 3.42ns.

49

Table 6. Serial AS Critical Timing Path

Sub-Circuit Latency (ns)
Input External Delay 0.1
Adder 1.4
Register Loading 0.1
Output External Delay 0.1
Total 1.7

4.4.2.2. Place and Route Results
Figure 24 shows the placed-and-routed serial AS unit. The serial AS occupies an

area of 77μm by 77μm with 75% utilization for gates/circuits and the remaining 25% for

routing.

50

Figure 24. Serial AS Unit Routing

Figure 25 shows the serial AS placement. The major serial AS sub-circuits are

colored differently and the critical timing path is highlighted.

51

Figure 25. Serial AS Unit Placement with Critical Path Highlighted

The pure gates area of the serial AS is 4,344μm2. Table 7 lists the area distribution

of the serial AS main sub-circuits.

52

Table 7. Serial AS Area Distribution

Unit Area (μm2) %
Adder 3,740 86
Add Result Register 302 7
Subtract Result Register 302 7
Total 4,344 100

4.4.2.3. Power and Energy Estimation Results
Table 8 lists the power consumption of the serial AS sub-circuits using the power

estimation methodology described in Section 3.6.1.

Table 8. Serial AS Average Power Distribution

Unit Power (mW) %
Adder 6.26 91.2
Add Result Register 0.30 4.4
Subtract Result Register 0.30 4.4
Total 6.86 100

The energy consumption of the serial AS unit can be calculated by multiplying

the delay of the serial AS unit by its power consumption which results in 24.3 pJ.

4.4.3. Parallel Add-Subtract (Parallel AS) Unit
The parallel AS unit was implemented using the architecture shown previously in

Figure 13. Two floating-point adders operating in parallel are used to realize the

simultaneous add/subtract function.

4.4.3.1. Timing
The parallel AS unit was implemented using the automatic synthesis ASIC

implementation design flow described in Section 3.6 and the 45nm standard cell libraries

described in Section 3.7. The placed-and-routed design computes a simultaneous

53

floating-point addition and subtraction in 1.7ns. The critical timing path of the parallel

AS is detailed in Table 9.

Table 9. Parallel AS Critical Timing Path

Sub-Circuit Latency (ns)
Input External Delay 0.1
Adder/Subtracter 1.5
Output External Delay 0.1
Total 1.7

4.4.3.2. Place and Route Results
Figure 24 shows the placed-and-routed parallel AS unit. The parallel AS unit

occupies an area of 100μm by 100μm with 75% utilization for gates/circuits and the

remaining 25% for routing.

54

Figure 26. Parallel AS Unit Routing

Figure 27 shows the parallel AS placement. The major parallel AS sub-circuits

are colored differently and the critical timing path is highlighted.

55

Figure 27. Parallel AS Unit Placement with Critical Timing Path Highlighted

The pure gates area of the parallel AS is 7,456 μm2. Table 10 lists the area

distribution of the parallel AS main sub-circuits.

Table 10. Parallel AS Area Distribution

Unit Area (μm2) %
Adder 3,787 50.8
Subtracter 3,664 49.1
Total 7,456 100

56

4.4.3.3. Power and Energy Estimation Results
Table 11 lists the power consumption of the parallel AS sub-circuits using the

power estimation methodology described in Section 3.6.1.

Table 11. Parallel AS Total Power Distribution

Unit Average Power (mW) %
adder 6.41 50
subtracter 6.40 50
Total 12.83 100.00

The energy consumption of the parallel AS unit can be calculated by multiplying

the delay of the parallel AS unit by its power consumption which results in 22.2 pJ.

4.4.4. Fused Add-Subtract (Fused AS) Unit
The fused AS unit was implemented using the architecture shown previously in

Figure 15. This design starts from the basic FPA architecture shown previously in Figure

12. Since the same two operands are being added and subtracted, the exponent circuit can

be shared between the add and subtract sub-functions. Two units are duplicated: the

significands adder to perform the simultaneous significand subtract, as well as the

rounding and the normalization circuits necessary to round and normalize the significand

subtract result. The rest of the fused AS sub-circuits’ functionality are exactly the same as

the FPA equivalent sub-circuits.

4.4.4.1. Timing
The fused AS unit was implemented using the automatic synthesis ASIC

implementation design flow described in Section 3.6 and the 45nm standard cell libraries

described in Section 3.7. The placed-and-routed design computes a simultaneous

57

floating-point addition and subtraction in 1.72ns. The critical timing path of the fused AS

is detailed in Table 12.

Table 12. Fused AS Critical Timing Path

Sub-Circuit Latency (ns)
Input External Delay 0.1
Aligner 0.3

Significand Add/Subtract 0.3
Normalizer 0.4
Rounder 0.3
Assembler 0.2
Output External Delay 0.1
Total 1.72

4.4.4.2. Place and Route Results
Figure 28 shows the placed-and-routed fused AS unit. The fused AS unit

occupies an area of 90μm by 90μm with 75% utilization for gates/circuits and the

remaining 25% for routing.

58

Figure 28. Fused AS Unit Routing

Figure 29 shows the fused AS placement. The major fused AS sub-circuits are

colored differently and the critical timing path is highlighted.

59

Figure 29. Fused AS Unit Placement with Critical Timing Path Highlighted

The fused AS pure gates area is 5,947μm2. Table 13 lists the area distribution of

the main fused AS sub-circuits.

60

Table 13. Fused AS Area Distribution

Unit Area (μm2) %
Aligner 1,482 24.9
Significand Add/Subtract 1,138 19.1
Adder Normalizer 988 16.6
Subtracter Normalizer 936 15.7
Add/Subtract Rounder 643 10.8
Special Case Detection 42 0.7
Assembler 713 12
Miscellaneous 4.6 0.08
Total 5,947 100

4.4.4.3. Power and Energy Estimation Results
Table 14 lists the power consumption of the fused AS sub-circuits using the

power estimation methodology described in Section 3.6.1.

Table 14. Fused AS Average Power Distribution

Unit Average Power (mW) %
Aligner 2.74 27
Significand Add/Subtract 2.43 23.9
Adder Normalizer 1.60 15.8
Subtracter Normalizer 1.45 14.3
Add/Subtract Rounder 0.96 9.4
Special Case Detection 0.046 0.4
Assembler 0.92 9.1
Miscellaneous 0.006 0.054
Total 10.15 100

The energy consumption of the fused AS unit can be calculated by multiplying

the delay of the fused AS unit by its power consumption which results in 17.2 pJ.

61

4.5 Add-Subtract Unit Implementation Results Summary

This chapter presents the implementation results of a floating-point fused add-

subtract (fused AS) unit in addition to the implementation results of a floating-point

adder, a serial AS, and a parallel AS. The following tables and figures summarize the

implementation results for the units presented in this chapter by using the floating-point

adder’s delay, area, power, and energy numbers as the reference.

Table 15. Add-Subtract Unit Delay Comparison for Performing Simultaneous Add
and Subtract on Two Operands

Unit Delay (ns) % of FPA
FPA 1.64 100
Serial AS 3.42 208
Fused AS 1.72 105
Parallel AS 1.70 104

0

50

100

150

200

250

% of FPA

% of FPA 100 208 105 104

FPA Serial AS Fused AS Parallel AS

Figure 30. Add-Subtract Unit Delay Comparison

62

Table 16. Add-Subtract Unit Area Comparison

Unit Area (μm2) % of FPA
FPA 3,811 100
Serial AS 4,344 114
Fused AS 5,947 156
Parallel AS 7,456 196

0

50

100

150

200

250

% of FPA

% of FPA 100 114 156 196

FPA Serial AS Fused AS Parallel AS

Figure 31. Add-Subtract Unit Area Comparison

63

Table 17. Add-Subtract Unit Power Consumption Comparison

Unit Average Power (mW) % of FPA
FPA 6.76 100
Serial AS 6.86 102
Fused AS 10.15 150
Parallel AS 12.83 190

0

20

40

60

80

100

120

140

160

180

200

% of FPA

% of FPA 100 102 150 190

FPA Serial AS Fused AS Parallel AS

Figure 32. Add-Subtract Unit Power Consumption Comparison

64

Table 18. Add-Subtract Unit Energy Consumption Comparison

Unit Energy (pJ) % of FPA
FPA 11.5 100
Serial AS 24.3 208
Fused AS 17.2 150
Parallel AS 22.2 193

0

50

100

150

200

250

% of FPA

% of FPA 100 208 150 193

FPA Serial AS Fused AS Parallel AS

Figure 33. Add-Subtract Unit Energy Consumption Comparison

The fused AS unit achieves the performance level of a parallel AS while showing

a significant savings in area. The area overhead of the fused AS over the serial AS is

32%. The power consumption of the fused AS unit is midway between the serial and the

parallel approaches, with 48% overhead over the serial approach. The energy consumed

by the fused AS unit is 30% less than the serial approach and 22% less than the energy

consumed by the parallel approach which makes the fused AS unit more attractive for

battery operated devices.

The fused AS unit has been introduced, and the implementation results (using a

bulk-CMOS mobile SOC 45nm process) were published in [33].

65

Chapter 5 Floating-Point Fused Two-Term Dot-
Product Unit

This chapter presents a floating-point fused two-term dot-product unit. This unit

performs single-precision floating-point multiplication and addition operations on two

pairs of data in a period of time that is only 150% greater than that required for a single

conventional floating-point multiplication. This unit uses the IEEE-754 single-precision

format and supports all rounding modes. When placed-and-routed in a 45nm process

(described in Section 3.7), the fused dot-product unit occupies about 70% of the area

needed to implement a parallel dot-product unit using conventional floating-point adders

and multipliers implemented with the same process. The speed of the fused dot-product is

about 27% faster than the conventional parallel approach. The numerical result of the

fused unit is more accurate because only one rounding operation is used, versus three for

the conventional approach.

5.1 Introduction

 Similar to the operations performed by the fused multiply-add unit, in many DSP

algorithms, calculating the sum of the products of two sets of operands (i.e., a two-term

dot-product) is a frequently used operation. For example, this is required in the

computation of the FFT and DCT butterfly operations.

In a traditional implementation, the dot-product is performed with two

multiplications and an addition. These operations may be performed in a serial fashion

(as shown in Figure 34) by utilizing a single adder and a single multiplier with

multiplexers and registers for intermediate results. It has low throughput, has a small area

and low power consumption. Alternatively, the multiplications may be performed in

parallel with two independent multipliers followed by an adder (as shown in Figure 35).

This alternative (parallel approach) is expensive (in silicon area and in power

66

consumption). It is, however, appropriate for applications where maximizing the

throughput is more important than minimizing the area or the power consumption.

Figure 34. Two-Term Dot-Product Serial Implementation

Figure 35. Two-Term Dot-Product Parallel Implementation

This chapter introduces a floating-point fused two-term dot-product (fused DP)

unit. The floating-point fused two-term dot-product unit shown in Figure 36 performs the

following operation:

()y a b c d= × ± × (4)

67

Figure 36. The Fused DP Unit Concept

The numerical operation performed by this unit can be used to improve many

DSP algorithms. Specifically, multiplication of complex numbers benefits greatly from

the fused DP unit as shown in the following equation:

() () () ()re im re im re im re re im im re im re imY y jy a ja b jb a b a b j a b b a= + = + × + = − + + (5)

In an implementation with discrete floating-point adders and multipliers six

operations are required (two adders and four multipliers) as shown in Figure 37.

Alternatively two fused two-term dot-product units can be used: the three elements with

green background are realized with one fused two-term dot-product unit, and the three

elements with blue background are realized with a second fused two-term dot-product

unit.

68

rea
reb

imy

ima
imb

rey

rea
imb

ima
reb

Figure 37. Complex Multiplier Computation

5.2 Floating-Point Multiplier Design

 The largest logical block in a floating-point unit is the floating-point multiplier. It

usually takes two input operands and provides a multiplied and rounded result. The unit

itself, when compared to a floating-point adder, has a simpler overall architecture, but

contains complex components that occupy large area and use many routing resources

 [29].

The floating-point multiplier by itself has fast performance with low latency;

however, many designs add an array of complex arithmetic functions beyond simple

multiplication to the floating-point multiplier in order to process transcendental, divide,

and square root algorithms that use ROM tables and to perform multiplicative iterations.

Also, if the multiplier is designed to accept a denormal input then the area and delay will

be increased substantially. For this research a basic floating-point multiplier is used.

69

5.2.1. Basic Floating-Point Multiplier Algorithm
 Floating point multiplication consists of an exclusive-OR of the signs, an

addition of the exponents and a multiplication of the significands. The significand

multiplication is an unsigned fixed-point multiplication. The most appropriate multipliers

for the significand multiplication are the tree multipliers [30], due to their high

performance. The typical structure of a tree multiplier [30] consists of:

1. Formation of the binary bit products with an array of AND gates.

2. A partial product reduction tree. This can be either a Wallace tree or

Dadda reduction that reduces the bit products to two words.

3. A final carry propagate adder, that sums the two words to generate the

product. If the input numbers have m-bit sizes, then the final propagate

adder has a bit less than 2•m-bit size.

However, because of operating with IEEE 754 floating point numbers, several

challenges appear [31]:

1. The significands are numbers in the [1,2) interval. Consequently, the result

is a number in the [1,4) interval. Therefore, a normalization step (a one position right-

shift of the significand, followed by an increment of the exponent) may be needed.

2. After the significand multiplication, a double-size significand will result.

Thus, a rounding step is needed. This rounding step may require a plus-one addition to

the significand of the result. Therefore a large carry propagate adder is required.

Several methods for latency reduction in the rounding step have been developed,

such as the ES algorithm, the YZ algorithm and the QTF algorithm [31].

The basic floating-point multiplier architecture is shown in Figure 38.The unit

begins processing data in a radix-8 Booth encoded multiplication tree. The multiplier tree

result passes to a combined add/round stage, where the carry/save product is combined

and rounded. The round and post normalize stage outputs the rounded result and the

70

floating-point multiplication is complete. Both the sign and the exponent datapaths run in

parallel to the significand processing.

Figure 38. Basic Floating-Point Multiplier

71

5.3 Fused DP Unit Design Approach

 The floating-point fused two-term dot-product unit architecture is derived from

the architecture of a floating-point fused multiplier-adder. A conventional single path

floating-point fused multiplier-adder architecture is shown in Figure 39 [14].

An exponent compare circuit, a second multiplier reduction tree, and a 4:2 CSA

adder are added to convert the fused multiplier-adder into the fused two-term dot-product

unit shown in Figure 40. The fused DP unit can perform either the addition or subtraction

of the products by complementing the outputs of one of multiplier trees for subtraction.

The exponent compare circuit for the floating-point fused two-term dot-product

unit is based on the exponent compare circuit for the FMA that is shown in Figure 41.

The fused DP exponent compare circuit shown in Figure 42 has an extra exponent adder

(an 8-bit adder for single-precision IEEE floating-point) to add the exponents of inputs C

and D. The fused DP unit extra exponent adder is working in parallel with the FMA unit

original exponent adder so the delay of the fused DP unit exponent compare circuit will

be almost equal to the delay of the FMA exponent compare circuit.

The leading zero anticipator (LZA) circuit concept is shown in Figure 43. It is

composed of a pre-encoder and a leading zero detector [39]- [40]. The LZA circuit is

necessary for normalization of the result especially for fused DP unit subtraction

operations with massive cancellation (the result includes many leading zeros). The

normalize and the round blocks of the fused DP unit are similar to the FPA unit

normalization and rounding circuits (shown previously in Figures 19 and 20,

respectively).

The alignment circuit of the floating-point fused two-term dot-product unit is

based on the alignment circuit of the FMA unit. The fused DP alignment circuit shown in

Figure 44 has two wide alignment shifter sub-blocks. This provides the sum and carry

outputs of the “C*D” significand multiplication result. The sum and carry outputs of

“C*D” significand multiplication are aligned to the outputs of “A*B” significand

multiplication according to the relative magnitude of “A*B” versus “C*D” as shown in

Figure 44.

72

Figure 39. Conventional Floating-Point FMA unit [14]

73

Figure 40. Floating-Point Fused Two-Term Dot-Product Unit

74

Figure 41. Floating-Point Fused Multiply-Add Unit Exponent Compare Circuit

75

Figure 42. Floating-Point Fused Two-Term Dot-Product Unit Exponent Compare
Circuit

y(n) y(n-1) y(n-2) y(n-3) … y(0) Shift Count
1 x x x x x 0
0 1 x x x x 1
0 0 1 x x x 2
0 0 0 1 x x 3
… … … … … … …

Figure 43. LZA Circuit Concept [39]

76

Figure 44. Floating-Point Fused Two-Term Dot-Product Unit Alignment Circuit

5.4 Dot-Product Unit Implementation Results

To show the merits of the floating-point two-term fused dot-product unit, the

following units were designed:

• Basic Floating-Point Multiplier (FPM) Unit

• Serial Floating-Point Dot-Product (serial DP) Unit

• Parallel Floating-Point Dot-Product (parallel DP) Unit

• Fused Floating-Point Dot-Product (fused DP) Unit

This chapter presents the implementation results for the above units using the

automatic synthesis ASIC implementation design flow described in Section 3.6 and the

45nm standard cell libraries described in Section 3.7.

77

5.4.1. Floating-point Multiplier (FPM) Unit
The basic floating-point multiplier shown in Figure 38. Most of the sub-circuits of

the FPM unit are similar to the sub-circuits of the FPA unit that has been presented in

detail in Chapter 4. The additional FPM sub-circuits are the exponent adder and the

significand multiplier. The exponent adder is an eight bit adder that adds the exponent

fields of the two operands to generate the unrounded result exponent. The micro-

architecture of the significand multiplier is shown in Figure 45. The multiplier was

implemented using Booth radix-8 recoding followed by Wallace reduction. The Booth

encoder shown in Table 19 reduces the number of partial products. The partial product

addition is performed with a Wallace carry save compression tree.

One-hot encoding is used in forming the partial products to avoid the overhead of

performing full 2’s complement needed by Booth negative encoded digits. In the one-hot

encoding scheme if the most significant bit of the Booth encoded digit associated with a

the partial product is one then that partial product is complemented and the “one” that is

needed to be added to produce a correct 2’s complement result is appended to the lower

bits of the next partial product [41]. Figure 46 shows the partial products summation

alignment with the one-hot encoding scheme.

78

 Figure 45. Radix-8 Booth Significand Multiplier

79

Table 19. Radix-8 Booth Encoding Table

Positive Input Negative Input
Input data Encoded Digit Input data Encoded Digit

0000 0 1000 -4x
0001 +1x 1001 -3x
0010 +1x 1010 -3x
0011 +2x 1011 -2x
0100 +2x 1100 -2x
0101 +3x 1101 -1x
0110 +3x 1110 -1x
0111 +4x 1111 0

Figure 46. Partial Product Summation Tree (Using One Hot Encoding)

5.4.1.1. Timing
The basic floating-point multiplier was implemented using the automatic

synthesis ASIC implementation design flow described in Section 3.6 and the 45nm

standard cell libraries described in Section 3.7. The placed-and-routed design computes a

80

floating-point multiplication in 1.80ns, and the critical timing path of the FPM is detailed

in Table 20.

Table 20. Floating-Point Multiplier Critical Timing Path

Sub-Circuit Latency (ns)
Input External Delay 0.1
Significand Preprocessor 0.28

Significand Multiplier 0.47
Exponent Processor 0.2
Normalizer 0.15
Shifter 0.2
Rounder 0.2
Assembler 0.1
Output External Delay 0.1
Total 1.80

5.4.1.2. Place and Route Results
Figure 47 shows the placed-and-routed FPM unit. The FPM unit occupies an area

of 113μm by 113μm, with 75% utilization for gates/circuits and the remaining 25% for

routing.

81

Figure 47. FPM Unit Routing

Figure 48 shows the FPM unit placement. The major FPM sub-circuits are

colored differently and the critical timing path is highlighted.

82

Figure 48. FPM Unit Placement with the Critical Timing Path Highlighted

The FPM pure gates area is 9,482μm2. Table 21 lists the area distribution of the

FPM main sub-circuits.

83

Table 21. FPM Area Distribution

Unit Area (μm2) %
Special Case Detection 62 0.70
Significand Preprocessor 1,464 15.40
Significand Multiplier 5,617 59.20
Exponent Processor 173 1.80
Normalizer 278 2.90
Shifter 1,185 12.50
Rounder 382 4.00
Flags Generation 13 0.10
Assembler 170 1.80
Miscellaneous 138 1.60
Total 9,482 100.00

5.4.1.3. Power and Energy Estimation Results
Table 22 lists the power consumption of the FPM sub-circuits using the power

estimation methodology described in Section 3.6.1.

Table 22. FPM Unit Average Power Distribution

Unit Power (mW) %
Special Case Detection 0.18 0.83
Significand Preprocessor 3.09 14.04
Significand Multiplier 13.19 59.95
Exponent Processor 0.40 1.82
Normalizer 0.79 3.59
Shifter 3.29 14.95
Rounder 0.62 2.82
Flags Generation 0.02 0.09
Assembler 0.37 1.68
Miscellaneous 0.05 0.23
Total 22.00 100.00

The energy consumption of the FPM unit can be calculated by multiplying the

delay of the FPM unit by its power consumption which results in 39.6 pJ.

84

5.4.2. Floating-point Two-Term Serial Dot-Product (Serial DP)
Unit

Figure 49 shows the micro-architecture of the serial DP. One multiplier and one

adder/subtracter are used to perform the multiplication and addition operations needed by

the dot-product function. A finite state machine controls the operation of the serial DP

unit. To perform the full dot-product operation 3 clock cycles are needed.

Figure 49. Serial DP Micro-Architecture

85

5.4.2.1. Timing
The serial DP was implemented using the automatic synthesis ASIC

implementation design flow described in Section 3.6 and the 45nm standard cell libraries

described in Section 3.7. The placed-and-routed design clock cycle time is 1.81ns as

shown on Table 23. To perform the two-term dot-product operation three cycles are

needed totaling 5.44ns.

Table 23. Serial DP Critical Timing Path

Sub-Circuit Latency (ns)
Input External Delay 0.1
FPM 1.61
Output External Delay 0.1
Total 1.81

5.4.2.2. Serial DP Place and Route Results
Figure 50 shows the placed-and-routed serial DP unit. The serial DP unit occupies

an area of 135μm by 135μm with 75% utilization for gates/circuits and the remaining

25% for routing.

86

Figure 50. Serial DP Unit Routing

Figure 51 shows the serial DP placement. The major serial DP sub-circuits are

colored differently and the critical timing path is highlighted.

87

Figure 51. Serial DP Unit Placement

The serial DP pure gates area is 13,787μm2. Table 24 lists the area distribution of

the serial DP main sub-circuits.

Table 24. Serial DP Unit Area Distribution

Unit Area (μm2) %
FPM 9,351 67.83
FPA 3,836 27.82
Storage Registers 600 4.35
Total 13,787 100.00

88

5.4.2.3. Power and Energy Estimation Results
Table 25 lists the power consumption of the serial DP sub-circuits using the

power estimation methodology described in Section 3.6.1.

Table 25. Serial DP Power Distribution

Unit Average Power (mW) %
FPM 20.34 75.64
FPA 5.55 20.64
Storage Registers 1 3.72
Total 26.89 100.00

The energy consumption of the serial DP unit can be calculated by multiplying

the delay of the serial DP unit by its power consumption which results in 147.0 pJ.

5.4.3. Floating-point Two-Term Parallel Dot-Product (Parallel
DP) Unit

The parallel DP unit was implemented using the architecture shown previously in

Figure 35. Two floating-point multipliers operating in parallel in addition to one floating-

point adder/subtracter are used to realize the dot-product function.

5.4.3.1. Timing
The parallel DP unit was implemented using the automatic synthesis ASIC

implementation design flow described in Section 3.6 and the 45nm standard cell libraries

described in Section 3.7. The placed-and-routed design computes a floating-point dot-

product in 3.23ns. The critical timing path of the parallel DP is detailed in Table 26.

Table 26. Parallel DP Unit Critical Timing Path

Sub-Circuit Latency (ns)
Input External Delay 0.10
FPM 1.57
FPA 1.46
Output External Delay 0.10
Total 3.23

89

5.4.3.2. Place and Route Results
Figure 52 shows the placed-and-routed parallel DP unit. The parallel DP unit

occupies an area of 180μm by 180μm with 75% utilization for gates/circuits and the

remaining 25% for routing.

Figure 52. Parallel DP Unit Routing

Figure 53 shows the parallel DP unit placement. The major parallel DP sub-

circuits are colored differently and the critical timing path is highlighted.

90

Figure 53. Parallel DP Unit Routing

The parallel DP pure gates area is 24,043μm2. Table 27 lists the area distribution

of the parallel DP main sub-circuits.

Table 27. Parallel DP Area Distribution

Unit Area (μm2) %
FPM_1 9,595 39.9
FPM_2 10,313 42.9
FPA 4,135 17.2
Total 24,043 100.0

91

5.4.3.3. Power and Energy Estimation Results
Table 28 lists the power consumption of the parallel DP sub-circuits using the

power estimation methodology described in Section 3.6.1.

Table 28. Parallel DP Unit Average Power Distribution

Unit Average Power (mW) %
FPM_1 16.03 37.82
FPM_2 19.22 45.34
FPA 7.14 16.83
Total 42.39 100

The energy consumption of the parallel DP unit can be calculated by multiplying

the delay of the parallel DP unit by its power consumption which results in 135.7 pJ.

5.4.4. Floating-point Two-Term Fused Dot-Product (Fused DP)
Unit

The fused DP unit is realized using the architecture shown previously in Figure

40. The fused DP unit sub-circuits functionality is the same as the FPA and FPM

equivalent sub-circuits described previously. The major differences are including a

second multiplier to multiply “c*d,” modifying the exponent compare circuit to handle

the 4 exponents as shown in Figure 42, using the new LZA block shown in Figure 43,

and increasing the size of the carry save adder compression tree to accept an extra input.

5.4.4.1. Timing
The fused DP unit was implemented using the automatic synthesis ASIC

implementation design flow described in Section 3.6 and the 45nm standard cell libraries

described in Section 3.7. The placed and routed design computes a floating-point dot-

product in 2.72ns. The critical timing path of the fused DP unit is detailed in Table 29.

92

Table 29. Fused DP Unit Critical Timing Path

Sub-Circuit Latency (ns)
Input External Delay 0.1
Significand Preprocessor 0.33
Significand Multiplier 0.50
Exponent Processor 0.22
FPA 1.47
Output External Delay 0.1
Total 2.72

5.4.4.2. Place and Route Results
Figure 54 shows the placed-and-routed fused DP unit. The fused DP unit occupies

an area of 147μm by 147μm with 75% utilization for gates/circuits and the remaining

25% for routing.

93

Figure 54. Fused DP Unit Routing

Figure 55 shows the fused DP unit placement. The major fused DP unit sub-

circuits are colored differently and the critical timing path is highlighted.

94

Figure 55. Fused DP Unit Placement

The fused DP unit pure gates area is 16,104 μm2. Table 30 lists the area

distribution of the fused DP unit main sub-circuits.

95

Table 30. Fused DP Unit Area Distribution

Unit Area (μm2) %
Special Case Detection A & B 61 0.4
Special Case Detection C & D 55 0.3
Flags Generation 4 0
Preprocess A and B 1,213 7.5
Preprocess C and D 1,189 7.4
Significand AxB Multiplier 4,646 28.8
Significand CxD Multiplier 4,676 29
Exponent AxB Processor 132 0.8
Exponent CxD Processor 150 0.9
CSA 4:2 257 1.6
FPA 3,483 21.6
Total 16,104 100.0

5.4.4.3. Power and Energy Estimation Results
Table 31 lists the power consumption of the fused DP unit sub-circuits using the

power estimation methodology described in Section 3.6.1.

Table 31. Fused DP Unit Power Distribution

Unit Average Power (mW) %
Special Case Detection A & B 0.09 0.27
Special Case Detection C & D 0.10 0.29
Flags Generation 0.00 0.01
Preprocess A and B 2.59 7.64
Preprocess C and D 2.51 7.40
Significand AxB Multiplier 9.45 27.88
Significand CxD Multiplier 9.39 27.70
Exponent AxB Processor 0.26 0.77
Exponent CxD Processor 0.32 0.94
CSA 4:2 0.58 0.91
FPA 7.66 22.60
Miscellaneous 0.98 2.89
Total 33.90 100.00

96

The energy consumption of the fused DP unit can be calculated by multiplying

the delay of the fused DP unit by its power consumption which results in 92.5 pJ.

5.5 Dot-Product Unit Implementation Results Summary

The following tables and figures summarize the implementation results of the dot-

product units implemented in this chapter by using the floating-point multiplier delay,

area, power, and energy figures as the reference. The implementation results (listed in

Table 33 - Table 35) show that the fused DP unit is faster than both of the serial and the

parallel approaches, consumes less power than the parallel approach, and consumes less

energy than either of the conventional approaches.

97

Table 32. Two-Term Dot-Product Unit Delay Comparison

Unit Delay (ns) % of FPM
FPA 1.64 91
FPM 1.80 100
Serial DP 5.44 301
Fused DP 2.72 151
Parallel DP 3.23 179

0

50

100

150

200

250

300

350

% of FPM

% of FPM 91 100 301 151 179

FPA FPM Serial DP Fused DP Parallel DP

Figure 56. Two-Term Dot-Product Unit Delay Comparison

98

Table 33. Two-Term Dot-Product Unit Area Comparison

Unit Area (μm2) % of FPM
FPA 3,811 40
FPM 9,482 100
Serial DP 13,787 145
Fused DP 16,104 170
Parallel DP 24,043 254

0

50

100

150

200

250

300

% of FPM

% of FPM 40 100 145 170 254

FPA FPM Serial DP Fused DP Parallel DP

Figure 57. Two-Term Dot-Product Unit Area Comparison

99

Table 34. Two-Term Dot-Product Unit Power Consumption Comparison

Unit Average Power (mW) % of FPM
FPA 6.76 31
FPM 22.00 100
Serial DP 26.89 122
Fused DP 33.90 154
Parallel DP 42.39 193

0

50

100

150

200

250

% of FPM

% of FPM 31 100 122 154 193

FPA FPM Serial DP Fused DP Parallel DP

Figure 58. Two-Term Dot-Product Unit Power Consumption Comparison

100

Table 35. Two-Term Dot-Product Unit Energy Consumption Comparison

Unit Energy (pJ) % of FPM
FPA 11.5 29
FPM 39.6 100
Serial DP 147.0 370
Fused DP 92.5 233
Parallel DP 135.7 341

0

50

100

150

200

250

300

350

400

% of FPM

% of FPM 29 100 370 233 341

FPA FPM Serial DP Fused DP Parallel DP

Figure 59. Two-Term Dot-Product Unit Energy Consumption Comparison

This chapter presented the implementation results of a floating-point fused dot-

product unit, in addition to the implementation results of a floating-point multiplier, serial

DP and parallel DP.

The fused DP unit achieved better performance than the parallel DP unit, with the

added benefit of being 33% smaller in area. The fused DP unit had an area overhead of

101

25% in comparison to the serial DP. The power consumption of the fused DP unit was

midway between the serial and parallel approach. The energy consumed by the fused DP

unit is 38% less than the serial approach and 32% less than the energy consumed by the

parallel approach which makes the fused DP unit more suitable for battery operated

devices.

The fused DP unit (the implementation results using a Bulk-CMOS, SOC 45nm

process) was introduced to the research community, and published in [34].

Although it is not especially attractive for DSP processors, a system could use this

unit to replace a floating-point adder and a floating-point multiplier. If operands B and D

are set to one, then the unit will perform addition only, with simple data forwarding

multiplexers for operands A and C to skip the multiplication trees. The speed of the

addition will be one multiplexer delay more than a discrete floating-point adder. Also the

fused DP unit could be used to perform multiplication of C * D only by setting A or B

to zero and use data forwarding multiplexers to skip the alignment circuit. In this case,

there will be an extra delay of two multiplexer operations.

102

Chapter 6 Floating-Point Fused Radix-2 and
Radix-4 FFT Butterfly Units

This chapter introduces a floating-point fused radix-2 FFT butterfly unit and a

floating-point fused radix-4 FFT butterfly unit. These units use the IEEE-754 single-

precision format and support all rounding modes. The area of the fused butterfly designs

are smaller than that of conventional butterflies implemented with discrete floating-point

multipliers and adders. The fused butterflies are faster, consume less power and consume

less energy. The fused butterfly designs use fewer rounding operations compared to the

discrete butterflies, thus making the fused butterflies results more accurate.

6.1 Radix-2 FFT Butterfly

The butterfly is the operation that is central to performing the FFT. The speed,

area, power consumption and energy consumption of the butterfly operation have a direct

impact on the overall performance of the FFT. This section investigates the

implementation of the floating-point radix-2 DIF butterfly unit shown in Figure 60. It

performs the following operations:

()
x a b
y a b w
= +
= − ×

 (6)

re ima ja+

re imb jb+

re imw jw+

re imx jx+

re imy jy+

Figure 60. Radix-2 FFT Butterfly Unit Concept

103

6.1.1. Radix-2 Butterfly Design Approach
There are multiple conventional approaches that can be taken for an

implementation of the floating-point radix-2 FFT butterfly function. Two of the

possible implementations are the parallel approach (shown in Figure 61), and the

serial approach (shown in Figure 62). The parallel implementation uses six adders

and four multipliers that operate in parallel. The serial implementation uses two

adders, a multiplier, as well as multiplexers and storage elements to realize the

butterfly function.

rea

reb
rex

i ma

i mb
imx

rea

reb

imw

imy

ima

imb rew

rew

imw rey

Figure 61. Parallel Implementation of Radix-2 Decimation in Frequency FFT
Butterfly Unit

104

,, ,im re im rew w w w⎡ ⎤⎣ ⎦

,, ,re im re imb b b b⎡ ⎤⎣ ⎦

,, ,re im re ima a a a⎡ ⎤⎣ ⎦ [],im rey y
rex

imx
±

±

Figure 62. Serial Implementation of Radix-2 Decimation in Frequency FFT
Butterfly Unit

The parallel approach requires two adds and one multiply operation in series

while the serial approach requires four add operations, followed by 4 multiply

operations followed by two add operations all in series. If pipelined the parallel

approach requires a latency of 3 clock cycles, where the clock cycle is long enough

to perform the slower of a floating-point add or a floating-point multiply. After filing

the pipeline, it can perform another butterfly on each clock cycle. The serial

approach could have the same clock rate as the parallel pipelined approach.

However, the serial approach will require 10 clock cycles per butterfly: 2 clock

cycles to perform the two adds needed to generate rex and imx , 2 clock cycles to

perform the two subtracts needed to generate re rea b− and im ima b− , then 4 cycles to

perform the 4 multiply operations with the twiddle factor’s real and imaginary parts;

and finally 2 cycles to perform the final add and subtract operation needed to

generate rey and imy .

This research introduces another approach based on using the following

floating-point primitives: the fused add-subtract (fused AS) and the fused two-term

dot-product (fused DP) units introduced in Chapters 4 and 5, respectively. As shown

105

in Figure 63, the fused radix-2 FFT butterfly can be realized using two fused add-

subtract units and two fused two-term dot-product units.

rea

reb

rex

ima

imb

imx

imw

imy

rey
rew

rew

imw

Figure 63. Fused Radix-2 Decimation in Frequency FFT Butterfly Unit

6.2 Radix-4 FFT Butterfly

The Radix-4 FFT is an algorithm to perform the FFT where the basic computation

element is a 4-point FFT. The Radix-4 FFT algorithm reduces the number of stages

needed for the FFT algorithm at the expense of more computation in the radix-4 FFT

butterfly unit. The main advantage of the radix-4 FFT, when compared to a same size

radix-2 FFT, is that the radix-4 FFT reduces the number of complex multiplications by

about 25% [32], it also achieves a data rate that is four times the clock rate while the

radix-2 butterfly data rate is only twice the clock rate. Figure 64 shows the operation

106

performed by a radix-4 decimation in time FFT butterfly. A radix-4 FFT butterfly

requires three complex multiplications and eight complex additions.

Figure 64 Radix-4 Decimation in Time FFT Butterfly Unit

Figure 65 shows a parallel realization of the radix-4 FFT butterfly using basic

adders and multipliers. A total of 12 multipliers and 22 adders are needed to

implement a parallel discrete parallel radix-4 FFT butterfly.

107

rea
reb

*

imy

ima
imb

rey

+

-

*

*

*

rea
imb

ima
reb

rea

ima

rey

imy

reb

imb

Figure 65 Parallel Implementation of Radix-4 Decimation in Time FFT Butterfly
Unit

The fused primitives fused AS and fused DP can be used to realize the radix-

4 FFT butterfly. Figure 66 shows a parallel realization of the radix-4 FFT butterfly

using fused AS and fused DP primitives. A total of six fused DP units and eight

fused AS units are needed to implement the parallel radix-4 FFT butterfly.

108

rea

ima

re rea b+

r eb

imb

re rea b−

im ima b+

im ima b−

1_ reY

3_ reY

1_ imY

3_ imY

2 _ reY

4_ reY

2 _ imY

4 _ imY

Figure 66 Fused Radix-4 Decimation in Time FFT Butterfly Unit

6.3 Butterfly Unit Implementation Results

To show the merits of using the fused AS and fused DP primitives in the

realization of the FFT butterflies, the following units were designed:

• Floating-point discrete parallel radix-2 FFT butterfly unit: basic floating

point adders and floating-point multipliers were used to realize this unit’s

design (as shown in Figure 61).

109

• Floating-point fused radix-2 FFT butterfly unit: the fused AS and fused

DP primitives presented in Chapters 4 and 5, respectively, were used to

realize this design (as shown in Figure 63).

• Floating-point discrete parallel radix-4 FFT butterfly unit: basic floating

point adders and floating-point multipliers were used to realize this unit’s

design (as shown in Figure 65).

• Floating-point fused radix-4 FFT butterfly unit: the fused AS and fused

DP primitives presented in Chapters 4 and 5, respectively, were used to

realize this design (as shown in Figure 66).

This section presents the implementation results of the above units using the

45nm standard cell libraries and the implementation flow presented in Section 3.6.

6.3.1. Floating-point Discrete Parallel Radix-2 FFT Butterfly
The discrete parallel radix-2 butterfly unit was realized using the architecture

shown in Figure 61. The discrete parallel radix-2 butterfly unit building blocks are the

FPA’s and FPM’s introduced in Chapters 4 and 5.

6.3.1.1. Timing
The discrete parallel radix-2 butterfly unit was implemented using the automatic

synthesis ASIC implementation design flow described in Section 3.6 and the 45nm

standard cell libraries described in Section 3.7. The placed and routed design performs

the radix-2 butterfly function in 4.60ns. The critical timing path of the discrete parallel

radix-2 butterfly unit is detailed in Table 36.

110

Table 36. Floating-Point Discrete Parallel Radix-2 FFT Butterfly Critical Timing
Path

Sub-Circuit Latency (ns)
Input External Delay 0.10
FPA_3 1.45
FPM_3 1.61
FPA_5 1.44
Output External Delay 0.10
Total 4.70

6.3.1.2. Place and Route Results
Figure 54 shows the placed-and-routed discrete parallel radix-2 butterfly unit. The

discrete parallel radix-2 butterfly unit occupies an area of 313μm by 313μm with a 75%

utilization for gates/circuits and the remaining 25% for routing.

111

Figure 67. Floating-Point Discrete Parallel Radix-2 FFT Butterfly Unit Routing

Figure 55 shows the discrete parallel radix-2 butterfly unit placement. The major

discrete parallel radix-2 butterfly unit sub-circuits are colored differently and the critical

timing path is highlighted.

112

Figure 68. Floating-Point Discrete Parallel Radix-2 FFT Butterfly Unit Placement

The discrete parallel radix-2 butterfly unit pure gate area is 72,572 μm2. Table 37

lists the area distribution of the discrete parallel radix-2 butterfly unit main sub-circuits.

113

Table 37. Floating-Point Discrete Parallel Radix-2 FFT Butterfly Unit Area
Distribution

6.3.1.3. Power and Energy Estimation Results
Table 38 lists the power consumption of the discrete parallel radix-2 butterfly

unit’s sub-circuits using the power estimation methodology described in Section 3.6.1.

Table 38. Floating-Point Discrete Parallel Radix-2 FFT Butterfly Unit Power
Distribution

Unit Power (mW) %
fpa_1 5.7 5.5
fpa_2 6.1 5.9
fpa_3 5.8 5.6
fpa_4 5.9 5.7
fpa_5 7.1 6.9
fpa_6 6.9 6.7
fpm_1 15.2 14.7
fpm_2 15.2 14.7
fpm_3 17.3 16.8
fpm_4 16.9 16.4
misc. 1.1 1.1
Total 103.2 100.0

Unit Area (μm2) %
fpa_1 3,424 4.7
fpa_2 4,100 5.6
fpa_3 3,503 4.8
fpa_4 3,691 5.1
fpa_5 4,890 6.7
fpa_6 4,721 6.5
fpm_1 10,995 15.2
fpm_2 11,003 15.2
fpm_3 12,984 17.9
fpm_4 12,850 17.7
misc. 411 0.6
Total 72,572 100.0

114

The energy consumption of the discrete parallel Radix-2 FFT Butterfly unit can

be calculated by multiplying the delay of the discrete parallel Radix-2 FFT Butterfly unit

by its power consumption which results in 485.0 pJ.

6.3.2. Floating-point Fused Radix-2 FFT Butterfly Unit
The fused radix-2 FFT butterfly unit was realized using the architecture shown

previously in Figure 63. The fused radix-2 FFT butterfly sub-circuits are the fused AS

and the fused DP primitives introduced in Chapters 4 and 5, respectively.

6.3.2.1. Timing
The fused radix-2 FFT butterfly was implemented using 45nm standard cell

libraries, and the implementation flow presented in Chapter 3. The placed-and-routed

design performs the floating-point radix-2 butterfly function in 4.0ns. The critical timing

path of the fused radix-2 FFT butterfly is listed in Table 39.

Table 39. Floating-Point Radix-2 Fused Butterfly Critical Timing Path

Sub-Circuit Latency (ns)
Input External Delay 0.10
Fused AS_1 1.4
Fused DP_1 2.42
Output External Delay 0.10
Total 4.0

6.3.2.2. Place and Route Results
Figure 69 shows the placed-and-routed fused radix-2 FFT butterfly unit. The

fused radix-2 FFT butterfly unit occupies an area of 253μm by 253μm with 75%

utilization for gates/circuits and the remaining 25% for routing.

115

Figure 69. Floating-Point Fused Radix-2 Butterfly Unit Routing

Figure 70 shows the fused radix-2 FFT butterfly unit placement. The major fused

radix-2 FFT butterfly unit sub-circuits are colored differently and the critical timing path

is highlighted.

116

Figure 70. Floating-Point Fused Radix-2 Butterfly Unit Placement

The fused radix-2 FFT butterfly unit pure gates area is 47,489 μm2. Table 40 lists

the area distribution of the fused radix-2 FFT butterfly unit main sub-circuits.

117

Table 40. Floating-Point Radix-2 Fused Butterfly Unit Area Distribution

Unit Area (μm2) %
Fused AS_1 5,654 11.9
Fused AS_2 5,829 12.3
Fused DP_1 17,926 37.7
Fused DP_2 17,825 37.5
Miscellaneous 255 0.5
Total 47,489 100.0

6.3.2.3. Power and Energy Estimation Results
Table 41 lists the power consumption of the fused radix-2 FFT butterfly unit sub-

circuits using the power estimation methodology described in Section 3.6.1.

Table 41. Floating-Point Radix-2 Fused Butterfly Unit Power Distribution

Unit Average Power (mW) %
Fused AS_1 7.8 12.70
Fused AS_2 7.9 12.90
Fused DP_1 22.5 36.70
Fused DP_2 22.5 36.70
Miscellaneous 0.7 1.07
Total 61.5 100.00

The energy consumption of the fused Radix-2 Butterfly unit can be calculated by

multiplying the delay of the fused Radix-2 Butterfly unit by its power consumption which

results in 246.0 pJ.

6.3.3. Floating-point Discrete Parallel Radix-4 FFT Butterfly Unit
The discrete parallel radix-4 FFT butterfly unit was realized using the architecture

shown previously in Figure 65. The discrete parallel radix-4 FFT butterfly unit building

blocks are the FPA’s and FPM’s introduced in Chapters 4 and 5, respectively.

118

6.3.3.1. Timing
The discrete parallel radix-4 FFT butterfly unit was implemented using the

automatic synthesis ASIC implementation design flow described in Section 3.6 and the

45nm standard cell libraries described in Section 3.7. The placed–and-routed design

performs the floating-point radix-4 FFT butterfly function in 6.9ns. The critical timing

path of the discrete parallel radix-4 FFT butterfly unit is detailed in Table 42.

Table 42. Floating-Point Discrete Parallel Radix-4 FFT Butterfly Critical Timing
Path

Sub-Circuit Latency (ns)
Input External Delay 0.10
CMUL_1 3.53
CADD_1_1 1.56
CADD_2_1 1.61
Output External Delay 0.10
Total 6.90

6.3.3.2. Place and Route Results
Figure 71 shows the placed-and-routed discrete parallel radix-4 FFT butterfly

unit. The discrete parallel radix-4 FFT butterfly unit occupies an area of 581μm by

581μm with 75% utilization for gates/circuits and the remaining 25% for routing.

119

Figure 71. Floating-Point Discrete Parallel Radix-4 FFT Butterfly Unit Routing

Figure 72 shows the discrete parallel radix-4 FFT butterfly unit placement. The

major discrete parallel radix-4 FFT butterfly unit sub-circuits are colored differently and

the critical timing path is highlighted.

120

Figure 72. Floating-Point Discrete Parallel Radix-4 FFT Butterfly Unit Placement

The discrete parallel radix-4 FFT butterfly unit pure gates area is 250,099 μm2.

Table 43 lists the area distribution of the discrete parallel radix-4 FFT butterfly unit main

sub-circuits.

121

Table 43. Floating-Point Radix-4 Discrete Parallel FFT Butterfly Unit Area
Distribution

Unit Area (μm2) %
cmul1 57,767 23.1
cmul2 55,609 22.2
cmul3 58,457 23.4
cadd_1_1 9,379 3.8
cadd_1_2 8,731 3.5
cadd_1_3 9,768 3.9
cadd_1_4 9,710 3.9
cadd_2_1 9,898 4.0
cadd_2_2 9,666 3.9
cadd_2_3 9,647 3.9
cadd_2_4 9,494 3.8
Miscellaneous 1,973 0.8
Total 250,099 100.0

6.3.3.3. Power and Energy Estimation Results
Table 44 lists the power consumption of the discrete parallel radix-4 FFT butterfly

unit’s sub-circuits using the power estimation methodology described in Section 3.6.1.

Table 44. Floating-Point Radix-4 Discrete Parallel FFT Butterfly Unit Power
Distribution

Unit Power (mW) %
cmul1 71.1 23.5
cmul2 67.6 22.4
cmul3 71.0 23.5
cadd_1_1 10.9 3.6
cadd_1_2 10.0 3.3
cadd_1_3 11.3 3.7
cadd_1_4 11.2 3.7
cadd_2_1 11.2 3.7
cadd_2_2 11.0 3.7
cadd_2_3 11.0 3.6
cadd_2_4 10.8 3.6
Miscellaneous 4.7 1.6
Total 302.1 100.0

122

The energy consumption of the discrete parallel Radix-4 Butterfly unit can be

calculated by multiplying the delay of the discrete parallel Radix-4 Butterfly unit by its

power consumption which results in 2084.0 pJ.

6.3.4. Floating-point Fused Radix-4 FFT Butterfly
The fused radix-4 FFT butterfly unit was realized using the architecture shown in

Figure 66. The fused radix-4 FFT butterfly unit sub-circuits are the fused AS and the

fused DP primitives introduced in Chapters 4 and 5, respectively.

6.3.4.1. Timing
The fused radix-4 FFT butterfly unit was implemented using 45nm standard cell

libraries and the implementation flow presented in Chapter 3. The placed-and-routed

design performs the radix-4 FFT butterfly function in 6.0ns. The critical timing path of

the fused radix-4 FFT butterfly unit is detailed in Table 45.

Table 45. Floating-Point Fused Radix-4 FFT Butterfly Critical Timing Path

Sub-Circuit Latency (ns)
Input External Delay 0.10
CMUL_1 2.52
Fused AS_1_2 1.61
Fused AS_2_4 1.67
Output External Delay 0.10
Total 6.00

123

6.3.4.2. Place and Route Results
Figure 73 shows the placed-and-routed fused radix-4 FFT butterfly unit. The

fused radix-4 FFT butterfly unit occupies an area of 499μm by 499μm with 75%

utilization for gates/circuits and the remaining 25% for routing.

Figure 73. Floating-Point Fused Radix-4 Butterfly Unit Routing

Figure 74 shows the fused radix-4 FFT butterfly unit placement. The major fused

radix-4 FFT butterfly unit sub-circuits are colored differently and the critical timing path

is highlighted.

124

Figure 74. Floating-Point Fused Radix-4 Butterfly Unit Placement

The fused radix-4 FFT butterfly unit pure gates area is 184,184 μm2. Table 46 lists

the area distribution of the fused radix-4 FFT butterfly unit main sub-circuits.

125

Table 46. Floating-Point Fused Radix-4 FFT Butterfly Unit Area Distribution

Unit Area (μm2) %
cmul1 44,143 24.0
cmul2 37,783 20.5
cmul3 44,487 24.2
Fused AS_1_1 7,037 3.8
Fused AS_1_2 7,570 4.1
Fused AS_1_3 6,892 3.7
Fused AS_1_4 6,770 3.7
Fused AS_2_1 7,167 3.9
Fused AS_2_2 7,100 3.9
Fused AS_2_3 7,351 4.0
Fused AS_2_4 7,186 3.9
Miscellaneous 699 0.4
Total 184,184 100.0

6.3.4.3. Power and Energy Estimation Results
Table 47 lists the power consumption of the fused radix-4 FFT butterfly unit’s

sub-circuits using the power estimation methodology described in Section 3.6.1.

Table 47. Floating-Point Fused Radix-4 FFT Butterfly Unit Power Distribution

Unit Power (mW) %
cmul1 56.6 25.1
cmul2 44.0 19.5
cmul3 56.9 25.2
Fused AS_1_1 8.4 3.7
Fused AS_1_2 9.1 4.1
Fused AS_1_3 7.9 3.5
Fused AS_1_4 7.6 3.4
Fused AS_2_1 8.4 3.7
Fused AS_2_2 8.2 3.6
Fused AS_2_3 8.6 3.8
Fused AS_2_4 8.3 3.7
Miscellaneous 1.5 0.7
Total 225.4 100.0

126

The energy consumption of the fused Radix-4 Butterfly unit can be calculated by

multiplying the delay of the fused Radix-4 Butterfly unit by its power consumption which

results in 1352.0 pJ.

6.4 Butterfly Unit Implementation Results Summary

This chapter presents the implementation results of:

• Floating-point discrete parallel radix-2 FFT butterfly.

• Floating-point fused radix-2 FFT butterfly.

• Floating-point discrete parallel radix-4 FFT butterfly

• Floating-point fused radix-4 FFT butterfly.

The following tables and figures summarize the implementation results of the

units presented in this chapter.

127

Table 48. Butterfly Unit Delay Comparison

Unit Delay (ns)
Discrete Radix-2 Butterfly 4.7
Fused Radix-2 Butterfly 4.0
Discrete Radix-4 Butterfly 6.9
Fused Radix-4 Butterfly 6.0

0

1

2

3

4

5

6

7

8

Delay (ns)

Delay (ns) 4.7 4 6.9 6

Discrete Radix-2
Butterfly

Fused Radix-2
Butterfly

Discrete Radix-4
Butterfly

Fused Radix-4
Butterfly

Figure 75. Butterfly Unit Delay Comparison

128

Table 49. Butterfly Unit Area Comparison

Unit Area (μm2)
Discrete Radix-2 Butterfly 72,572
Fused Radix-2 Butterfly 47,489
Discrete Radix-4 Butterfly 250,099
Fused Radix-4 Butterfly 184,184

Figure 76. Butterfly Unit Area Comparison

129

Table 50. Butterfly Unit Power Comparison

Unit Average Power (mW)
Discrete Radix-2 Butterfly 103.2
Fused Radix-2 Butterfly 61.5
Discrete Radix-4 Butterfly 302.1
Fused Radix-4 Butterfly 225.4

0

50

100

150

200

250

300

350

Power (mW)

Power (mW) 103.2 61.5 302.1 225.4

Discrete Radix-
2 Butterfly

Fused Radix-2
Butterfly

Discrete Radix-
4 Butterfly

Fused Radix-4
Butterfly

Figure 77. Butterfly Unit Power Comparison

130

Table 51. Butterfly Unit Energy Consumption Comparison

Unit Energy (pJ)
Discrete Radix-2 Butterfly 485
Fused Radix-2 Butterfly 246
Discrete Radix-4 Butterfly 2084
Fused Radix-4 Butterfly 1352

0

500

1000

1500

2000

2500

Energy (pJ)

Energy (pJ) 485 246 2084 1352

Discrete Radix-2
Butterfly

Fused Radix-2
Butterfly

Discrete Radix-4
Butterfly

Fused Radix-4
Butterfly

Figure 78. Butterfly Unit Energy Consumption Comparison

The fused radix-2 and radix-4 butterfly units achieved smaller area, less delay and

lower power and energy consumption when compared to the discrete parallel radix-2 and

parallel radix-4 butterfly units. The fused radix-2 butterfly unit has been introduced, and

the implementation results (using a Bulk-CMOS, SOC 45nm process) were published in

 [35].

131

6.5 Butterfly Unit Error Analysis

To study the accuracy difference between the fused butterflies and the discrete

parallel butterflies, the following flow was used:

1. Stimulus generation:

a. A set of 65,536 random numbers that covers the full range of IEEE

single precision floating-point numbers was generated.

b. The “RANDC” function was used to generate these numbers

guaranteeing that the same number will not repeat.

2. Simulation:

a. The stimulus generated in step 1 above was used as an input to the

following RTL models:

• Discrete parallel radix-2 butterfly

• Discrete parallel radix-4 butterfly

• Fused radix-2 butterfly

• Fused radix-4 butterfly

• RTL model for 64K radix-2 FFT using the discrete parallel

radix-2 and fused radix-2 butterflies

• RTL model for 64K radix-4 FFT using the discrete parallel

radix-4 and fused radix-4 butterflies.

b. The same stimulus vector was applied to floating-point double-

precision Matlab models for the radix-2 butterfly, radix-4

butterfly, and Matlab models for 64K radix-2 FFT and 64K radix-4

FFT.

c. The results from 2.a and 2.b were used to generate an error vector

for each RTL model computation versus the Matlab double-

precision model.

3. Data Presentation:

132

a. The error vectors for each RTL model were used to create an error

distribution histogram. A curve fitting function was used to create

a histogram curve.

b. The histogram fitting curves for the fused and discrete units were

plotted on the same figures.

Figure 79 shows a block diagram of the error analysis flow. Table 52 depicts the

input and output data range for the butterfly and FFT error simulation experiments. For

the FFT error simulation, since the output is complex data the values shown in the table

are the resulting complex outputs with the minimum and maximum absolute magnitude.

The error analysis results for each of the units presented in this chapter are shown in

Figures 80 to 83.

 Figure 79. Error Analysis Experiments Block Diagram

Table 52. Input and Output Data Range for the Error Analysis Experiments

BF Simulation Input Data Range Min. Output Max. Output
Radix-2 Butterfly -3x10-38 to 3x10+38 -3.00x10+37 2.55x10+37
Radix-4 Butterfly -3x10-38 to 3x10+38 -1.93x10+38 1.93x10+38

FFT Simulation Input Data Range Min. Magnitude Output Max. Magnitude Output
Radix-2 FFT -3x10-36 to 3x10+36 7.92x10+35 -j *3.51x10+35 -9.55x10+37 +j *1.84x10+38
Radix-4 FFT -3x10-36 to 3x10+36 2.42x10+35 -j *3.57x10+34 2.02x10+38 +j *5.69x10+37

133

Figure 80. Radix-2 Butterfly Unit Errors Using 64K Random Input Vector

134

Figure 81. Radix-4 Butterfly Unit Errors Using 64K Random Input Vector

135

Figure 82. Radix-2 64K FFT Based on Discrete and Fused Radix-2 Butterflies
Errors Using 64K Random Input Vector

136

Figure 83. Radix-4 64K FFT Based on Discrete and Fused Radix-4 Butterflies
Errors Using 64K Random Input Vector

The error simulation results (shown in Figures 83 and 84) show that the butterfly

and the FFT computations using the fused butterfly units are slightly more accurate than

the butterflies and FFT computations using the discrete butterfly units. These results are

expected because the fused butterflies (due to the use of fused DP units) have fewer

rounding operations compared to the discrete butterflies. It is expected that the radix-4

FFT would have less error than the radix-2 FFT because radix-4 FFT reduces the number

of needed complex multiplications by about 25% [32].

137

0.00000

0.00050

0.00100

0.00150

0.00200

0.00250

Max Error

Average Error

Max Error 0.00024 0.00044 0.00140 0.00210

Average Error 0.00001 0.00002 0.00018 0.00022

Fused Radix-2
BF

Discrete Radix-
2 BF

Fused Radix-4
BF

Discrete Radix-
4 BF

 Figure 84. FFT Butterflies Error Simulation Max and Average Error

0.00000

0.05000

0.10000

0.15000

0.20000

0.25000

0.30000

Max Error

Average Error

Max Error 0.17560 0.26330 0.12570 0.17370

Average Error 0.03840 0.04660 0.02600 0.03860

Fused 64K
Radix-2 FFT

Discrete 64K
Radix-2 FFT

Fused 64K
Radix-4 FFT

Discrete 64K
Radix-4 FFT

Figure 85. 64K FFT Error Simulation Max and Average Error

138

Chapter 7 Conclusion

The prior art to realize floating-point DSP hardware falls into one of two

categories: a serial approach used for applications with low area, power and energy

budgets, while for applications that need to achieve high speed processing, the parallel

approach is used with a large increase on the area, and power consumption.

To address the above challenge in the current approaches for floating-point DSP

hardware realization, this research has examined the use of two new floating-point

primitives for speeding up digital signal processing hardware; a floating-point fused two-

term dot-product (fused DP) unit, and a floating-point fused add-subtract (fused AS) unit.

The new fused units use the IEEE-754 single-precision format and support all rounding

modes.

The proposed fused architectures have been specifically designed to address the

problems of high latency, area, and power consumption for the floating-point

implementation of DSP algorithms.

The implementation results using a 45nm industry standard process and an

automatic synthesis ASIC standard-cell implementation flow show that the fused

primitives are faster, smaller, use less power and energy than the parallel approaches and

provide a slightly more accurate result.

7.1 The Key Contributions

The design of a floating-point fused add-subtract unit has been presented. The

fused add-subtract unit performs both add and subtract operations at almost the same

speed as a conventional floating-point adder with an area that is 80% of the area of the

conventional parallel approach. The power consumed by the fused add-subtract is 79% of

the power needed for the conventional parallel approach, and 47% more than the power

consumed by the serial approach. The energy consumed by the fused AS unit is 30% less

139

than the serial approach and 22% less than the energy consumed by the parallel approach

which makes the fused add-subtract unit attractive for battery operated devices.

The implementation results for the three design options for add-subtract function

are compared in Figure 86 for delay, area, power and energy consumption.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Serial AS

Fused AS

Parallel AS

Serial AS 1 1 1 1

Fused AS 0.50 1.37 1.47 0.72

Parallel AS 0.50 1.72 1.86 0.93

Delay % Area % Pow er % Energy %

Figure 86. Add-Subtract Unit Comparison

The design of a floating-point fused two-term dot-product unit has been

presented. The area and latency of the serial and parallel conventional approaches

(including the multiplexers and register) and the fused two-term dot-product unit were

compared. The area of the fused two-term dot-product unit is 17% larger than the

conventional serial and 33% smaller than the conventional parallel approaches. Its

latency is about 85% of the conventional parallel approach and about half of the

conventional serial approach. The power consumed by the fused two-term dot-product

unit is 26% more than the serial approach and 20% less than the power consumed by the

140

parallel approach. The energy consumed by the fused two-term dot-product unit is 28%

less than the serial approach and 21% less than the energy consumed by the parallel

approach which makes the fused two-term dot-product unit attractive for battery operated

devices. The fused two-term dot-product unit result is slightly more accurate than both

the serial and parallel approaches because one rounding operation is performed instead of

three rounding operations for the other approaches.

The three design options implementation results for the two-term dot-product

function are compared in Figure 87 for delay, area, power, and energy consumption.

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

Serial DP

Fused DP

Parallel DP

Serial DP 1 1 1 1

Fused DP 0.50 1.17 1.26 0.63

Parallel DP 0.59 1.75 1.58 0.94

Delay % Area % Pow er % Energy %

Figure 87. Two-Term Dot-Product Function Design Options Comparison

The design of the fused radix-2 decimation in frequency FFT butterfly was

introduced. The area of the fused butterfly is 35% smaller, the latency is 15% less, and

the power consumption is 40% less and the energy consumptions is 49% less than the

discrete radix-2 parallel implementation. The fused radix-2 butterfly has one rounding

operation in the fused two-term dot-product unit, while the discrete butterfly needs 3

rounding operations, so the fused butterfly results are slightly more accurate. The two

141

implementation results for the radix-2 FFT butterfly function are compared in Figure 88

for delay, area, power, and energy consumption.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

Discrete Radix-
2 Butterfly

Fused Radix-2
Butterfly

Discrete Radix-2 Butterf ly 1.00 1.00 1 1

Fused Radix-2 Butterf ly 0.85 0.65 0.60 0.51

Delay % Area % Pow er % Energy %

Figure 88. Radix-2 FFT Butterfly Design Options Comparison

The design of a fused radix-4 FFT butterfly was introduced. The area of the fused

butterfly is 26% smaller, the latency is 13% less and the power consumption is 25% less

and the energy consumed by the fused radix-4 butterfly is 35% less than the discrete

parallel implementation. The fused radix-4 butterfly also needs fewer rounding

operations which results in a slightly more accurate result than the discrete radix-4

butterfly approach. The two implementation results for the radix-4 FFT butterfly function

are compared in Figure 89 for delay, area, power and energy consumption.

142

0

0.2

0.4

0.6

0.8

1

1.2

Discrete Radix-
4 Butterfly

Fused Radix-4
Butterfly

Discrete Radix-4 Butterfly 1 1 1 1

Fused Radix-4 Butterfly 0.87 0.74 0.75 0.65

Delay % Area % Power % Energy %

Figure 89. Radix-4 FFT Butterfly Design Options Comparison

The error simulation data shows that the numerical results generated by the fused

radix-2 and radix-4 butterflies are more accurate than the results from the discrete radix-2

and radix-4 butterflies whether the butterflies were used individually or as part of FFT

computation. Figure 90 shows the max and average errors recorded for the radix-2 and

radix-4 butterflies as a percentage of the discrete radix-4 butterfly max and average

errors, respectively, while Figure 91 shows the max and average errors recorded for 64K

FFT calculation using the radix-2 and radix-4 butterflies as a percentage of the discrete

radix-4 64K FFT max and average errors, respectively.

143

0

20

40

60

80

100

120

% of Discrete
Radix-4 BF Max
Error

% of Discrete
Radix-4 BF Avg.
Error

% of Discrete Radix-4 BF Max Error 11 21 67 100

% of Discrete Radix-4 BF Avg. Error 5 8 81 100

Fused Radix-2 BF Discrete Radix-2
BF Fused Radix-4 BF Discrete Radix-4

BF

Figure 90. FFT Butterflies Error Simulation Max and Average Error as a
Percentage of the Discrete Radix-4 BF Error

0

20

40

60

80

100

120

140

160

% of Discrete
Radix-4 FFT Max
Error

% of Discrete
Radix-4 FFT Avg.
Error

% of Discrete Radix-4 FFT Max
Error

101 152 72 100

% of Discrete Radix-4 FFT Avg.
Error

99 121 67 100

Fused 64K Radix-
2 FFT

Discrete 64K
Radix-2 FFT

Fused 64K Radix-
4 FFT

Discrete 64K
Radix-4 FFT

Figure 91. 64K FFT Error Simulation Max and Average Error as a Percentage of
the Discrete Radix-4 FFT Error

144

7.2 Future Research

The fused add-subtract and fused two-term dot-product primitive units can be

used to realize many other DSP algorithms, including the basic butterfly computation of

the discrete cosine transform and many forms of the wavelet transform.

The proposed fused add-subtract and two-term dot-product designs were

implemented with no pipelines. The two units could be redesigned employing pipelining

to achieve higher operation speeds. If proper pipeline gating were employed, then power

consumption could be reduced as well.

The fused two-term dot-product unit can be modified to perform two-term

addition, two-term subtraction, and fused multiply add. If the implementation results

show a reasonable overhead over an equivalent fused multiply-add unit then the enhanced

fused two-term dot-product unit could be used as a building block for microprocessors

and digital signal processors.

Last but not least, the fusing concept could be extended to other types of

computation extensive applications and might result in delay, area and power

consumption reduction.

145

Bibliography

[1] IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Standard 754-

1985.

[2] IEEE Standard for Floating-Point Arithmetic, IEEE Standard 754-2008, August

29, 2008.

[3] R. K. Montoye, E. Hokenek and S. L. Runyon, “Design of the IBM RISC

System/6000 floating-point execution unit,” IBM Journal of Research and
Development, Vol. 34, pp. 59-70, 1990.

[4] R. Jessani and C. Olson, “The Floating-Point Unit of the PowerPC 603e,” IBM

Journal of Research and Development, Vol. 40, pp. 559-566, 1996.

[5] E. Hokenek, R. Montoye and P. W. Cook, “Second-Generation RISC Floating

Point with Multiply-Add Fused,” IEEE Journal of Solid-State Circuits, Vol. 25,
pp. 1207-1213, 1990.

[6] Behrooz Prahami, Computer Arithmetic Algorithms and Hardware Designs, New

York: Oxford University Press, 1999.

[7] A. V. Oppenheim, R.W. Schafer, and J. R. Buck, Discrete-Time Signal

Processing, Second Edition, Upper Saddle River: Prentice Hall, 1999.

[8] J. A. Beraldin and W. Steenaart, “Overflow analysis of a fixed-point

implementation of the Goertzel algorithm,” IEEE Transactions on Circuits and
Systems, Vol. 36, pp. 322-324, Feb. 1989.

[9] V. S. Dimitrov and J. M. A. Tanskanen, “Round-off error free fixed-point design

of polynomial-predictive FIR differentiators,” The IASTED Int. Conf. Intelligent
Systems and Control, pp. 199-204, Oct. 1999.

[10] Seehyun Kim and Wonyong Sung, “Fixed-point error analysis and word length

optimization of 8×8 IDCT architectures,” IEEE Transactions on Circuits and
Systems for Video Technology, Vol. 8, pp. 935-940, Dec. 1998.

[11] Wonyong Sung, “An Automatic Scaling Method for the Programming of Fixed-

Point Digital Signal Processors,” Proc. IEEE Int. Symposium on Circuits and
Systems, pp. 37-40, June 1991.

[12] Jean Armstrong, Himal A. Suraweera, Simon Brewer and Robert Slaviero, “Effect

of rounding and saturation in fixed-point DSP implementation of OFDM

146

applications,” Proceedings of Embedded Signal Processing Conference (GSPx
2004), Santa Clara, CA, September 2004.

[13] Steve Hollasch, IEEE Standard 754 Floating Point Numbers, Microsoft

Corporation, 2005.

[14] Eric Charles Quinnell, Floating-Point Fused Multiply-Add Architectures, Ph.D.

Dissertation, University of Texas at Austin, 2007.

[15] Steven W. Smith, The Scientist and Engineer’s Guide to Digital Signal

Processing, Second Edition, San Diego: California Technical Publishing, 2002.

[16] IEEE Standard for Verilog Hardware Description Language, IEEE 1364-1995.

[17] IEEE Standard for Verilog Language, IEEE 1364-2001.

[18] IEEE Standard for System Verilog: Unified Hardware Design Specification and

Verification, IEEE P1800-2005.

[19] S. Kobayashi and Gerhard P. Fettweis, “A New Approach For Block-floating-

Point Arithmetic,” IEEE Transactions on Circuits and Systems, Vol. 32, pp. 719-
772, July 1985.

[20] Thomas Lenart and Viktor Öwall, “A 2048 Complex Point FFT Processor using a

Novel Data Scaling Approach,” Proceedings of ISCAS, Bangkok, Thailand , pp.
IV-45-IV-48, May 2003.

[21] Arun Chhabra and Ramesh Iyer, A Block Floating Point Implementation on the

TMS320C54x DSP, Texas Instruments, Application Report, Dec 1999.

[22] Stuart Franklin Oberman, Design Issues in High Performance Floating Point

Arithmetic Units, Ph. D. Dissertation, Stanford University, 1996.

[23] M. P. Farmwald, On the Design of High Performance Digital Arithmetic Units,

Ph.D. Dissertation, Stanford University, August 1981.

[24] E. Hokenek and R. K. Montoye, “Leading-zero anticipator (LZA) in the IBM

RISC System/6000 floating-point execution unit,” IBM Journal of Research and
Development, Vol. 34, pp. 71-77, January 1990.

[25] N. T. Quach and M. J. Flynn, Leading one prediction - implementation,

generalization, and application, Technical Report No. CSL-TR-91-463,
Computer Systems Laboratory, Stanford University, March 1991.

147

[26] B. J. Benschneider, et al., “A pipelined 50-Mhz CMOS 64-bit floating-point
arithmetic processor,” IEEE Journal of Solid-State Circuits, Vol. 24, pp. 1317-
1323, October 1989.

[27] M. Birman, et al., “Developing the WTL 3170/3171 Sparc floating-point co-

processors,” IEEE Micro Mag., Vol. 10, pp. 55-63, February 1990.

[28] P. Y. Lu, A. Jain, J. Kung and P. H. Ang, “A 32-mflop 32b CMOS floating-point

processor,” IEEE International Solid-State Circuits Conference, pp. 28-29, 1988.

[29] R. K. Yu and G. B. Zyner, “167 MHz floating-point multiplier,” Proc. 12th IEEE

Symposium on Computer Arithmetic, pp. 149-154, July 1995.

[30] M. Ercegovac and T. Lang, Digital Arithmetic, San Francisco: Morgan-Kaufmann

Publishers, 2006.

[31] G. Even and P-M Seidel, “A comparison of Three Rounding Algorithms for IEEE

Floating-Point Multiplication,” IEEE Transactions on Computers, Vol. 49, pp.
638-650, July 2000.

[32] The FFT Demystified, Engineering Productivity Tools Ltd., [Online]. Available:

http://www.engineeringproductivitytools.com/

[33] Hani Saleh and Earl E. Swartzlander, Jr., “A Floating-Point Fused Add-Subtract

Unit,” 2008 IEEE Midwest Symposium on Circuits and Systems (MWSCAS), pp.
519-522, Knoxville, TN, August 2008.

[34] Hani Saleh and Earl E. Swartzlander, Jr., “A Floating-Point Fused Dot-Product

Unit,” XXVI IEEE International Conference on Computer Design (ICCD), pp.
427-431, Lake Tahoe, CA, October 2008.

[35] Earl E. Swartzlander, Jr. and Hani Saleh, “Fused Floating-Point Arithmetic for

DSP,” 42nd Asilomar Conference on Signals, Systems and Computers, Pacific
Grove, CA, October 2008.

[36] Matlab – The Language of Technical Computing, The Mathworks Inc., [Online].

Available: http://www.mathworks.com/products/matlab/

[37] Advanced Integrated Circuit Design Solutions, Synopsys Inc., [Online].

Available: http://www.synopsys.com/Tools/Implementation/Pages/default.aspx

[38] How Chips are Made, Intel Corp., [Online]. Available:

http://www.intel.com/education/makingchips/introduction.htm

148

[39] Earl Swartzlander, Jr. and Carl Lemond, EE382V Floating-point Arithmetic and
Design Course Notes, University of Texas at Austin, Spring 2007.

[40] H. Suzuki, H. Makino, K. Mashiko and H. Hamano, “Leading-zero anticipatory

logic for high-speed floating point addition,” IEEE Journal of Solid-State
Circuits, Vol. 32, pp. 1157-1164, 1996.

[41] E. M. Schwarz, et al., “A radix-8 CMOS S/390 multiplier, 13th IEEE Symposium

on Computer Arithmetic, ” pp. 2-9, Pacific Groove, CA 1997.

[42] S. Gupta and F. N. Najm, “Power Macromodeling for High Level Power

Estimation,” 34th ACM/IEEE Design Automation Conference, pp. 365-370, June
1997.

[43] S. Gupta and F. N. Najm, “Analytical model for high level power modeling of

combinational andsequential circuits,” IEEE Alessandro Volta Memorial
Workshop on Low-Power Design, pp. 164-172, Italy 1999.

149

VITA

Hani Hasan Mustafa Saleh was born on March 15, 1970 in Amman, Jordan. After

graduating from High School in 1988, he attended the University of Jordan in Amman.

He received a Bachelor of Science degree in Electrical Engineering in January, 1993. He

entered Graduate School at the University of Texas at San Antonio in 2004. He received

a Master of Science degree in Electrical Engineering from the University of Texas at San

Antonio in 2006. Since 1993, he has worked for several semiconductor companies

including Motorola, Synopsys, Qualcomm, AMD and Intel Corporation. He is currently

working for Intel Corporation as an Architect/RTL front-end design engineer. His

experience spans DSP, circuit design, logic design, synthesis, back-end design, timing

closure, timing analysis, chip finishing and power analysis. His research interest includes

DSP design, chip design and floating-point arithmetic.

Permanent Address: 1514 Tamar Lane, Austin, Texas 78727

This dissertation was typed by the author.

