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Floating-point arithmetic is attractive for the implementation for a variety of 

Digital Signal Processing (DSP) applications because it allows the designer and user to 

concentrate on the algorithms and architecture without worrying about numerical issues. 

In the past, many DSP applications used fixed point arithmetic due to the high cost (in 

delay, silicon area, and power consumption) of floating-point arithmetic units. 

In the realization of modern general purpose processors, fused floating-point 

multiply add units have become attractive since their delay and silicon area is often less 

than that of a discrete floating-point multiplier followed by a floating point adder. Further 

the accuracy is improved by the fused implementation since rounding is performed only 

once (after the multiplication and addition).  

This work extends the consideration of fused floating-point arithmetic to 

operations that are frequently encountered in DSP. The Fast Fourier Transform is a case 

in point since it uses a complex butterfly operation. For a radix-2 implementation, the 

butterfly consists of a complex multiply and the complex addition and subtraction of the 

same pair of data.  For a radix-4 implementation, the butterfly consists of three complex 

multiplications and eight complex additions and subtractions. Both of these butterfly 
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operations can be implemented with two fused primitives, a fused two-term dot-product 

unit and a fused add-subtract unit. 

The fused two-term dot-product multiplies two sets of operands and adds the 

products as a single operation. The two products do not need to be rounded (only the sum 

is normalized and rounded) which reduces the delay by about 15% while reducing the 

silicon area by about 33%. 

For the add-subtract unit, much of the complexity of a discrete implementation 

comes from the need to compare the operand exponents and align the significands prior 

to the add and the subtract operations. For the fused implementation, sharing the 

comparison and alignment greatly reduces the complexity. The delay and the arithmetic 

results are the same as if the operations are performed in the conventional manner with a 

floating-point adder and a separate floating-point subtracter. In this case, the fused 

implementation is about 20% smaller than the discrete equivalent. 
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Chapter 1  Introduction 
 

Many applications can use floating-point hardware to perform DSP tasks in real 

time and hence overcome the limitations imposed by the use of fixed-point numeric 

systems.  

1.1 Motivation 

Fixed-point arithmetic has been used for the longest time in computer arithmetic 

calculations due to its ease of implementation compared to floating-point arithmetic and 

the limited integration capabilities of available chip design technologies in the past. The 

design of binary fixed-point adders, multipliers, subtracters, and dividers is covered in 

numerous textbooks and conference papers. However, advanced technology applications 

require a data space that ranges from the infinitesimally small to the infinitely large. Such 

applications require the design of floating-point hardware. A floating point number 

representation can simultaneously provide a large range of numbers and a high degree of 

precision. As a result, a portion of most microprocessors is often dedicated to hardware 

for floating point computation. 

Floating-point arithmetic is attractive for the implementation for a variety of 

Digital Signal Processing (DSP) applications because it allows the designer and user to 

concentrate on the algorithms and architecture without worrying about numerical issues 

such as scaling, overflow, and underflow. In the past, many DSP applications used fixed-

point arithmetic due to the high cost (in time, silicon area and power consumption) of 

floating-point arithmetic units.  

Unlike fixed-point arithmetic, each computer company developed their own 

standards for the floating-point representation in electronic machines until the IEEE-754 

standard was introduced in 1985  [1]. This is a standard which is widely used to represent 

floating-point numbers in electronic machines. The IEEE committee is working on a 

revised version called the IEEE 754r  [2]. 
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In the realization of modern general purpose processors, fused floating-point 

multiply-add units  [3]- [5] have become attractive since their delay and silicon area is 

often less than that of a discrete floating-point multiplier followed by a floating-point 

adder. Further, the accuracy is improved by the fused implementation since rounding is 

performed only once (after the full precision multiplication and addition). 

1.2 Problem Description 

In order to build special purpose DSP hardware in today’s systems on chips 

(SOC), many floating point primitives such as floating-point adders and floating-point 

multipliers are needed.  

In many of the DSP algorithms (specifically, fast Fourier transforms), the addition 

and subtraction results for the same two operands are needed at the same time. Currently 

this can be done with a single adder and two cycles (one for the add and one for the 

subtract) or with two discrete adders and one cycle.  

The sum of the products of two pairs of operands is a very frequent operation 

which needs two floating-point multiplies and one floating-point add to be performed. To 

perform these operations there are two approaches in use currently. The first approach is 

to use a single floating-point multiplier and a single floating-point adder with storage to 

perform the operations in sequential fashion, which is attractive from an area and power 

perspective, but too slow for many applications. The other common approach is to use 

two multipliers and an adder to perform these operations in parallel. This provides the 

needed speed, however, the high area and power consumption have a major impact on 

many applications such as mobile and handheld devices. 

To address the need for performing operations that are frequently encountered  in 

DSP’s at high speeds while saving power and area, this proposal extends the 

consideration of fused floating-point arithmetic by introducing two new fused floating-

point primitive units; a fused floating-point add-subtract (fused AS) unit that performs 

addition and subtraction on the same two operands simultaneously, and a fused two-term 
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dot-product (fused DP) unit that multiplies two sets of operands and adds the products as 

a single operation.  

For the fused add-subtract unit, much of the complexity of a discrete 

implementation comes from the need to compare the operand exponents and align the 

significands prior to the add and the subtract operations. For the fused implementation, 

sharing the comparison and alignment greatly reduces the complexity. The delay and the 

arithmetic results are exactly the same as if the operations are performed in the 

conventional manner with a floating-point adder and a separate floating-point subtracter. 

In this case, the fused implementation is substantially smaller than the discrete parallel 

equivalent. 

For the fused two-term dot-product unit, the two products do not need to be 

normalized and rounded (only the sum is normalized and rounded) which reduces the 

delay, the silicon area and the power consumption.  

The fast Fourier transform is a case in point; it uses a butterfly operation. For 

radix-2 decimation in frequency implementation, the butterfly operation consists of the 

complex addition and subtraction of two inputs followed by a complex multiplication.  

For a radix-4 decimation in time implementation, the butterfly operation consists of three 

complex multiplications followed by four complex additions and subtractions of the same 

four pairs of data. Both of these butterfly operations can be implemented with the two 

fused primitives, a fused two-term dot-product and a fused add-subtract unit. The result is 

faster butterfly execution using smaller silicon area and consuming less power.  

To show the benefits of the proposed units, this dissertation presents the 

implementations of four units: a conventional floating-point adder (FPA), a conventional 

floating-point multiplier (FPM), a floating-point fused add-subtract (fused AS) unit, and a 

floating-point fused dot-product (fused DP) unit. Then radix-2 and radix-4 FFT 

butterflies are realized using both the conventional floating-point primitives (FPA and 

FPM), and using the new primitives (fused AS and fused DP units). The implementation 

results for the designs that use the new primitives show substantial speedup with a 

savings in area and power. 
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1.3 Dissertation Overview 

This dissertation is divided into several chapters. This chapter presented a brief 

overview of the problem targeted by this research. The second chapter covers some 

related background materials including computer arithmetic, fixed-point representation 

hardware implementation issues, a brief description of the IEEE-754 standard, an 

overview of the fused multiply-add (FMA) operation, the use of fused arithmetic in 

previous research and the FFT. The third chapter presents the research methodology and 

implementation flow. The fourth, fifth, and sixth chapters present four new fused 

floating-point units that are IEEE-754 single-precision compliant for the speed up of DSP 

algorithms:   

o Floating-Point Fused Add-Subtract Unit 

o Floating-Point Fused Two-Term Dot-Product Unit 

o Floating-Point Radix-2 FFT Fused Butterfly Unit 

o Floating-Point Radix-4 FFT Fused Butterfly Unit 

Finally, the seventh chapter presents conclusions and suggestions for future work. 
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Chapter 2  Background 
 

This chapter covers some related materials necessary for the understanding of the 

following chapters. It introduces fixed-point computer arithmetic and its limitations, the 

IEEE-754 floating-point standard, and current usage of combined (fused) arithmetic 

functions, presents a quick introduction to the Fast Fourier Transform (FFT), floating-

point and FFT error analysis.  

2.1 Computer Arithmetic Overview 

Computer arithmetic is concerned with the hardware realization of mathematical 

formulas, algorithms, and complex models from a theoretical world. Hardware functions 

calculate arithmetic’s in both fixed-point and scientific notations (floating-point)  [6].  

2.2 Fixed-Point Representation Overview and Implementation 

Issues 

In computing, a fixed-point number representation is a real data type for a number 

that has a fixed number of digits after (and sometimes before) the radix point. Fixed-point 

number representations are much less complicated (and less computationally demanding) 

than floating point number representations  [6]. Fixed-point numbers are useful for 

representing fractional values, usually in base 2, when the executing processor has no 

floating point unit (FPU) or if fixed-point provides improved performance or accuracy for 

the application at hand [7].  

A fixed-point number may be written as I.F, where I represents the integer part, '.' 

is the radix point, and F represents the fractional part. In binary fixed-point numbers, 

each magnitude bit represents a power of two, while each fractional bit represents an 

inverse power of two [7]. 
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2.2.1. Fixed-Point Precision Loss and Overflow 
Information may be lost in fixed point operations when they produce results that 

have more bits than the operands  [8]. For instance, the result of fixed point multiplication 

could potentially have as many bits as the sum of the number of bits in the two operands. 

In order to fit the result into the same number of bits as the operands, the answer must be 

rounded or truncated  [9]. If this is the case, the choice of which bits to keep is very 

important. For instance when multiplying two fixed point numbers with the same format, 

with I integer bits, and F fractional bits, the answer could have up to 2*I integer bits, and 

2*F fractional bits  [9]. 

Most fixed-point multiplication procedures use the same result format as the 

operands. This has the effect of keeping the middle bits; the I least significant integer 

bits, and the F most significant fractional bits. Fractional bits below this value represent a 

relatively minor precision loss. If any integer bits are lost, however, the value will be 

radically inaccurate. This is considered to be an overflow, and needs to be avoided in 

embedded calculations  [10]- [12]. 

To show the effect of the number system selection on the error Figure 1 shows a 

simulation of an FFT spectrum of a sinusoidal signal using: 

o Double-precision floating-point-numbers  

o Single-precision floating-point-numbers  

o Fixed-point numbers (width = 12, fraction = 10) with no scaling 

o Fixed-point numbers (width = 12, fraction = 10) with scaling, where the 

intermediate results are shifted right as many times as needed to avoid 

overflow. The final answer is multiplied by 2 raised to the power of 

number of left shifts needed by scaling to avoid overflow. 

The error of the double-precision system is the least; the error of the single-

precision system is intermediate while the error of the fixed-point system is the worst. If 

no scaling is used with the fixed-point system, the results are totally wrong. 
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Figure 1. FFT Spectrum Calculation Using: Double Precision Floating-Point, Single 
Precision Floating-Point and 12-bit Fixed-Point Without and With Scaling 

2.3 An Overview of the IEEE-754 Floating-Point Standard 

The IEEE-754 floating-point standard is the most common real numbers 

representation in today’s microprocessors, including Intel-based PC's, Macintoshes, and 

most Unix platforms  [13]. IEEE floating point numbers have three basic components: a 

sign, an exponent, and a significand. The significand is composed of the fraction and an 

implicit leading digit (explained below). The exponent base (2) is implicit and is not 

stored  [1].  
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Table 1 shows the layout for single (32-bit) precision IEEE standard floating-

point values. The number of bits for each field are shown (the bit position are shown in 

square brackets): 

Table 1. IEEE-754 Storage Layout  [1] 

 Sign Exponent Fraction 

Single Precision 1 [31] 8 [30-23] 23 [22-00] 

 

 

The Sign Bit  [13] 

The sign bit is interpreted as follows: zero denotes a positive number and one 

denotes a negative number. Flipping this bit changes the sign of the number.  

The Exponent  [13] 

The exponent is the component of a binary floating-point number that signifies 

the integer power to which two is raised in determining the value of the represented 

number.  

The Significand  [13] 

The significand also known as the mantissa, represents the precision bits of the 

number. In the IEEE standard  [1], it is composed of an implicit leading integer one, an 

implicit radix point and the fraction bits.  

Ranges of Floating-Point Numbers  [1] 

The range of single precision IEEE floating point numbers is  1262−±  to   
23 127(2 2 ) 2−± − ×  which is approximately equal to 3810−± to 383 10± × .  

Special Values  [13] 

The IEEE standard reserves exponent field values of all zeros and all ones to 

denote special values in the floating-point scheme.  
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Zero  [13] 

Zero is not directly representable in the normal format, due to the assumption of a 

leading one (it is necessary to specify a true zero significand to yield a value of zero). 

Zero is a special value denoted with an exponent field of all zeros and a fraction of zero. 

Note that -0 and +0 are distinct values, though they both compare as equal.  

Infinity  [13] 

The values +infinity and -infinity are denoted with an exponent of all ones and a 

fraction of zero. The sign bit distinguishes between negative infinity and positive infinity. 

Being able to denote infinity as a specific value is useful because it allows operations to 

continue past overflow situations. Operations with infinite values are well defined in 

IEEE floating point standard.  

Not a Number  [13] 

The value NaN (Not a Number) is used to represent a value that does not 

represent a real number. NaN's are represented by an exponent of all ones and a non-zero 

fraction.  

Denormalized  [13] 

If the exponent is all zeros, but the fraction is non zero then the value is 

denormalized. The units designed in this research do not support denormalized numbers.  

 

2.4 An Overview of the Floating-Point Fused Multiply-Add (FMA) 

Operation  [14] 

In 1990, IBM introduced the floating-point fused multiply-add operation on the 

RISC System 6000 (IBM RS/6000) chip  [3],  [4]. IBM recognized that several advanced 

applications, specifically those with dot products, are routinely performed with a floating-

point multiplication, A x B, immediately followed by a floating-point addition, (A x B) 

result + C, ad infinitum. To increase the performance of these applications, a new unit 

was created that merged a discrete floating-point multiplier and floating-point adder into 
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a single hardware block—the floating-point fused multiply-add unit. This floating-point 

arithmetic unit, shown in Figure 2, executes the equation (A x B) + C in a single 

instruction. 

 

Figure 2. Block Diagram of a Floating-point Fused Multiply-add Unit, reduced  
from  [14] 

 

With the continued demand for 3D graphics, multimedia applications, and new 

advanced processing algorithms, the IEEE has included the fused multiply-add operation 

into the 754-2008 standard  [2]. Even though the fused multiply-add architecture has 

troublesome latencies, high power consumption, and a performance degradation with 

single-instruction execution, more and more microprocessor designs implement floating-

point fused multiply-add units in their silicon  [4]- [5]. 

2.5 Other Fused Arithmetic Units 

For floating-point applications apart from the FMA, no publications or patents 

were found which use fusing. There are many patents which merge multiple fixed-point 

arithmetic functions to speed up or reduce the area and power consumption, but since this 

research is concerned with floating-point, these are not relevant. 
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2.6 The Fast Fourier Transform (FFT) Algorithm 

Fourier analysis is a family of mathematical techniques, based on decomposing 

signals into sinusoids. The Discrete Fourier Transform (DFT) is used with digitized 

signals  [15]. The DFT of a sequence of N complex numbers is given by: 

21

0

, 0,..., 1
iN kn

N
k n

n

X x e k N
π−

=

= = −∑                                                                            (1) 

The Discrete Fourier Transform (DFT), can be calculated in many ways, such as 

solving simultaneous linear equations or correlation. The Fast Fourier Transform (FFT) is 

an efficient method for calculating the DFT. While it produces the same result as the 

other approaches, it often reduces the computation time by a factor of ten or more for 

large sequences  [15].  

There are two flavors of the FFT algorithm; decimation in time (DIT) where the 

time domain sequence is split into even and odd parts for processing, or decimation in 

frequency (DIF) where the frequency components are divided into even and odd parts for 

processing. The DIF and DIT are both equivalent algorithms and it is straight forward to 

convert from one to the other. Both the DIT and DIF can accept inputs either in order or 

in bit reversed order to produce bit reversed or in order outputs, respectively.  

Figure 3 shows the radix-2 DIT FFT and DIF FFT butterflies, which are the basic 

computation element in performing the FFT.  Figure 4 shows the data flow diagram for 

performing a radix-2 DIT FFT, while Figure 5 shows the data flow diagram for 

performing a radix-2 DIF FFT.  

The X0 - X8 are the input data samples, k
NW are the twiddle factors for butterflies 

which is given by equation: 

2 / 2 2cos sink i k N
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Figure 3. Radix-2 Butterflies 
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Figure 4. 8-point Radix-2 DIT FFT 
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Figure 5. 8-point Radix-2 DIF FFT 
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2.7 Summary 

In this chapter, the necessary background material needed to understand the 

remaining chapters was briefly covered, including a quick introduction to fixed-

point and floating point number systems.  The fast Fourier transform was 

introduced as well.  
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Chapter 3 Research Approach and Design 
Methodology 

 

This chapter presents the research approach and the overall design flow and 

methodology. The general approach of performing the research is presented, then the 

design and implementation flow. The tools that were used are also described.  

3.1 Research Approach  

The goal of this research is to investigate the application of fused floating-point 

arithmetic for speeding up digital signal processing algorithms. Figure 6 shows the 

general steps taken for performing this research work. The process is summarized as: 

1. Study literature about IEEE floating-point arithmetic concepts, architectures, and 

implementations. 

2. Study literature about fused multiply-add arithmetic unit concepts, architectures 

and implementations. 

3. Create the architecture for the fused add-subtract and fused dot-product units. 

4. Prove the concept by modeling the primitive units (FPA, FPM, fused DP and 

fused AS) in Matlab high-level language. 

5. Design the primitive units (FPA, FPM, fused DP and fused AS) in Verilog RTL 

language. 

6. Verify the units using System Verilog testbenches and employing random 

stimulus generation techniques to cover a wide input range. 

7. Implement the units using ASIC standard cells implementation flows where the 

units are mapped to a standard-cell library using synthesis, placement and routing 

tools. 

8. Perform timing analysis on the implementations using a static timing analysis 

tool with extracted parasitics data from the laid-out designs. 
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Figure 6. Research Flow 
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9. Perform power consumption estimation at the gate level using the extracted 

parasitics from the laid-out designs. 

10. Utilize primitive units RTL models (from step 5) to build RTL models for the 

following units:  

o Serial Add-Subtract (serial AS) Unit  

o Parallel Add-Subtract (parallel AS) Unit 

o Serial Dot-Product (serial DP) Unit 

o Parallel Dot-Product (parallel DP) Unit 

o Discrete Radix-2 FFT Butterfly (discrete radix-2 BF) unit 

o Discrete Radix-4 FFT Butterfly (discrete radix-4 BF) unit 

o Fused Radix-2 FFT Butterfly (fused radix-2 BF) unit 

o Fused Radix-4 FFT Butterfly (fused radix-4 BF) unit 

11. Repeat steps 6 to 9 for all the derived units listed in step 10.  

3.2 High-Level Modeling 

The primitive units (FPA, FPM, fused DP and fused AS), and the derived units 

(serial AS, parallel AS, serial DP, parallel DP, discrete radix-2 BF, discrete radix-4 BF, 

fused radix-2 BF, and fused discrete radix-4 BF) architectural concepts were initially 

verified by modeling the functionality using the Matlab high level modeling language. 

High-level modeling has many merits:  

• It is a fast way to verify the functionality of the new concept. 

• It is easy and fast to evaluate different architectures and fine tuning of 

specific architecture design options. 

• A high-level model is used as an abstract model of the design to generate 

input stimulus and expected results. 
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3.3 RTL Digital Design Using Verilog HDL 

The primitive units (FPA, FPM, fused DP and fused AS), and the derived units 

(serial AS, parallel AS, serial DP, parallel DP, discrete radix-2 BF, discrete radix-4 BF, 

fused radix-2 BF, and fused discrete radix-4 BF) were designed from scratch using 

Verilog hardware description language (Verilog HDL). The functionality of the HDL 

designs was verified using simulation and was mapped into a technology-specific gate 

level implementation using synthesis.  

The Verilog language is one of the IEEE standardized and widely used HDL 

languages  [16]- [18].  Verilog HDL can be used to model the system at abstract level 

where the functionality is modeled using high-level constructs or at the register transfer 

level (RTL) where the register boundaries are explicitly defined including the 

combinational logic enclosed by them or at the structural-level where the connection 

between logic gates (primitives) is described.  The RTL level (used to model the 

primitive units and the derived units) is best for describing the micro-architecture and 

controlling the implementation details for a synthesize flow. Figure 7 shows an example 

Verilog model for a 2:1 multiplexer using Verilog HDL structural and RTL descriptions.  
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Figure 7. Verilog HDL for a 2:1 Multiplexer 

 

3.4 The EDA Tools Used in The ASIC Implementation Flow 

To implement the primitive units (FPA, FPM, fused DP and fused AS), and all of  

the derived units (serial AS, parallel AS, serial DP, parallel DP, discrete radix-2 BF, 

discrete radix-4 BF, fused radix-2 BF, and fused discrete radix-4 BF) the following 

electronic design aiding (EDA) tools were used: 

MathWorks Matlab  [36]: Matlab is a high-level modeling tool, and a 

programming language. It enables fast modeling of complex algorithms in an easy high 

level language. Matlab was used to verify the concepts and to build abstract models for 



 

 

19

the primitive units and the derived units designs. Also it was used to generate the 

reference output for the error analysis experiments. 

Synopsys VCS Simulator  [37]: Synopsys VCS is an RTL functional simulator 

that can simulate Verilog, VHDL, and System C models. It has advanced capabilities that 

aid in the verification and test coverage of the simulated designs. It was used to verify the 

functionality of the primitive units and the derived units RTL models. 

Synopsys Design Compiler Ultra (DC Ultra)  [37]: Synopsys DC Ultra is a 

hardware synthesis tool. It maps an RTL hardware description model using a standard 

cell library into a gate-level netlist that describes the design at the structural 

(connectivity) level. The output design is composed of cells that exist in the standard-cell 

library. The synthesis tool output generation is controlled by area, delay and power 

constraints. DC ultra was used to map the RTL models of the primitive units, and the 

derived units to gate-level netlists based on the standard-cells that are available in the 

technology libraries.  

Synopsys Integrated Circuit Compiler (ICC)  [37]: Synopsys IC Compiler is a 

physical implementation tool that takes a gate-level netlist, a floorplan and the standard-

cell library as inputs, and generates a placed-and-routed design. It includes floor-

planning, placement, clock tree synthesis, routing, metal fill and chip-finishing. ICC is 

widely adopted and recognized as the industry standard for physical implementation. The 

output is influenced by placement, area, power and delay constraints that control the 

generated design. ICC was used to place and route the primitive units and the derived 

units. 

Synopsys PrimeTime (PT)  [37]: Synopsys PrimeTime is the industry standard 

tool for timing sign-off. It delivers accurate timing signoff analysis that helps pinpoint 

timing problems prior to tapeout. A gate-level netlist, timing constraints, extracted 

parsitics and standard-cell libraries, are needed to sign-off the timing of the placed-and-

routed design. PT was used to sign-off the timing of the primitive, and the derived units. 

Synopsys Star-RCXT  [37]: Synopsys Star-RCXT is an RLC parasitic extraction 

tool. The tool inputs are the process definition file, and a physical placed-and-routed 
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design database (Synopsys Milkyway physical design database or the industry standard 

GDSII physical design database). Star-RCXT extracts the input design gate and wire 

parasitics that are necessary to perform gate-level timing analysis, and simulation based 

gate-level power estimation.  Star-RCXT was used to extract the parasitics of the laid-out 

designs of the primitive units and the derived units. 

Synopsys PrimePower  [37]: Synopsys PrimePower is a chip-level dynamic 

power analysis tool. The tool inputs are a gate-level netlist, a switching activity file 

(SAIF) generated from the gate-level simulation, a standard-cell technology library and 

the extracted RC parasitics. PrimePower estimates the power consumption of the design 

based on the switching activity of the nets and the power-characterization data of the 

standard-cell library. PrimePower is integrated within Synopsys DC Ultra and ICC and 

can be invoked from inside these tools. PrimePower was used to estimate the power 

consumption of the primitive units and the derived units. 

Synopsys Formality  [37]: Synopsys Formality checks the equivalence of two 

versions of the design (i.e., RTL model versus gate-level model) to prove that they are 

functionally equivalent using static (non-vector based) techniques. 

3.5 Functional Verification Using Simulation 

The correct functional behavior of the primitive units (FPA, FPM, fused DP and 

fused AS) and the derived units (serial AS, parallel AS, serial DP, parallel DP, discrete 

radix-2 BF, discrete radix-4 BF, fused radix-2 BF, and fused radix-4 BF) was verified by 

comparing the simulation output of the RTL models to an abstract model that was created 

using System Verilog high level constructs. Figure 8 shows the flow used for performing 

functional verification for the primitive and the derived units. A System Verilog random 

stimulus generator is used to generate valid inputs that cover the full range of IEEE 

single-precision numbers. The stimulus is then applied to the RTL and the abstract 

models simultaneously and the outputs are compared. If the outputs are equal the 

simulation passes for the executed testcase, otherwise it fails. 
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 Figure 8. Functional Verification Using Simulation 

 

3.6 ASIC Implementation Flow 

At present there are three digital chip design flows in use in the industry: 

• Circuit Design Flow: In this flow all of the circuits are designed at the 

transistor level. The functionality and timing are verified using transistor 

level simulation tools (SPICE). This flow typically produces the best 

area, speed, and the lowest power consumption. However, this flow is 

slow and requires large number of specialized circuit design and layout 

engineers.  A design engineer using this flow can handle few thousand 

transistors (hundreds of gates) needing few months to produce the final 

design. At present this flow is used by the chip industry to design high-
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density, timing and area-critical circuits such as: SRAM memories and 

register files and some very specialized arithmetic circuits. 

• Hand placement Flow: In this flow a technology process dependent 

standard-cell library is used. The design RTL model is mapped to gates 

by design engineers and hand-placed and optimized. The functionality 

and timing are verified using gate-level level simulation and analysis 

tools. This flow typically produce good area, speed and low-power 

consumption. A design engineer can handle few thousands gates designs 

needing few months to produce the final design.  However, this flow is 

not suitable for designs incorporating millions of gates.  Moreover, this 

flow typically requires large teams and has a relatively slow time to 

market.  At present, this flow is used by the chip industry to design 

performance-critical blocks, such as: high speed arithmetic blocks or 

data-path elements. 

• Automatic Synthesis, Place and Route Flow (ASIC design flow): In this 

flow a technology process dependent standard-cell library is used. The 

RTL models are mapped to gates, placed, and routed using gate-level 

EDA tools. The results from this flow depend on the quality and 

sophistication level of the EDA tools used, as well as the design 

constraints provided to these tools.  Using typical industry-standard EDA 

tools result in area, delay and power consumption close to those of the 

hand-placement approach.  This design flow produces the fastest time to 

market.  A design engineer using this flow can “design” blocks with sizes 

that can go up to hundreds of thousands of gates.  At present, this flow is 

used in the industry to design most of the chips, as long as it meets the 

allocated area, delay and power consumption budgets. 

 

The ASIC design flow was used to implement the primitive units (FPA, FPM, 

fused DP and fused AS), and the derived units (serial AS, parallel AS, serial DP, parallel 
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DP, discrete radix-2 BF, discrete radix-4 BF, fused radix-2 BF, and fused discrete radix-4 

BF).  

The  ASIC design flow used in this research is composed of two main sub-flows: 

the implementation sub-flow, and the analysis sub-flow.  

The implementation sub-flow (shown in Figure 9) includes the following 

steps: 

1. Synthesis: The Verilog RTL models of the primitive and the derived 

units are mapped into a technology specific library (described in 

Section  3.7) using the Synopsys Ultra DC synthesis tool. The output of 

this step is a gate level netlist that is used by the placement and routing 

tool. 

2. Floorplan: The floorplan defines the design size, the pre-placement of 

macros, and the placement of the primary input/output ports. For a full 

chip design,  floorplanning of any sub-block is based on the placement 

of the sub-block relative to other sub-blocks, and its connectivity.  For 

the primitive and derived units designed in this dissertation, the 

following floorplan methodology was used: 

o Each unit was implemented as a standalone block that can be 

used as part of a full-chip design. 

o The size of each unit (i.e., floorplan size) was a design 

parameter. It was forced to be 135% of the area of a first pass 

implementation using the Synopsys ICC minimum physical 

constraints (MPC) mode. As a result, the overall utilization was 

~75% of the total unit (floorplan) area.  The remaining 25% of 

the floorplan area was left for routing - a reasonable value for 

ASIC design flows in the industry. 
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Figure 9. Implementation Sub-Flow 
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o The placement of primary inputs and outputs was automatic. 

The tool was allowed to choose the initial placement using the 

MPC mode. In addition, after the first pass of design 

placement, an automatic inputs/outputs placement optimization 

is performed. 

o The inputs/outputs on the top and bottom edges of the design 

were placed on metal layer three. 

o The inputs/outputs on the right and left sides of the design were 

placed on metal layer four. 

 

3. Placement: In this step, placement of the gate-level netlist (of the 

primitive and derived units) is done in the floorplan generated in step 2 

using Synopsys ICC.   Synopsys ICC optimizes the placement based 

on the design constraints to achieve the placement with lowest overall 

design area, power consumption and best timing.  

4. Routing:  A nine metal layers process (described in Section  3.7) was 

used to route the primitive and derived units. The placed designs of the 

primitive and derived units were routed using Synopsys ICC. The 

lower 6 process metal layers were used for routing, and the remaining 

top 3 metal layers were left to be used by chip-level power and clock 

routing (this is an industry standard practice for similar designs). The 

goal of this step is to produce a 100% connected design, with no 

process design rules violations (i.e., DRC clean), and to generate a 

layout versus schematic equivalent (i.e., LVS clean) design. 
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The analysis sub-flow (shown in Figure 10) includes the following steps: 

1. RC parasitics extraction using Synopsys Star-RCXT: The base 

technology libraries information (described in Section  3.7), in addition  

to the routing of the primitive and derived designs are used by 

Synopsys Star-RCXT to extract wiring resistance, capacitance, and the 

gates input/output parasitics.  

2. Static timing analysis (STA) using Synopsys PT: For all of the 

primitive and derived units, the gate-level netlist, the design 

constraints, and the extracted RC parasitics (from step 1 above) are 

used by synopsys PT to verify timing and performance targets.  The 

maximum possible operating frequency is determined in this step.  

Also the designs are verified to be free from any setup, hold and/or 

other timing violations that may limit the operating frequency. 

3. Power analysis using Synopsys PrimePower: The RC parasitics, the 

gate-level netlist, and a carfully designed stimulus are used by 

Synopsys PrimePower to estimate the power consumed by the 

primitive and the derived unit designs. The stimulus used needs to be 

designed carefully to make sure it represents the mainstream usage of 

the design, otherwise the power estimates will be skewed toward an 

unrealistic usage pattern (the power estimation flow is described in 

detail in Section  3.6.1).  

4. Formal Verification using Synopsys Formality: The RTL model is 

compared to the final gate level netlist to verify that they are 

functionally equivalent. 
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Figure 10. Analysis Sub-Flow 
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3.6.1. Dynamic Power Estimation Detailed Methodology 
To estimate the power consumption of the circuits of the primitive units (FPA, 

FPM, fused DP and fused AS), and the power consumption of the circuits of  the derived 

units (serial AS, parallel AS, serial DP, parallel DP, discrete radix-2 BF, discrete radix-4 

BF, fused radix-2 BF, and fused discrete radix-4 BF)  the following methodology was 

used: 

1. Stimulus selection: The following factors were considered to design the 

input stimulus : 

a. Input data switching rate and switching distribution over time 

determines the power consumption  [42].  

b. There is no universal model or method for selecting the input 

stimulus that works for different type of circuits under different 

usage scenarios. Many publications have proposed a statistical 

model for determining the appropriate switching rate for 

combinational and sequential circuits  [42]- [43]. According to  [42] 

for combinational designs a switching rate around 40% and 

switching distribution (percentage of the simulation time where the 

signals are changing states) around 40% is acceptable for 

evaluating the power consumption of combinational logic such as 

ALU’s and other arithmetic circuits. 

c. The FPA, the FPM, the fused DP and fused AS primitive units, and 

the parallel AS, the parallel DP, the discrete radix-2 BF, the 

discrete radix-4 BF, the fused radix-2 BF, and the fused discrete 

radix-4 BF derived units are purely combinational. The serial AS 

and the serial DP derived units are dominated (more than 87% is 

combinational) by combinational logic. As a result, in this research 

an input pattern was used with the input bits switching twice every 



 

 

29

four cycles (50% data switching rate and 50% switching 

distribution) which is slightly more aggressive than the 

recommended range in  [42]- [43].  

d. This research goal is not to determine the absolute power 

consumption figures (determined largely by the input pattern) for 

the primitive and the derived units. This research is concerned with 

comparing the relative power consumption of the various design 

options of the primitive and the derived units.  

e. The primitive and the derived units were driven with the same 

input patterns which leads to accurate relative power consumption 

comparison because all the equivalent design units were exposed 

to the same input patterns. 

2. Stimulus generation using Matlab: 

a. A large set of 100,000 random numbers that covers the full range 

of IEEE single precision floating-point numbers was generated. 

b. The “RANDC” function was used to generate these numbers 

which guaranties that the same number will not repeat. 

c. The randomly generated numbers were studied using Matlab, and 

each individual bit of the generated numbers changed states from 

0 1 0 every 4 cycles. 

3. Simulation using Synopsys VCS: 

a. For each of the primitive and derived design units, the gate level 

netlist was simulated using the stimulus generated in step 1 above. 

b. A value change dump file was produced from the simulation and 

converted to a “SAIF” file (it contains information about the toggle 

rate per time unit for each signal in the design, in addition to  the 

static probability of having the signal stuck at logic one). 

4. Power estimation using Synopsys PrimePower: 
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a. For each of the primitive and derived design units, the “SAIF” file 

generated in step 3, the gate level netlist, and the placed-and-routed 

design extracted parasitics were used by Synopsys PrimePower to 

estimate the average consumed power. 

b. The average power consumption was used as the design unit 

average power consumption value. It is reported in Chapters 4 to 6 

of this dissertation. 

3.7 The 45nm CMOS Technology Process Used to Implement the 

Primitive and the Derived Units 

In a semiconductor manufacturing process, many processes and dozens of steps 

are needed to create an integrated circuit  [38]. Some of the important characteristics of a 

semiconductor manufacturing process are: 

• Channel-Length of the minimum size transistor that can be fabricated, the 

smaller the transistor size the faster, lower power and more dense chips 

could be produced. Technology processes are tagged by this parameter, for 

example a 45nm technology process is capable of fabricating transistors 

with a channel length of 45nm. 

• Number of Interconnect layers: The more transistors that are packed on a 

chip, the more interconnect layers that are needed to connect them. 

Modern processes use from 7-11 metal layers depending on the target 

application. 

• Target application: Technology processes at certain technology node have 

many flavors based on the target products. For high speed 

microprocessors, a high-performance process is used that is usually tuned 

to create the maximum possible transistor speed (usually at the expense of 

extra power consumption). For mobile applications, a low-leakage, and 

low-power process is used, the process is tuned to sacrifice speed and 

performance to produce lower power designs. 
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• Bulk CMOS manufacturing technology and silicon on insulator (SOI) 

manufacturing technology are the industry dominant technologies for 

digital designs. 

An industrial 45nm technology process was used in this research to deign the 

primitive units (FPA, FPM, fused DP and fused AS), and the derived units (serial AS, 

parallel AS, serial DP, parallel DP, discrete radix-2 BF, discrete radix-4 BF, fused radix-2 

BF, and fused discrete radix-4 BF), The technology process that was used has the 

following characteristics: 

• A 45nm high-performance industry-standard semiconductor 

manufacturing process. 

• A 9-metal layer process, with the lower six metal layers used for routing 

the units and the top three layers reserved for the clock routing and power 

distribution. 

• A bulk CMOS process. 

• The standard-cells used to map the primitive and the derived units RTL 

models to gate-level netlists are designed for high-performance 

applications. 

 

3.8 Notes About ASIC Standard-Cell Libraries  and ASIC Flows 

Application-specific integrated circuits (ASIC) are integrated circuits designed for 

a specific application. The ASIC design flow includes the design of a large set of 

standard-cells for a specific technology node.   This standard-cell library is designed 

according to the target product and could have many flavors, such as: low-power cells 

with slower speed, or fast cells at the expense of higher power consumption.   

The standard-cells are characterized at the transistor level for power, delay, 

transition time and noise. The information that describes the standard-cell library (i.e., 
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functionality, area, power, transition time, delay, etc.) is listed in databases are used by 

the synthesis tools to map the RTL models to the appropriate gates. 

A standard-cell library typically includes many logic gates: NAND gates, NOR 

gates, X-OR gates, inverters, multiplexers, latches, flops-flops, and much more. Many 

versions of the same gate (NANDx1, NANDx2, NANDx3, …etc…) are usually included 

based on the intended drive capability. For example, a technology-library may have eight 

logic NAND gates that differ in their output transistor sizes, gate area, gate delay, input 

and output transition time and their current drive capabilities. The quality of the standard-

cell library determines the quality of the synthesized design. 

The design area, delay and power constraints, as well as the floorplan (macro 

placement and input/output port locations) influence the selection of certain standard-

cells to implement a function. RTL design mapping is a function of the technology-

library, floorplan, and implementation constraints. Changing the floorplan may result in a 

smaller (or bigger) size of the overall pure silicon gates used to realize a design due to a 

reduction (or increase) in number of gates, and/or wire lengths that a gate needs to drive.   
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Chapter 4 Floating-Point Fused Add-Subtract 
Unit 

 

A floating-point fused add-subtract unit is presented that performs simultaneous 

floating-point add and subtract operations on a common pair of single-precision floating-

point data in about the same time that it takes to perform a single addition with a 

conventional floating-point adder. This unit uses the IEEE-754 single-precision format 

and supports all rounding modes. When placed and routed in the automatic synthesis 

ASIC implementation design flow described in Section 3.6 and the 45nm standard cell 

libraries described in Section 3.7, the fused add-subtract unit is only about 56% larger 

than a conventional floating-point adder, and consumes 50% more power than the 

conventional floating-point adder.  

4.1 Introduction 

 This chapter introduces the floating-point fused add-subtract unit. The design and 

implementation results using the automatic synthesis ASIC implementation design flow 

described in Section 3.6 and the industry standard 45nm process described in Section  3.7 

are presented. 

In many DSP algorithms both the sum and difference of a pair of operands are 

needed for subsequent processing. This is required, for example, in computation of the 

FFT butterfly operation. In traditional floating-point hardware these operations may be 

performed in a serial fashion which limits the throughput. The use of a fused add-subtract 

(fused AS) unit accelerates the butterfly operation. Alternatively, the addition and 

subtraction may be performed in parallel with two floating-point adders which is 

expensive (in silicon area and in power consumption). 

This chapter presents the implementation of the floating-point fused add-subtract 

unit shown in Figure 11. The fused add-subtract unit performs the following operations: 



 

 

34

x a b
y a b

= +
= −

                                                                                                   (3) 

 

 

Figure 11. The Floating-Point Fused Add-Subtract Unit Concept 

 

4.2 Floating-Point Adder Design 

The most frequent floating-point operations are addition and subtraction, and 

together they account for 55% of the total floating-point operations in typical scientific 

applications  [22]. Both addition and subtraction use the floating-point adder. Techniques 

to reduce the latency and increase the throughput of the floating-point adder have 

therefore been the subject of much previous research  [23]- [28]. 

Due to its many inherently serial component operations, floating-point addition 

can have a longer latency than floating-point multiplication. Pipelining is a commonly 

used method to increase the throughput of the adder, but it does not reduce the latency. 

Previous research has provided algorithms to reduce the latency by performing some of 

the operations in parallel. This parallelism is achieved at the cost of additional hardware. 

The minimum achievable latency using such algorithms in high clock-rate 

microprocessors has been three cycles, with a throughput of one add per cycle. 

4.2.1. Basic Floating-Point Addition Algorithm 
The straightforward basic floating-point addition algorithm requires the most 

serial operations. It has the following steps  [22]: 
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1. Exponent subtraction: Perform subtraction of the exponents to form the 

absolute difference a bE E d− = . 

2. Alignment: Right shift the significand of the smaller operand by d bits. 

The larger exponent is denoted fE . 

3. Significand addition: Perform addition or subtraction according to the 

effective operation. The result is a function of the op-code and the signs of 

the operands. 

4. Conversion: Convert a negative significand result to a sign-magnitude 

representation. The conversion requires a two's complement operation, 

including an addition step. 

5. Leading-one detection: Determine the amount of left shift needed in the 

case of subtraction yielding cancellation. For addition, determine whether 

or not a 1-bit right shift is required. Then priority-encode the result to 

drive the normalizing shifter. 

6. Normalization: Normalize the significand and update fE  appropriately. 

7. Rounding: Round the final result by conditionally adding 1-ulp as required 

by the IEEE standard. If rounding causes an overflow, perform a 1-bit 

right shift and increment fE . 

The latency of this algorithm is large, due to its many long length components. 

The steps describing the latency of this algorithm are listed in Table 2. Figure 12 shows 

the block diagram of an architecture that realizes this algorithm. 
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Table 2. Basic Floating-Point Adder Algorithm Latency  

Step Operation      
 

Latency Step 
Dependency 

1 Exponent subtraction 1 Exponent subtract delay None 

2 
Right shift smaller 
operand significand 

1 Significand full-length shift delay Step 1 

3 
Significand addition 
 

1 Full-length significand addition delay Step 2 

4 
Sign-magnitude 
conversion 

1 Full-length significand addition delay Step 3 

5 Leading-one detection 1 Leading-one detection delay Step 4 

6 
Normalization 
 

1 Full-length shift operation delay Steps 1 and 4

7 
Rounding 
 

1 Full-length significand addition delay 
+ 1-bit right shift 

Steps 1, 5 and 
6 
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Figure 12. A Conventional Floating-Point Adder 

4.3 Fused Add-Subtract Unit Design Approachs 

There are two design approaches that can be taken with discrete floating-point 

adders to realize the add-subtract function. These are the parallel implementation shown 

in Figure 13 where two adders operate in parallel (one adding and one subtracting) and 

the serial implementation shown in Figure 14 where a single adder is used twice (once 

adding and once subtracting) with the same operands. 
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Figure 13. Conventional Parallel Realization of an Add-Subtract Unit 

b

a
a b+

a b−
 

 

Figure 14. Conventional Serial Realization of an Add-Subtract Unit 

 

In a parallel conventional implementation of the fused add-subtract (such as that 

shown in Figure 13) two floating-point adders are used to perform the operation. This 

approach is fast, however, the area and power overhead is large because two floating-

point add/subtract units are used. 

In a serial conventional implementation of the fused add-subtract (such as that 

shown in Figure 14) one floating-point adder/subtracter is used to perform the operation 

in addition to a storage element to store the addition or subtraction result. This approach 

is very efficient in terms of area. However, due to the serial execution of both operations, 

the time needed to get both results is twice the time needed by the parallel approach. Also 

since a storage element is used, it adds slightly to the area and power overhead. 
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Moreover, power is consumed for a longer time due to executing the add/sub operation 

twice. 

The architecture of the fused add-subtract unit is derived from the floating-point 

add unit. The exponent difference, significand shift and exponent adjustment functions 

can be performed once with a single set of hardware, with the results shared by both the 

add and the subtract operations. New add and normalize blocks are needed for the new 

subtract operation. Figure 15 shows the architecture of the fused add-subtract unit, the 

blocks with white background are the same blocks used for a single floating-point add 

operation. The blocks with green background are additional blocks used to perform the 

subtract operation, and the blocks with yellow background are similar to the floating-

point add blocks, but with extended functionality to calculate the sign and exponent for 

the new subtract operation. 

 

 

Figure 15. Floating-Point Fused Add-Subtract Unit 
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4.4 Implementation Results 

To study the merits of the fused add-subtract unit, the following units were 

designed: 

• Basic Floating-Point Adder (FPA) 

• Serial Floating-Point Add-Subtract Unit (serial AS) 

• Parallel Floating-Point Add-Subtract Unit (parallel AS) 

• Floating-Point Fused Add-Subtract Unit (fused AS) 

This section presents the implementation results of the above units using the 

implementation flow described in  Chapter 3. 

4.4.1. Floating-Point Adder (FPA) Unit 
The basic floating-point adder (FPA) was designed using the architecture of the 

adder shown previously in Figure 12. The basic floating-point adder is composed of the 

following main sub-circuits:  

Align Circuit: This circuit (shown in Figure 16) detects the difference between 

the exponents of the two operands and aligns the significands of the two operands for 

addition or subtraction by shifting the smaller significand by an amount proportional to 

the difference between the exponents of the two operands. 
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Figure 16. Align Circuit 

 

Significand Add/Subtract Circuit: This circuit (shown in Figure 17) performs 

the addition or subtraction operation of the significands. It detects the effective operation 

based on the signs of the two operands and the intended operation. It also generates guard 

and presticky bits that aid in the proper rounding of the final results. 
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Figure 17. Significand Adder Circuit 

 

Normalization Circuit: This circuit (shown in Figure 18) detects the number of 

leading zeros in the significand adder result, and left-shifts the sum to have a leading one 

in the left-most digit for IEEE floating-number format compliance. It also generates 

exponent correction value, as well as round and sticky bits that are used by the rounding 

circuit. 

 

Figure 18. Normalization Circuit  
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Rounding Circuit: This circuit (shown in Figure 19) rounds the final result 

according to the selected IEEE rounding mode. 

 

 

Figure 19. Rounding Circuit  

 

Finalization Circuit: This circuit (shown in Figure 20) assembles the final sign, 

exponent and final significand to generate the results. Also, it generates overflow, zero 

and other special flags required by IEEE compliant adders. 

 

 

Figure 20. Finalization Circuit  
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4.4.1.1. Timing 
The FPA was implemented using the automatic synthesis ASIC implementation 

design flow described in Section 3.6 and the 45nm standard cell libraries described in 

Section 3.7. The placed-and-routed FPA computes a floating-point addition in 1.64ns. 

The critical timing path of the FPA is detailed in Table 3. 

 

 

 

Table 3. Floating-Point Adder Critical Timing Path 

Sub-Circuit Latency (ns) 
 Input External Delay  0.1 
Allign 0.4 
Significand Adder 0.2 
Normalizer 0.4 
Rounder 0.2 
Assembler 0.2 
Output External Delay 0.1 
Total 1.64 

 

4.4.1.2. Place and Route Results 
Figure 21 shows the placed-and-routed FPA. The FPA occupies an area of 72μm 

by 72μm with 75% utilization for gates/circuits, and the remaining 25% for routing. 
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Figure 21. Floating-Point Adder Unit Routing 

 

Figure 22 shows the FPA placement. The major FPA sub-circuits are colored 

differently and the critical timing path is highlighted. 
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Figure 22. Floating-Point Adder Unit Placement with the Critical Timing Path 
Highlighted 

 

The pure gates area of the FPA is 3,811μm2. Table 4 lists the area distribution of 

the main FPA sub-circuits. 
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Table 4. Floating-Point Adder Area Distribution 

Unit Area (μm2) % 
Align 1,404 36.8 
Significand Adder 738 19.4 
Normalizer 989 26 
Rounder 317 8.3 
Assembler 321 8.4 
Special Case Detection 42 1.1 
Total 3,811 100 

 

4.4.1.3. Power and Energy Estimation Results 
Table 5 lists the power consumption of the FPA sub-circuits using the power 

estimation methodology described in Section  3.6.1. 

Table 5. Floating-Point Adder Total Power Distribution  

Unit Average Power (mW) % 
Align 2.53 37.9 
Significand Adder 1.76 26.4 
Normalizer 1.52 22.8 
Rounder 0.47 7.1 
Assembler 0.43 6.5 
Special Case Detection 0.04 0.7 
Total 6.76 100.00 

 

The energy consumption of the FPA unit can be calculated by multiplying the 

delay of the FPA unit by its power consumption which results in 11.5 pJ.  

4.4.2. Serial Add-Subtract (Serial AS) Unit 
Figure 23 shows the micro-architecture of the serial add-subtract unit (serial AS). 

One adder/subtracter is used to perform the addition and subtraction operations in serial 

fashion. Serial add and subtract operations need at least two clock cycles. A finite state 

machine controls the operation of the serial AS unit.  
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Figure 23. Serial AS Micro-Architecture 

 

4.4.2.1. Timing 
The serial AS was implemented using the automatic synthesis ASIC 

implementation design flow described in Section 3.6 and the 45nm standard cell libraries 

described in Section 3.7. The placed-and-routed design computes a floating-point 

addition or subtraction in 1.7ns. The critical timing path of the serial AS is detailed in 

Table 6. To generate the addition and the subtraction results of the two operands, two 

clock cycles are needed totaling 3.42ns. 
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Table 6. Serial AS Critical Timing Path 

Sub-Circuit Latency (ns) 
Input External Delay 0.1 
Adder 1.4 
Register Loading 0.1 
Output External Delay 0.1 
Total 1.7 

 

4.4.2.2. Place and Route Results 
Figure 24 shows the placed-and-routed serial AS unit. The serial AS occupies an 

area of 77μm by 77μm with 75% utilization for gates/circuits and the remaining 25% for 

routing. 
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Figure 24. Serial AS Unit Routing 

 

Figure 25 shows the serial AS placement. The major serial AS sub-circuits are 

colored differently and the critical timing path is highlighted. 
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Figure 25. Serial AS Unit Placement with Critical Path Highlighted 

 

The pure gates area of the serial AS is 4,344μm2. Table 7 lists the area distribution 

of the serial AS main sub-circuits. 

 

 

 

 

 

 



 

 

52

Table 7. Serial AS Area Distribution  

Unit Area (μm2) % 
Adder 3,740 86 
Add Result Register 302 7 
Subtract Result Register 302 7 
Total 4,344 100 

 

4.4.2.3. Power and Energy Estimation Results 
Table 8 lists the power consumption of the serial AS sub-circuits using the power 

estimation methodology described in Section  3.6.1. 

Table 8. Serial AS Average  Power Distribution  

Unit Power (mW) % 
Adder 6.26 91.2 
Add Result Register 0.30 4.4 
Subtract Result Register 0.30 4.4 
Total 6.86 100 

 

The energy consumption of the serial AS unit can be calculated by multiplying 

the delay of the serial AS unit by its power consumption which results in 24.3 pJ.  

 

4.4.3. Parallel Add-Subtract (Parallel AS) Unit 
The parallel AS unit was implemented using the architecture shown previously in 

Figure 13. Two floating-point adders operating in parallel are used to realize the 

simultaneous add/subtract function. 

4.4.3.1. Timing 
The parallel AS unit was implemented using the automatic synthesis ASIC 

implementation design flow described in Section 3.6 and the 45nm standard cell libraries 

described in Section 3.7. The placed-and-routed design computes a simultaneous 
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floating-point addition and subtraction in 1.7ns. The critical timing path of the parallel 

AS is detailed in Table 9. 

Table 9. Parallel AS Critical Timing Path 

Sub-Circuit Latency (ns) 
Input External Delay 0.1 
Adder/Subtracter 1.5 
Output External Delay 0.1 
Total 1.7 

 

4.4.3.2. Place and Route Results 
Figure 24 shows the placed-and-routed parallel AS unit. The parallel AS unit 

occupies an area of 100μm by 100μm with 75% utilization for gates/circuits and the 

remaining 25% for routing. 
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Figure 26. Parallel AS Unit Routing 

 

Figure 27 shows the parallel AS placement. The major parallel AS sub-circuits 

are colored differently and the critical timing path is highlighted. 
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Figure 27. Parallel AS Unit Placement with Critical Timing Path Highlighted 

 

The pure gates area of the parallel AS is 7,456 μm2. Table 10 lists the area 

distribution of the parallel AS main sub-circuits. 

 

Table 10. Parallel AS Area Distribution  

Unit Area (μm2) % 
Adder 3,787 50.8 
Subtracter 3,664 49.1 
Total 7,456 100 
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4.4.3.3. Power and Energy Estimation Results 
Table 11 lists the power consumption of the parallel AS sub-circuits using the 

power estimation methodology described in Section  3.6.1. 

 

Table 11. Parallel AS Total Power Distribution  

Unit Average Power (mW) % 
adder  6.41 50 
subtracter 6.40 50 
Total             12.83 100.00 

 

The energy consumption of the parallel AS unit can be calculated by multiplying 

the delay of the parallel AS unit by its power consumption which results in 22.2 pJ.  

 

4.4.4. Fused Add-Subtract (Fused AS) Unit 
The fused AS unit was implemented using the architecture shown previously in 

Figure 15. This design starts from the basic FPA architecture shown previously in Figure 

12. Since the same two operands are being added and subtracted, the exponent circuit can 

be shared between the add and subtract sub-functions.  Two units are duplicated: the 

significands adder to perform the simultaneous significand subtract, as well as the 

rounding and the normalization circuits necessary to round and normalize the significand 

subtract result. The rest of the fused AS sub-circuits’ functionality are exactly the same as 

the FPA equivalent sub-circuits. 

4.4.4.1. Timing 
The fused AS unit was implemented using the automatic synthesis ASIC 

implementation design flow described in Section 3.6 and the 45nm standard cell libraries 

described in Section 3.7. The placed-and-routed design computes a simultaneous 
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floating-point addition and subtraction in 1.72ns. The critical timing path of the fused AS 

is detailed in Table 12. 

 

Table 12. Fused AS Critical Timing Path 

Sub-Circuit Latency (ns) 
Input External Delay 0.1 
Aligner 0.3 

Significand Add/Subtract 0.3 
Normalizer 0.4 
Rounder 0.3 
Assembler 0.2 
Output External Delay 0.1 
Total 1.72 

 

4.4.4.2. Place and Route Results 
Figure 28 shows the placed-and-routed fused AS unit.  The fused AS unit 

occupies an area of 90μm by 90μm with 75% utilization for gates/circuits and the 

remaining 25% for routing. 
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Figure 28. Fused AS Unit Routing 

 

Figure 29 shows the fused AS placement. The major fused AS sub-circuits are 

colored differently and the critical timing path is highlighted. 
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Figure 29. Fused AS Unit Placement with Critical Timing Path Highlighted 

 

The fused AS pure gates area is 5,947μm2. Table 13 lists the area distribution of 

the main fused AS sub-circuits. 
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Table 13. Fused AS Area Distribution  

Unit Area (μm2) % 
Aligner 1,482 24.9 
Significand Add/Subtract 1,138 19.1 
Adder Normalizer 988 16.6 
Subtracter Normalizer 936 15.7 
Add/Subtract Rounder 643 10.8 
Special Case Detection 42 0.7 
Assembler 713 12 
Miscellaneous 4.6 0.08 
Total 5,947 100 

 

 

4.4.4.3. Power and Energy Estimation Results 
Table 14 lists the power consumption of the fused AS sub-circuits using the 

power estimation methodology described in Section  3.6.1. 

Table 14. Fused AS Average Power Distribution  

Unit Average Power (mW) % 
Aligner 2.74 27 
Significand Add/Subtract 2.43 23.9 
Adder Normalizer 1.60 15.8 
Subtracter Normalizer 1.45 14.3 
Add/Subtract Rounder 0.96 9.4 
Special Case Detection 0.046 0.4 
Assembler 0.92 9.1 
Miscellaneous 0.006 0.054 
Total 10.15 100 

 

The energy consumption of the fused AS unit can be calculated by multiplying 

the delay of the fused AS unit by its power consumption which results in 17.2 pJ.  
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4.5 Add-Subtract Unit Implementation Results Summary 

This chapter presents the implementation results of a floating-point fused add-

subtract (fused AS) unit in addition to the implementation results of a floating-point 

adder, a serial AS, and a parallel AS. The following tables and figures summarize the 

implementation results for the units presented in this chapter by using the floating-point 

adder’s delay, area, power, and energy numbers as the reference. 

Table 15. Add-Subtract Unit Delay Comparison for Performing Simultaneous Add 
and Subtract on Two Operands   

Unit Delay (ns) % of FPA 
FPA 1.64 100 
Serial AS 3.42 208 
Fused AS 1.72 105 
Parallel AS 1.70 104 
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Figure 30. Add-Subtract Unit Delay Comparison 
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Table 16. Add-Subtract Unit Area Comparison  

Unit Area (μm2) % of FPA 
FPA 3,811 100 
Serial AS 4,344 114 
Fused AS 5,947 156 
Parallel AS 7,456 196 
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Figure 31.  Add-Subtract Unit Area Comparison 
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Table 17. Add-Subtract Unit Power Consumption Comparison  

Unit Average Power (mW) % of FPA 
FPA 6.76 100 
Serial AS 6.86 102 
Fused AS 10.15 150 
Parallel AS 12.83 190 
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Figure 32. Add-Subtract Unit Power Consumption Comparison 
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Table 18. Add-Subtract Unit Energy Consumption Comparison  

Unit Energy (pJ) % of FPA 
FPA 11.5 100 
Serial AS 24.3 208 
Fused AS 17.2 150 
Parallel AS 22.2 193 
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Figure 33. Add-Subtract Unit Energy Consumption Comparison 

 

The fused AS unit achieves the performance level of a parallel AS while showing 

a significant savings in area.   The area overhead of the fused AS over the serial AS is 

32%. The power consumption of the fused AS unit is midway between the serial and the 

parallel approaches, with 48% overhead over the serial approach. The energy consumed 

by the fused AS unit is 30% less than the serial approach and 22% less than the energy 

consumed by the parallel approach which makes the fused AS unit more attractive for 

battery operated devices. 

The fused AS unit has been introduced, and the implementation results (using a 

bulk-CMOS mobile SOC 45nm process) were published in  [33].  
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Chapter 5 Floating-Point Fused Two-Term Dot-
Product Unit 

 

This chapter presents a floating-point fused two-term dot-product unit.  This unit 

performs single-precision floating-point multiplication and addition operations on two 

pairs of data in a period of time that is only 150% greater than that required for a single 

conventional floating-point multiplication. This unit uses the IEEE-754 single-precision 

format and supports all rounding modes. When placed-and-routed in a 45nm process 

(described in Section  3.7), the fused dot-product unit occupies about 70% of the area 

needed to implement a parallel dot-product unit using conventional floating-point adders 

and multipliers implemented with the same process. The speed of the fused dot-product is 

about 27% faster than the conventional parallel approach. The numerical result of the 

fused unit is more accurate because only one rounding operation is used, versus three for 

the conventional approach. 

5.1 Introduction 

 Similar to the operations performed by the fused multiply-add unit, in many DSP 

algorithms, calculating the sum of the products of two sets of operands (i.e., a two-term 

dot-product) is a frequently used operation. For example, this is required in the 

computation of the FFT and DCT butterfly operations.  

In a traditional implementation, the dot-product is performed with two 

multiplications and an addition. These operations may be performed in a serial fashion 

(as shown in Figure 34) by utilizing a single adder and a single multiplier with 

multiplexers and registers for intermediate results. It has low throughput, has a small area 

and low power consumption. Alternatively, the multiplications may be performed in 

parallel with two independent multipliers followed by an adder (as shown in Figure 35). 

This alternative (parallel approach) is expensive (in silicon area and in power 
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consumption). It is, however, appropriate for applications where maximizing the 

throughput is more important than minimizing the area or the power consumption. 

 

 

Figure 34. Two-Term Dot-Product Serial Implementation 

 

 

Figure 35. Two-Term Dot-Product Parallel Implementation 

 

This chapter introduces a floating-point fused two-term dot-product (fused DP) 

unit. The floating-point fused two-term dot-product unit shown in Figure 36 performs the 

following operation: 

( )y a b c d= × ± ×                                                                                                (4) 
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Figure 36. The Fused DP Unit Concept 

 
The numerical operation performed by this unit can be used to improve many 

DSP algorithms. Specifically, multiplication of complex numbers benefits greatly from 

the fused DP unit as shown in the following equation: 

( ) ( ) ( ) ( )re im re im re im re re im im re im re imY y jy a ja b jb a b a b j a b b a= + = + × + = − + +                (5) 

 

In an implementation with discrete floating-point adders and multipliers six 

operations are required (two adders and four multipliers) as shown in Figure 37. 

Alternatively two fused two-term dot-product units can be used: the three elements with 

green background are realized with one fused two-term dot-product unit, and the three 

elements with blue background are realized with a second fused two-term dot-product 

unit. 
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Figure 37. Complex Multiplier Computation 

 

5.2 Floating-Point Multiplier Design 

 The largest logical block in a floating-point unit is the floating-point multiplier. It 

usually takes two input operands and provides a multiplied and rounded result. The unit 

itself, when compared to a floating-point adder, has a simpler overall architecture, but 

contains complex components that occupy large area and use many routing resources 

 [29]. 

The floating-point multiplier by itself has fast performance with low latency; 

however, many designs add an array of complex arithmetic functions beyond simple 

multiplication to the floating-point multiplier in order to process transcendental, divide, 

and square root algorithms that use ROM tables and to perform multiplicative iterations. 

Also, if the multiplier is designed to accept a denormal input then the area and delay will 

be increased substantially. For this research a basic floating-point multiplier is used. 
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5.2.1. Basic Floating-Point Multiplier Algorithm 
 Floating point multiplication consists of an exclusive-OR of the signs, an 

addition of the exponents and a multiplication of the significands. The significand 

multiplication is an unsigned fixed-point multiplication. The most appropriate multipliers 

for the significand multiplication are the tree multipliers  [30], due to their high 

performance. The typical structure of a tree multiplier  [30] consists of:  

1. Formation of the binary bit products with an array of AND gates. 

2. A partial product reduction tree. This can be either a Wallace tree or 

Dadda reduction that reduces the bit products to two words. 

3. A final carry propagate adder, that sums the two words to generate the 

product. If the input numbers have m-bit sizes, then the final propagate 

adder has a bit less than 2•m-bit size. 

 

However, because of operating with IEEE 754 floating point numbers, several 

challenges appear  [31]: 

1. The significands are numbers in the [1,2) interval. Consequently, the result 

is a number in the [1,4) interval. Therefore, a normalization step (a one position right-

shift of the significand, followed by an increment of the exponent) may be needed. 

2. After the significand multiplication, a double-size significand will result. 

Thus, a rounding step is needed. This rounding step may require a plus-one addition to 

the significand of the result. Therefore a large carry propagate adder is required. 

 

Several methods for latency reduction in the rounding step have been developed, 

such as the ES algorithm, the YZ algorithm and the QTF algorithm  [31]. 

The basic floating-point multiplier architecture is shown in Figure 38.The unit 

begins processing data in a radix-8 Booth encoded multiplication tree. The multiplier tree 

result passes to a combined add/round stage, where the carry/save product is combined 

and rounded. The round and post normalize stage outputs the rounded result and the 
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floating-point multiplication is complete. Both the sign and the exponent datapaths run in 

parallel to the significand processing. 

 

 

Figure 38. Basic Floating-Point Multiplier 
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5.3 Fused DP Unit Design Approach 

 The floating-point fused two-term dot-product unit architecture is derived from 

the architecture of a floating-point fused multiplier-adder. A conventional single path 

floating-point fused multiplier-adder architecture is shown in Figure 39  [14].  

An exponent compare circuit, a second multiplier reduction tree, and a 4:2 CSA 

adder are added to convert the fused multiplier-adder into the fused two-term dot-product 

unit shown in Figure 40. The fused DP unit can perform either the addition or subtraction 

of the products by complementing the outputs of one of multiplier trees for subtraction. 

The exponent compare circuit for the floating-point fused two-term dot-product 

unit is based on the exponent compare circuit for the FMA that is shown in Figure 41.  

The fused DP exponent compare circuit shown in Figure 42 has an extra exponent adder 

(an 8-bit adder for single-precision IEEE floating-point) to add the exponents of inputs C 

and D. The fused DP unit extra exponent adder is working in parallel with the FMA unit 

original exponent adder so the delay of the fused DP unit exponent compare circuit will 

be almost equal to the delay of the FMA exponent compare circuit. 

The leading zero anticipator (LZA) circuit concept is shown in Figure 43. It is 

composed of a pre-encoder and a leading zero detector  [39]- [40]. The LZA circuit is 

necessary for normalization of the result especially for fused DP unit subtraction 

operations with massive cancellation (the result includes many leading zeros).  The 

normalize and the round blocks of the fused DP unit are similar to the FPA unit 

normalization and rounding circuits (shown previously in Figures 19 and 20, 

respectively). 

The alignment circuit of the floating-point fused two-term dot-product unit is 

based on the alignment circuit of the FMA unit. The fused DP alignment circuit shown in 

Figure 44 has two wide alignment shifter sub-blocks. This provides the sum and carry 

outputs of the “C*D” significand multiplication result. The sum and carry outputs of 

“C*D” significand multiplication are aligned to the outputs of “A*B” significand 

multiplication according to the relative magnitude of “A*B” versus “C*D” as shown in 

Figure 44.  
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Figure 39. Conventional Floating-Point FMA unit  [14] 
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Figure 40. Floating-Point Fused Two-Term Dot-Product Unit  
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Figure 41. Floating-Point Fused Multiply-Add Unit Exponent Compare Circuit  
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Figure 42. Floating-Point Fused Two-Term Dot-Product Unit Exponent Compare 
Circuit 

 

y(n) y(n-1) y(n-2) y(n-3) … y(0) Shift Count
1 x x x x x 0
0 1 x x x x 1
0 0 1 x x x 2
0 0 0 1 x x 3
… … … … … … …

 

Figure 43. LZA Circuit Concept  [39] 
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Figure 44. Floating-Point Fused Two-Term Dot-Product Unit Alignment Circuit 

 

5.4 Dot-Product Unit Implementation Results 

To show the merits of the floating-point two-term fused dot-product unit, the 

following units were designed: 

• Basic Floating-Point Multiplier (FPM) Unit 

• Serial Floating-Point Dot-Product (serial DP) Unit  

• Parallel Floating-Point Dot-Product (parallel DP) Unit 

• Fused Floating-Point Dot-Product (fused DP) Unit 

 

This chapter presents the implementation results for the above units using the 

automatic synthesis ASIC implementation design flow described in Section 3.6 and the 

45nm standard cell libraries described in Section 3.7. 
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5.4.1. Floating-point Multiplier (FPM) Unit  
The basic floating-point multiplier shown in Figure 38. Most of the sub-circuits of 

the FPM unit are similar to the sub-circuits of the FPA unit that has been presented in 

detail in  Chapter 4. The additional FPM sub-circuits are the exponent adder and the 

significand multiplier. The exponent adder is an eight bit adder that adds the exponent 

fields of the two operands to generate the unrounded result exponent. The micro-

architecture of the significand multiplier is shown in Figure 45. The multiplier was 

implemented using Booth radix-8 recoding followed by Wallace reduction. The Booth 

encoder shown in Table 19 reduces the number of partial products. The partial product 

addition is performed with a Wallace carry save compression tree.  

One-hot encoding is used in forming the partial products to avoid the overhead of 

performing full 2’s complement needed by Booth negative encoded digits. In the one-hot 

encoding scheme if the most significant bit of the Booth encoded digit associated with a 

the partial product is one then that partial product is complemented and the “one” that is 

needed to be added to produce a correct 2’s complement result is appended to the lower 

bits of the next partial product  [41]. Figure 46 shows the partial products summation 

alignment with the one-hot encoding scheme.  
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 Figure 45. Radix-8 Booth Significand Multiplier 
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Table 19. Radix-8 Booth Encoding Table 

Positive Input Negative Input 
Input data Encoded Digit Input data Encoded Digit 

0000 0 1000 -4x 
0001 +1x 1001 -3x 
0010 +1x 1010 -3x 
0011 +2x 1011 -2x 
0100 +2x 1100 -2x 
0101 +3x 1101 -1x 
0110 +3x 1110 -1x 
0111 +4x 1111 0 

 

 

Figure 46. Partial Product Summation Tree (Using One Hot Encoding) 

 

5.4.1.1. Timing 
The basic floating-point multiplier was implemented using the automatic 

synthesis ASIC implementation design flow described in Section 3.6 and the 45nm 

standard cell libraries described in Section 3.7. The placed-and-routed design computes a 
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floating-point multiplication in 1.80ns, and the critical timing path of the FPM is detailed 

in Table 20. 

 

Table 20. Floating-Point Multiplier Critical Timing Path 

Sub-Circuit Latency (ns) 
Input External Delay  0.1 
Significand Preprocessor 0.28 

Significand Multiplier 0.47 
Exponent Processor 0.2 
Normalizer 0.15 
Shifter 0.2 
Rounder 0.2 
Assembler 0.1 
Output External Delay 0.1 
Total 1.80 

 

5.4.1.2. Place and Route Results 
Figure 47 shows the placed-and-routed FPM unit. The FPM unit occupies an area 

of 113μm by 113μm, with 75% utilization for gates/circuits and the remaining 25% for 

routing. 
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Figure 47. FPM Unit Routing 

 

Figure 48 shows the FPM unit placement. The major FPM sub-circuits are 

colored differently and the critical timing path is highlighted. 
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Figure 48. FPM Unit Placement with the Critical Timing Path Highlighted 

 

The FPM pure gates area is 9,482μm2. Table 21 lists the area distribution of the 

FPM main sub-circuits. 

 

 

 

 

 

 



 

 

83

Table 21. FPM Area Distribution 

Unit Area (μm2) % 
Special Case Detection 62 0.70 
Significand Preprocessor 1,464 15.40 
Significand Multiplier 5,617 59.20 
Exponent Processor 173 1.80 
Normalizer 278 2.90 
Shifter 1,185 12.50 
Rounder 382 4.00 
Flags Generation 13 0.10 
Assembler 170 1.80 
Miscellaneous 138 1.60 
Total 9,482 100.00 

 

5.4.1.3. Power and Energy Estimation Results 
Table 22 lists the power consumption of the FPM sub-circuits using the power 

estimation methodology described in Section  3.6.1. 

Table 22. FPM Unit Average Power Distribution 

Unit Power (mW) % 
Special Case Detection 0.18 0.83 
Significand Preprocessor 3.09 14.04 
Significand Multiplier 13.19 59.95 
Exponent Processor 0.40 1.82 
Normalizer 0.79 3.59 
Shifter 3.29 14.95 
Rounder 0.62 2.82 
Flags Generation 0.02 0.09 
Assembler 0.37 1.68 
Miscellaneous 0.05 0.23 
Total 22.00 100.00 

 

The energy consumption of the FPM unit can be calculated by multiplying the 

delay of the FPM unit by its power consumption which results in 39.6 pJ.  
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5.4.2. Floating-point Two-Term Serial Dot-Product (Serial DP) 
Unit  

Figure 49 shows the micro-architecture of the serial DP. One multiplier and one 

adder/subtracter are used to perform the multiplication and addition operations needed by 

the dot-product function. A finite state machine controls the operation of the serial DP 

unit. To perform the full dot-product operation 3 clock cycles are needed. 

 

 

Figure 49. Serial DP Micro-Architecture 
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5.4.2.1. Timing 
The serial DP was implemented using the automatic synthesis ASIC 

implementation design flow described in Section 3.6 and the 45nm standard cell libraries 

described in Section 3.7. The placed-and-routed design clock cycle time is 1.81ns as 

shown on Table 23. To perform the two-term dot-product operation three cycles are 

needed totaling 5.44ns. 

 

Table 23. Serial DP Critical Timing Path 

Sub-Circuit Latency (ns) 
Input External Delay  0.1 
FPM 1.61 
Output External Delay 0.1 
Total 1.81 

 

5.4.2.2. Serial DP Place and Route Results 
Figure 50 shows the placed-and-routed serial DP unit. The serial DP unit occupies 

an area of 135μm by 135μm with 75% utilization for gates/circuits and the remaining 

25% for routing. 

 



 

 

86

 

Figure 50. Serial DP Unit Routing 

 

Figure 51 shows the serial DP placement. The major serial DP sub-circuits are 

colored differently and the critical timing path is highlighted. 
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Figure 51. Serial DP Unit Placement 

 
The serial DP pure gates area is 13,787μm2. Table 24 lists the area distribution of 

the serial DP main sub-circuits. 

Table 24. Serial DP Unit Area Distribution 

Unit Area (μm2) % 
FPM 9,351 67.83 
FPA 3,836 27.82 
Storage Registers 600 4.35 
Total 13,787 100.00 
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5.4.2.3. Power and Energy Estimation Results 
Table 25 lists the power consumption of the serial DP sub-circuits using the 

power estimation methodology described in Section  3.6.1. 

Table 25. Serial DP Power Distribution 

Unit Average Power (mW) % 
FPM 20.34 75.64 
FPA 5.55 20.64 
Storage Registers 1 3.72 
Total 26.89 100.00 

 

The energy consumption of the serial DP unit can be calculated by multiplying 

the delay of the serial DP unit by its power consumption which results in 147.0 pJ.  

5.4.3. Floating-point Two-Term Parallel Dot-Product (Parallel 
DP) Unit  

The parallel DP unit was implemented using the architecture shown previously in 

Figure 35. Two floating-point multipliers operating in parallel in addition to one floating-

point adder/subtracter are used to realize the dot-product function. 

5.4.3.1. Timing 
The parallel DP unit was implemented using the automatic synthesis ASIC 

implementation design flow described in Section 3.6 and the 45nm standard cell libraries 

described in Section 3.7. The placed-and-routed design computes a floating-point dot-

product in 3.23ns. The critical timing path of the parallel DP is detailed in Table 26. 

Table 26. Parallel DP Unit Critical Timing Path 

Sub-Circuit Latency (ns) 
Input External Delay  0.10 
FPM 1.57 
FPA 1.46 
Output External Delay 0.10 
Total 3.23 



 

 

89

5.4.3.2. Place and Route Results 
Figure 52 shows the placed-and-routed parallel DP unit. The parallel DP unit 

occupies an area of 180μm by 180μm with 75% utilization for gates/circuits and the 

remaining 25% for routing. 

 
 

 

Figure 52. Parallel DP Unit Routing 

Figure 53 shows the parallel DP unit placement. The major parallel DP sub-

circuits are colored differently and the critical timing path is highlighted. 
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Figure 53. Parallel DP Unit Routing 

 

The parallel DP pure gates area is 24,043μm2. Table 27 lists the area distribution 

of the parallel DP main sub-circuits. 

 

Table 27. Parallel DP Area Distribution 

Unit Area (μm2) % 
FPM_1 9,595 39.9 
FPM_2 10,313 42.9 
FPA 4,135 17.2 
Total 24,043 100.0 
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5.4.3.3. Power and Energy Estimation Results 
Table 28 lists the power consumption of the parallel DP sub-circuits using the 

power estimation methodology described in Section  3.6.1. 

Table 28. Parallel DP Unit Average Power Distribution 

Unit Average Power (mW) % 
FPM_1 16.03 37.82 
FPM_2 19.22 45.34 
FPA 7.14 16.83 
Total 42.39 100 

 

The energy consumption of the parallel DP unit can be calculated by multiplying 

the delay of the parallel DP unit by its power consumption which results in 135.7 pJ.  

 

5.4.4. Floating-point Two-Term Fused Dot-Product (Fused DP) 
Unit  

The fused DP unit is realized using the architecture shown previously in Figure 

40. The fused DP unit sub-circuits functionality is the same as the FPA and FPM 

equivalent sub-circuits described previously. The major differences are including a 

second multiplier to multiply “c*d,” modifying the exponent compare circuit to handle 

the 4 exponents as shown in Figure 42, using the  new LZA block shown in Figure 43, 

and increasing the size of the carry save adder compression tree to accept an extra input.  

5.4.4.1. Timing 
The fused DP unit was implemented using the automatic synthesis ASIC 

implementation design flow described in Section 3.6 and the 45nm standard cell libraries 

described in Section 3.7. The placed and routed design computes a floating-point dot-

product in 2.72ns. The critical timing path of the fused DP unit is detailed in Table 29. 
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Table 29. Fused DP Unit Critical Timing Path 

Sub-Circuit Latency (ns) 
Input External Delay  0.1 
Significand Preprocessor 0.33 
Significand Multiplier 0.50 
Exponent Processor 0.22 
FPA 1.47 
Output External Delay 0.1 
Total 2.72 

 

5.4.4.2. Place and Route Results 
Figure 54 shows the placed-and-routed fused DP unit. The fused DP unit occupies 

an area of 147μm by 147μm with 75% utilization for gates/circuits and the remaining 

25% for routing. 



 

 

93

 

Figure 54. Fused DP Unit Routing 

 

Figure 55 shows the fused DP unit placement. The major fused DP unit sub-

circuits are colored differently and the critical timing path is highlighted. 
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Figure 55. Fused DP Unit Placement 

 

The fused DP unit pure gates area is 16,104 μm2. Table 30  lists the area 

distribution of the fused DP unit main sub-circuits. 
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Table 30. Fused DP Unit Area Distribution 

Unit Area (μm2) % 
Special Case Detection A & B 61 0.4 
Special Case Detection C & D 55 0.3 
Flags Generation 4 0 
Preprocess A and B 1,213 7.5 
Preprocess C and D 1,189 7.4 
Significand AxB Multiplier 4,646 28.8 
Significand CxD Multiplier 4,676 29 
Exponent AxB Processor 132 0.8 
Exponent CxD Processor 150 0.9 
CSA 4:2 257 1.6 
FPA 3,483 21.6 
Total 16,104 100.0 

 

5.4.4.3. Power and Energy Estimation Results 
Table 31 lists the power consumption of the fused DP unit sub-circuits using the 

power estimation methodology described in Section  3.6.1. 

Table 31. Fused DP Unit Power Distribution 

Unit Average Power (mW) % 
Special Case Detection A & B 0.09 0.27 
Special Case Detection C & D 0.10 0.29 
Flags Generation 0.00 0.01 
Preprocess A and B 2.59 7.64 
Preprocess C and D 2.51 7.40 
Significand AxB Multiplier 9.45 27.88 
Significand CxD Multiplier 9.39 27.70 
Exponent AxB Processor 0.26 0.77 
Exponent CxD Processor 0.32 0.94 
CSA 4:2 0.58 0.91 
FPA 7.66 22.60 
Miscellaneous 0.98 2.89 
Total 33.90 100.00 
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The energy consumption of the fused DP unit can be calculated by multiplying 

the delay of the fused DP unit by its power consumption which results in 92.5 pJ. 

 

5.5 Dot-Product Unit Implementation Results Summary 

The following tables and figures summarize the implementation results of the dot-

product units implemented in this chapter by using the floating-point multiplier delay, 

area, power, and energy figures as the reference. The implementation results (listed in 

Table 33 - Table 35) show that the fused DP unit is faster than both of the serial and the 

parallel approaches, consumes less power than the parallel approach, and consumes less 

energy than either of the conventional approaches.  
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Table 32. Two-Term Dot-Product Unit Delay Comparison 

Unit Delay (ns) % of FPM 
FPA 1.64 91 
FPM 1.80 100 
Serial DP 5.44 301 
Fused DP 2.72 151 
Parallel DP 3.23 179 
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Figure 56.  Two-Term Dot-Product Unit Delay Comparison 

 

 

 

 

 

 



 

 

98

Table 33. Two-Term Dot-Product Unit Area Comparison 

Unit Area (μm2) % of FPM
FPA 3,811 40 
FPM 9,482 100 
Serial DP 13,787 145 
Fused DP 16,104 170 
Parallel DP 24,043 254 
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Figure 57. Two-Term Dot-Product Unit Area Comparison 
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Table 34. Two-Term Dot-Product Unit Power Consumption Comparison 

Unit Average Power (mW) % of FPM
FPA 6.76 31 
FPM 22.00 100 
Serial DP 26.89 122 
Fused DP 33.90 154 
Parallel DP 42.39 193 
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Figure 58.  Two-Term Dot-Product Unit Power Consumption Comparison 
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Table 35. Two-Term Dot-Product Unit Energy Consumption Comparison 

Unit Energy (pJ) % of FPM 
FPA 11.5 29 
FPM 39.6 100 
Serial DP 147.0 370 
Fused DP 92.5 233 
Parallel DP 135.7 341 
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Figure 59.  Two-Term Dot-Product Unit Energy Consumption Comparison 

 

This chapter presented the implementation results of a floating-point fused dot-

product unit, in addition to the implementation results of a floating-point multiplier, serial 

DP and parallel DP.  

The fused DP unit achieved better performance than the parallel DP unit, with the 

added benefit of being 33% smaller in area. The fused DP unit had an area overhead of 
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25% in comparison to the serial DP.  The power consumption of the fused DP unit was 

midway between the serial and parallel approach.  The energy consumed by the fused DP 

unit is 38% less than the serial approach and 32% less than the energy consumed by the 

parallel approach which makes the fused DP unit more suitable for battery operated 

devices. 

The fused DP unit (the implementation results using a Bulk-CMOS, SOC 45nm 

process) was introduced to the research community, and published in  [34]. 

Although it is not especially attractive for DSP processors, a system could use this 

unit to replace a floating-point adder and a floating-point multiplier. If operands B and D 

are set to one, then the unit will perform addition only, with simple data forwarding 

multiplexers for operands A and C to skip the multiplication trees. The speed of the 

addition will be one multiplexer delay more than a discrete floating-point adder. Also the 

fused DP unit could be used to perform multiplication of   C * D only by setting A or B 

to zero and use data forwarding multiplexers to skip the alignment circuit. In this case, 

there will be an extra delay of two multiplexer operations. 
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Chapter 6 Floating-Point Fused Radix-2 and 
Radix-4 FFT Butterfly Units 

 

This chapter introduces a floating-point fused radix-2 FFT butterfly unit and a 

floating-point fused radix-4 FFT butterfly unit. These units use the  IEEE-754 single-

precision format and support all rounding modes. The area of the fused butterfly designs 

are smaller than that of conventional butterflies implemented with discrete floating-point 

multipliers and adders. The fused butterflies are faster, consume less power and consume 

less energy. The fused butterfly designs use fewer rounding operations compared to the 

discrete butterflies, thus making the fused butterflies results more accurate. 

6.1 Radix-2 FFT Butterfly 

The butterfly is the operation that is central to performing the FFT. The speed, 

area, power consumption and energy consumption of the butterfly operation have a direct 

impact on the overall performance of the FFT. This section investigates the 

implementation of the floating-point radix-2 DIF butterfly unit shown in Figure 60. It 

performs the following operations: 

( )
x a b
y a b w
= +
= − ×

                                                                                               ( 6) 

re ima ja+

re imb jb+

re imw jw+

re imx jx+

re imy jy+

 

Figure 60. Radix-2 FFT Butterfly Unit Concept 
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6.1.1. Radix-2 Butterfly Design Approach 
There are multiple conventional approaches that can be taken for an 

implementation of the floating-point radix-2 FFT butterfly function. Two of the 

possible implementations are the parallel approach (shown in Figure 61), and the 

serial approach (shown in Figure 62). The parallel implementation uses six adders 

and four multipliers that operate in parallel. The serial implementation uses two 

adders, a multiplier, as well as multiplexers and storage elements to realize the 

butterfly function. 
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i ma
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imw
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imb rew
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imw rey

  

Figure 61. Parallel Implementation of Radix-2 Decimation in Frequency FFT 
Butterfly Unit 
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±
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Figure 62. Serial Implementation of Radix-2 Decimation in Frequency FFT 
Butterfly Unit 

 

The parallel approach requires two adds and one multiply operation in series 

while the serial approach requires four add operations, followed by 4 multiply 

operations followed by two add operations all in series. If pipelined the parallel 

approach requires a latency of 3 clock cycles, where the clock cycle is long enough 

to perform the slower of a floating-point add or a floating-point multiply. After filing 

the pipeline, it can perform another butterfly on each clock cycle. The serial 

approach could have the same clock rate as the parallel pipelined approach. 

However, the serial approach will require 10 clock cycles per butterfly: 2 clock 

cycles to perform the two adds needed to generate rex  and imx , 2 clock cycles to 

perform the two subtracts needed to generate re rea b−  and im ima b− , then 4 cycles to 

perform the 4 multiply operations  with the twiddle factor’s real and imaginary parts; 

and finally 2 cycles to perform the final add and subtract operation needed to 

generate  rey  and imy .   

This research introduces another approach based on using the following 

floating-point primitives: the fused add-subtract (fused AS) and the fused two-term 

dot-product (fused DP) units introduced in Chapters 4 and 5, respectively. As shown 
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in Figure 63, the fused radix-2 FFT butterfly can be realized using two fused add-

subtract units and two fused two-term dot-product units. 
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Figure 63. Fused Radix-2 Decimation in Frequency FFT Butterfly Unit 

 

6.2 Radix-4 FFT Butterfly 

The Radix-4 FFT is an algorithm to perform the FFT where the basic computation 

element is a 4-point FFT. The Radix-4 FFT algorithm reduces the number of stages 

needed for the FFT algorithm at the expense of more computation in the radix-4 FFT 

butterfly unit. The main advantage of the radix-4 FFT, when compared to a same size 

radix-2 FFT, is that the radix-4 FFT reduces the number of complex multiplications by 

about 25%  [32], it also achieves a data rate that is four times the clock rate while the 

radix-2 butterfly data rate is only twice the clock rate. Figure 64 shows the operation 
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performed by a radix-4 decimation in time FFT butterfly. A radix-4 FFT butterfly 

requires three complex multiplications and eight complex additions. 

 

 

Figure 64 Radix-4 Decimation in Time FFT Butterfly Unit 

 

Figure 65 shows a parallel realization of the radix-4 FFT butterfly using basic 

adders and multipliers. A total of 12 multipliers and 22 adders are needed to 

implement a parallel discrete parallel radix-4 FFT butterfly.  
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Figure 65 Parallel Implementation of Radix-4 Decimation in Time FFT Butterfly 
Unit 

 

The fused primitives fused AS and fused DP can be used to realize the radix-

4 FFT butterfly. Figure 66 shows a parallel realization of the radix-4 FFT butterfly 

using fused AS and fused DP primitives. A total of six fused DP units and eight 

fused AS units are needed to implement the parallel radix-4 FFT butterfly.  
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Figure 66 Fused Radix-4 Decimation in Time FFT Butterfly Unit 

 

 

6.3 Butterfly Unit Implementation Results 

To show the merits of using the fused AS and fused DP primitives in the 

realization of the FFT butterflies, the following units were designed: 

• Floating-point discrete parallel radix-2 FFT butterfly unit: basic floating 

point adders and floating-point multipliers were used to realize this unit’s 

design (as shown in Figure 61). 
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• Floating-point fused radix-2 FFT butterfly unit: the fused AS and fused 

DP primitives presented in Chapters 4 and 5, respectively, were used to 

realize this design (as shown in Figure 63). 

• Floating-point discrete parallel radix-4 FFT butterfly unit: basic floating 

point adders and floating-point multipliers were used to realize this unit’s 

design (as shown in Figure 65). 

• Floating-point fused radix-4 FFT butterfly unit: the fused AS and fused 

DP primitives presented in Chapters 4 and 5, respectively, were used to 

realize this design (as shown in Figure 66). 

This section presents the implementation results of the above units using the 

45nm standard cell libraries and the implementation flow presented in Section 3.6. 

6.3.1. Floating-point Discrete Parallel Radix-2 FFT Butterfly 
The discrete parallel radix-2 butterfly unit was realized using the architecture 

shown in Figure 61. The discrete  parallel radix-2 butterfly unit building blocks are the 

FPA’s and FPM’s introduced in Chapters 4 and 5.  

6.3.1.1.  Timing 
The discrete parallel radix-2 butterfly unit was implemented using the automatic 

synthesis ASIC implementation design flow described in Section 3.6 and the 45nm 

standard cell libraries described in Section 3.7. The placed and routed design performs 

the radix-2 butterfly function in 4.60ns. The critical timing path of the discrete parallel 

radix-2 butterfly unit is detailed in Table 36. 
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Table 36. Floating-Point Discrete Parallel Radix-2 FFT Butterfly Critical Timing 
Path 

Sub-Circuit Latency (ns) 
Input External Delay  0.10 
FPA_3 1.45 
FPM_3 1.61 
FPA_5 1.44 
Output External Delay 0.10 
Total 4.70 

 

6.3.1.2. Place and Route Results 
Figure 54 shows the placed-and-routed discrete parallel radix-2 butterfly unit. The 

discrete parallel radix-2 butterfly unit occupies an area of 313μm by 313μm with a 75% 

utilization for gates/circuits and the remaining 25% for routing. 
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Figure 67. Floating-Point Discrete Parallel Radix-2 FFT Butterfly Unit Routing 

 

Figure 55 shows the discrete parallel radix-2 butterfly unit placement. The major 

discrete parallel radix-2 butterfly unit sub-circuits are colored differently and the critical 

timing path is highlighted. 
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Figure 68. Floating-Point Discrete Parallel Radix-2 FFT Butterfly Unit Placement 

 

 

The discrete parallel radix-2 butterfly unit pure gate area is 72,572 μm2. Table 37  

lists the area distribution of the discrete parallel radix-2 butterfly unit main sub-circuits. 
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Table 37. Floating-Point Discrete  Parallel Radix-2 FFT Butterfly Unit Area 
Distribution 

 

 

6.3.1.3. Power and Energy Estimation Results 
Table 38 lists the power consumption of the discrete parallel radix-2 butterfly 

unit’s sub-circuits using the power estimation methodology described in Section  3.6.1.  

Table 38. Floating-Point Discrete Parallel Radix-2 FFT Butterfly Unit Power 
Distribution 

Unit Power (mW) % 
fpa_1 5.7 5.5 
fpa_2 6.1 5.9 
fpa_3 5.8 5.6 
fpa_4 5.9 5.7 
fpa_5 7.1 6.9 
fpa_6 6.9 6.7 
fpm_1 15.2 14.7 
fpm_2 15.2 14.7 
fpm_3 17.3 16.8 
fpm_4 16.9 16.4 
misc. 1.1 1.1 
Total 103.2 100.0 

 

Unit Area (μm2) % 
fpa_1 3,424 4.7 
fpa_2 4,100  5.6 
fpa_3 3,503 4.8 
fpa_4 3,691 5.1 
fpa_5 4,890 6.7 
fpa_6 4,721 6.5 
fpm_1 10,995 15.2 
fpm_2 11,003 15.2 
fpm_3 12,984 17.9 
fpm_4 12,850 17.7 
misc. 411 0.6 
Total 72,572 100.0 
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The energy consumption of the discrete parallel Radix-2 FFT Butterfly unit can 

be calculated by multiplying the delay of the discrete parallel Radix-2 FFT Butterfly unit 

by its power consumption which results in 485.0 pJ. 

6.3.2. Floating-point Fused Radix-2 FFT Butterfly Unit 
The fused radix-2 FFT butterfly unit was realized using the architecture shown 

previously in Figure 63. The fused radix-2 FFT butterfly sub-circuits are the fused AS 

and the fused DP primitives introduced in Chapters 4 and 5, respectively.  

6.3.2.1.  Timing 
The fused radix-2 FFT butterfly was implemented using 45nm standard cell 

libraries, and the implementation flow presented in  Chapter 3. The placed-and-routed 

design performs the floating-point radix-2 butterfly function in 4.0ns. The critical timing 

path of the fused radix-2 FFT butterfly is listed in Table 39. 

 

 

Table 39. Floating-Point Radix-2 Fused Butterfly Critical Timing Path 

 
Sub-Circuit Latency (ns) 
Input External Delay  0.10 
Fused AS_1 1.4 
Fused DP_1 2.42 
Output External Delay 0.10 
Total 4.0 

 

6.3.2.2. Place and Route Results 
Figure 69 shows the placed-and-routed fused radix-2 FFT butterfly unit. The 

fused radix-2 FFT butterfly unit occupies an area of 253μm by 253μm with 75% 

utilization for gates/circuits and the remaining 25% for routing. 
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Figure 69. Floating-Point Fused  Radix-2 Butterfly Unit Routing 

 

Figure 70 shows the fused radix-2 FFT butterfly unit placement. The major fused 

radix-2 FFT butterfly unit sub-circuits are colored differently and the critical timing path 

is highlighted. 
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Figure 70. Floating-Point Fused  Radix-2 Butterfly Unit Placement 

 

The fused radix-2 FFT butterfly unit pure gates area is 47,489 μm2. Table 40  lists 

the area distribution of the fused radix-2 FFT butterfly unit main sub-circuits. 
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Table 40. Floating-Point Radix-2 Fused Butterfly Unit Area Distribution 

Unit Area (μm2) % 
Fused AS_1 5,654 11.9 
Fused AS_2 5,829 12.3 
Fused DP_1 17,926 37.7 
Fused DP_2 17,825 37.5 
Miscellaneous 255 0.5 
Total 47,489 100.0 

 

6.3.2.3. Power and Energy Estimation Results 
Table 41 lists the power consumption of the fused radix-2 FFT butterfly unit sub-

circuits using the power estimation methodology described in Section  3.6.1. 

Table 41. Floating-Point Radix-2 Fused Butterfly Unit Power Distribution 

Unit Average Power (mW) % 
Fused AS_1 7.8 12.70 
Fused AS_2 7.9 12.90 
Fused DP_1 22.5 36.70 
Fused DP_2 22.5 36.70 
Miscellaneous 0.7 1.07 
Total 61.5 100.00 

 

The energy consumption of the fused Radix-2 Butterfly unit can be calculated by 

multiplying the delay of the fused Radix-2 Butterfly unit by its power consumption which 

results in 246.0 pJ. 

 

6.3.3. Floating-point Discrete Parallel Radix-4 FFT Butterfly Unit 
The discrete parallel radix-4 FFT butterfly unit was realized using the architecture 

shown previously in Figure 65. The discrete parallel radix-4 FFT butterfly unit building 

blocks are the FPA’s and FPM’s introduced in Chapters 4 and 5, respectively. 
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6.3.3.1.  Timing 
The discrete parallel radix-4 FFT butterfly unit was implemented using the 

automatic synthesis ASIC implementation design flow described in Section 3.6 and the 

45nm standard cell libraries described in Section 3.7. The placed–and-routed design 

performs the floating-point radix-4 FFT butterfly function in 6.9ns. The critical timing 

path of the discrete parallel radix-4 FFT butterfly unit is detailed in Table 42. 

Table 42. Floating-Point Discrete Parallel Radix-4 FFT Butterfly Critical Timing 
Path 

Sub-Circuit Latency (ns) 
Input External Delay  0.10 
CMUL_1 3.53 
CADD_1_1 1.56 
CADD_2_1 1.61 
Output External Delay 0.10 
Total 6.90 

 

6.3.3.2. Place and Route Results 
Figure 71 shows the placed-and-routed discrete parallel radix-4 FFT butterfly 

unit. The discrete parallel radix-4 FFT butterfly unit occupies an area of 581μm by 

581μm with 75% utilization for gates/circuits and the remaining 25% for routing. 
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Figure 71. Floating-Point Discrete Parallel Radix-4 FFT Butterfly Unit Routing 

 

Figure 72 shows the discrete parallel radix-4 FFT butterfly unit placement. The 

major discrete parallel radix-4 FFT butterfly unit sub-circuits are colored differently and 

the critical timing path is highlighted. 
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Figure 72. Floating-Point Discrete Parallel Radix-4 FFT Butterfly Unit Placement 

 

The discrete parallel radix-4 FFT butterfly unit pure gates area is 250,099 μm2. 

Table 43  lists the area distribution of the discrete parallel radix-4 FFT butterfly unit main 

sub-circuits. 
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Table 43. Floating-Point Radix-4 Discrete Parallel FFT Butterfly Unit Area 
Distribution 

Unit Area (μm2) % 
cmul1 57,767 23.1 
cmul2 55,609 22.2 
cmul3 58,457 23.4 
cadd_1_1 9,379 3.8 
cadd_1_2 8,731 3.5 
cadd_1_3 9,768 3.9 
cadd_1_4 9,710 3.9 
cadd_2_1 9,898 4.0 
cadd_2_2 9,666 3.9 
cadd_2_3 9,647 3.9 
cadd_2_4 9,494 3.8 
Miscellaneous 1,973 0.8 
Total 250,099 100.0 

6.3.3.3. Power and Energy Estimation Results 
Table 44 lists the power consumption of the discrete parallel radix-4 FFT butterfly 

unit’s sub-circuits using the power estimation methodology described in Section  3.6.1. 

Table 44. Floating-Point Radix-4 Discrete Parallel FFT Butterfly Unit Power 
Distribution 

Unit Power (mW) % 
cmul1 71.1 23.5 
cmul2 67.6 22.4 
cmul3 71.0 23.5 
cadd_1_1 10.9 3.6 
cadd_1_2 10.0 3.3 
cadd_1_3 11.3 3.7 
cadd_1_4 11.2 3.7 
cadd_2_1 11.2 3.7 
cadd_2_2 11.0 3.7 
cadd_2_3 11.0 3.6 
cadd_2_4 10.8 3.6 
Miscellaneous 4.7 1.6 
Total 302.1 100.0 
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The energy consumption of the discrete parallel Radix-4 Butterfly unit can be 

calculated by multiplying the delay of the discrete parallel Radix-4 Butterfly unit by its 

power consumption which results in 2084.0 pJ. 

 

6.3.4. Floating-point Fused Radix-4 FFT Butterfly 
The fused radix-4 FFT butterfly unit was realized using the architecture shown in 

Figure 66. The fused radix-4 FFT butterfly unit sub-circuits are the fused AS and the 

fused DP primitives introduced in Chapters 4 and 5, respectively.  

6.3.4.1.  Timing 
The fused radix-4 FFT butterfly unit was implemented using 45nm standard cell 

libraries and the implementation flow presented in  Chapter 3. The placed-and-routed 

design performs the radix-4 FFT butterfly function in 6.0ns. The critical timing path of 

the fused radix-4 FFT butterfly unit is detailed in Table 45. 

 

Table 45. Floating-Point Fused Radix-4 FFT Butterfly Critical Timing Path 

 
Sub-Circuit Latency (ns) 
Input External Delay  0.10 
CMUL_1 2.52 
Fused AS_1_2 1.61 
Fused AS_2_4 1.67 
Output External Delay 0.10 
Total 6.00 
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6.3.4.2. Place and Route Results 
Figure 73 shows the placed-and-routed fused radix-4 FFT butterfly unit. The 

fused radix-4 FFT butterfly unit occupies an area of 499μm by 499μm with 75% 

utilization for gates/circuits and the remaining 25% for routing. 

 

 

Figure 73. Floating-Point Fused Radix-4 Butterfly Unit Routing 

 

Figure 74 shows the fused radix-4 FFT butterfly unit placement. The major fused 

radix-4 FFT butterfly unit sub-circuits are colored differently and the critical timing path 

is highlighted. 
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Figure 74. Floating-Point Fused Radix-4 Butterfly Unit Placement 

 

The fused radix-4 FFT butterfly unit pure gates area is 184,184 μm2. Table 46 lists 

the area distribution of the fused radix-4 FFT butterfly unit main sub-circuits. 
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Table 46. Floating-Point Fused Radix-4 FFT Butterfly Unit Area Distribution 

Unit Area (μm2) % 
cmul1 44,143 24.0 
cmul2 37,783 20.5 
cmul3 44,487 24.2 
Fused AS_1_1 7,037 3.8 
Fused AS_1_2 7,570 4.1 
Fused AS_1_3 6,892 3.7 
Fused AS_1_4 6,770 3.7 
Fused AS_2_1 7,167 3.9 
Fused AS_2_2 7,100 3.9 
Fused AS_2_3 7,351 4.0 
Fused AS_2_4 7,186 3.9 
Miscellaneous 699 0.4 
Total 184,184 100.0 

6.3.4.3. Power and Energy Estimation Results 
Table 47 lists the power consumption of the fused radix-4 FFT butterfly unit’s 

sub-circuits using the power estimation methodology described in Section  3.6.1. 

Table 47. Floating-Point Fused Radix-4 FFT Butterfly Unit Power Distribution 

Unit Power (mW) % 
cmul1 56.6 25.1 
cmul2 44.0 19.5 
cmul3 56.9 25.2 
Fused AS_1_1 8.4 3.7 
Fused AS_1_2 9.1 4.1 
Fused AS_1_3 7.9 3.5 
Fused AS_1_4 7.6 3.4 
Fused AS_2_1 8.4 3.7 
Fused AS_2_2 8.2 3.6 
Fused AS_2_3 8.6 3.8 
Fused AS_2_4 8.3 3.7 
Miscellaneous 1.5 0.7 
Total 225.4 100.0 
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The energy consumption of the fused Radix-4 Butterfly unit can be calculated by 

multiplying the delay of the fused Radix-4 Butterfly unit by its power consumption which 

results in 1352.0 pJ. 

 

6.4 Butterfly Unit Implementation Results Summary 

This chapter presents the implementation results of: 

• Floating-point discrete parallel radix-2 FFT butterfly. 

• Floating-point fused radix-2 FFT butterfly. 

• Floating-point discrete parallel radix-4 FFT butterfly 

• Floating-point fused radix-4 FFT butterfly. 

The following tables and figures summarize the implementation results of the 

units presented in this chapter. 
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Table 48. Butterfly Unit Delay Comparison 

Unit Delay (ns) 
Discrete Radix-2 Butterfly 4.7 
Fused Radix-2 Butterfly 4.0 
Discrete Radix-4 Butterfly 6.9 
Fused Radix-4 Butterfly 6.0 
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Figure 75. Butterfly Unit Delay Comparison 
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Table 49. Butterfly Unit Area Comparison 

Unit Area (μm2) 
Discrete Radix-2 Butterfly 72,572 
Fused Radix-2 Butterfly 47,489 
Discrete Radix-4 Butterfly 250,099 
Fused Radix-4 Butterfly 184,184 

 

 

Figure 76. Butterfly Unit Area Comparison 
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Table 50. Butterfly Unit Power Comparison 

Unit Average Power (mW)
Discrete Radix-2 Butterfly 103.2 
Fused Radix-2 Butterfly 61.5 
Discrete Radix-4 Butterfly 302.1 
Fused Radix-4 Butterfly 225.4 
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Figure 77. Butterfly Unit Power Comparison 
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Table 51. Butterfly Unit Energy Consumption Comparison 

Unit Energy (pJ) 
Discrete Radix-2 Butterfly 485 
Fused Radix-2 Butterfly 246 
Discrete Radix-4 Butterfly 2084 
Fused Radix-4 Butterfly 1352 
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Figure 78. Butterfly Unit Energy Consumption Comparison 

 

The fused radix-2 and radix-4 butterfly units achieved smaller area, less delay and 

lower power and energy consumption when compared to the discrete parallel radix-2 and 

parallel radix-4 butterfly units. The fused radix-2 butterfly unit has been introduced, and 

the implementation results (using a Bulk-CMOS, SOC 45nm process) were published in 

 [35]. 



 

 

131

6.5 Butterfly Unit Error Analysis 

To study the accuracy difference between the fused butterflies and the discrete 

parallel butterflies, the following flow was used: 

1. Stimulus generation: 

a. A set of 65,536 random numbers that covers the full range of IEEE 

single precision floating-point numbers was generated. 

b. The “RANDC” function was used to generate these numbers 

guaranteeing that the same number will not repeat. 

2. Simulation: 

a. The stimulus generated in step 1 above was used as an input to the 

following RTL models: 

• Discrete parallel radix-2 butterfly 

• Discrete parallel radix-4 butterfly 

• Fused radix-2 butterfly 

• Fused radix-4 butterfly 

• RTL model for 64K radix-2 FFT using the discrete parallel 

radix-2 and fused radix-2 butterflies 

• RTL model for 64K radix-4 FFT using the discrete parallel 

radix-4 and fused radix-4 butterflies. 

b. The same stimulus vector was applied to floating-point double-

precision Matlab models for the radix-2 butterfly,  radix-4 

butterfly, and Matlab models for 64K radix-2 FFT and 64K radix-4 

FFT. 

c. The results from 2.a and 2.b were used to generate an error vector 

for each RTL model computation versus the Matlab double-

precision model. 

3. Data Presentation: 
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a. The error vectors for each RTL model were used to create an error 

distribution histogram. A curve fitting function was used to create 

a histogram curve. 

b. The histogram fitting curves for the fused and discrete units were 

plotted on the same figures. 

Figure 79 shows a block diagram of the error analysis flow.  Table 52 depicts the 

input and output data range for the butterfly and FFT error simulation experiments. For 

the FFT error simulation, since the output is complex data the values shown in the table 

are the resulting complex outputs with the minimum and maximum absolute magnitude. 

The error analysis results for each of the units presented in this chapter are shown in 

Figures 80 to 83. 

 

 Figure 79. Error Analysis Experiments Block Diagram 

Table 52. Input and Output Data Range for the Error Analysis Experiments 

BF Simulation Input Data Range Min. Output Max. Output 
Radix-2 Butterfly -3x10-38 to 3x10+38 -3.00x10+37 2.55x10+37 
Radix-4 Butterfly -3x10-38 to 3x10+38 -1.93x10+38 1.93x10+38 

FFT Simulation Input Data Range Min. Magnitude Output Max. Magnitude Output 
Radix-2 FFT -3x10-36 to 3x10+36 7.92x10+35 -j *3.51x10+35  -9.55x10+37 +j *1.84x10+38 
Radix-4 FFT -3x10-36 to 3x10+36 2.42x10+35 -j *3.57x10+34 2.02x10+38 +j *5.69x10+37 
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Figure 80. Radix-2 Butterfly Unit Errors Using 64K Random Input Vector 
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Figure 81. Radix-4 Butterfly Unit Errors Using 64K Random Input Vector 
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Figure 82. Radix-2 64K FFT Based on Discrete and Fused Radix-2 Butterflies 
Errors Using 64K Random Input Vector 
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Figure 83. Radix-4 64K FFT Based on Discrete and Fused Radix-4 Butterflies 
Errors Using 64K Random Input Vector 

 

The error simulation results (shown in Figures 83 and 84) show that the butterfly 

and the FFT computations using the fused butterfly units are slightly more accurate than 

the butterflies and FFT computations using the discrete butterfly units. These results are 

expected because the fused butterflies (due to the use of fused DP units) have fewer 

rounding operations compared to the discrete butterflies. It is expected that the radix-4 

FFT would have less error than the radix-2 FFT because radix-4 FFT reduces the number 

of needed complex multiplications by about 25%  [32]. 
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 Figure 84. FFT Butterflies Error Simulation Max and Average Error 
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Figure 85. 64K FFT Error Simulation Max and Average Error 
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Chapter 7 Conclusion 
 

The prior art to realize floating-point DSP hardware falls into one of two 

categories: a serial approach used for applications with low area, power and energy 

budgets, while for applications that need to achieve high speed processing, the parallel 

approach is used with a large increase on the area, and power consumption.  

To address the above challenge in the current approaches for floating-point DSP 

hardware realization, this research has examined the use of two new floating-point 

primitives for speeding up digital signal processing hardware; a floating-point fused two-

term dot-product (fused DP) unit, and a floating-point fused add-subtract (fused AS) unit. 

The new fused units use the IEEE-754 single-precision format and support all rounding 

modes.  

The proposed fused architectures have been specifically designed to address the 

problems of high latency, area, and power consumption for the floating-point 

implementation of DSP algorithms.  

The implementation results using a 45nm industry standard process and an 

automatic synthesis ASIC standard-cell implementation flow show that the fused 

primitives are faster, smaller, use less power and energy than the parallel approaches and 

provide a slightly more accurate result. 

7.1 The Key Contributions  

The design of a floating-point fused add-subtract unit has been presented. The 

fused add-subtract unit performs both add and subtract operations at almost the same 

speed as a conventional floating-point adder with an area that is 80% of the area of the 

conventional parallel approach. The power consumed by the fused add-subtract is 79% of 

the power needed for the conventional parallel approach, and 47% more than the power 

consumed by the serial approach. The energy consumed by the fused AS unit is 30% less 
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than the serial approach and 22% less than the energy consumed by the parallel approach 

which makes the fused add-subtract unit attractive for battery operated devices. 

The implementation results for the three design options for add-subtract function 

are compared in Figure 86 for delay, area, power and energy consumption. 
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Figure 86. Add-Subtract Unit Comparison 

 

The design of a floating-point fused two-term dot-product unit has been 

presented. The area and latency of the serial and parallel conventional approaches 

(including the multiplexers and register) and the fused two-term dot-product unit were 

compared. The area of the fused two-term dot-product unit is 17% larger than the 

conventional serial and 33% smaller than the conventional parallel approaches. Its 

latency is about 85% of the conventional parallel approach and about half of the 

conventional serial approach. The power consumed by the fused two-term dot-product 

unit is 26% more than the serial approach and 20% less than the power consumed by the 
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parallel approach. The energy consumed by the fused two-term dot-product unit is 28% 

less than the serial approach and 21% less than the energy consumed by the parallel 

approach which makes the fused two-term dot-product unit attractive for battery operated 

devices. The fused two-term dot-product unit result is slightly more accurate than both 

the serial and parallel approaches because one rounding operation is performed instead of 

three rounding operations for the other approaches.  

The three design options implementation results for the two-term dot-product 

function are compared in Figure 87 for delay, area, power, and energy consumption. 
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Figure 87. Two-Term Dot-Product Function Design Options Comparison 

 

The design of the fused radix-2 decimation in frequency FFT butterfly was 

introduced. The area of the fused butterfly is 35% smaller, the latency is 15% less, and 

the power consumption is 40% less and the energy consumptions is 49% less than the 

discrete radix-2 parallel implementation. The fused radix-2 butterfly has one rounding 

operation in the fused two-term dot-product unit, while the discrete butterfly needs 3 

rounding operations, so the fused butterfly results are slightly more accurate. The two 
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implementation results for the radix-2 FFT butterfly function are compared in Figure 88 

for delay, area, power, and energy consumption. 
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Figure 88. Radix-2 FFT Butterfly Design Options Comparison 

 

The design of a fused radix-4 FFT butterfly was introduced. The area of the fused 

butterfly is 26% smaller, the latency is 13% less and the power consumption is 25% less 

and the energy consumed by the fused radix-4 butterfly is 35% less than the discrete 

parallel implementation. The fused radix-4 butterfly also needs fewer rounding 

operations which results in a slightly more accurate result than the discrete radix-4 

butterfly approach. The two implementation results for the radix-4 FFT butterfly function 

are compared in Figure 89 for delay, area, power and energy consumption. 
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Figure 89. Radix-4 FFT Butterfly Design Options Comparison 

 

The error simulation data shows that the numerical results generated by the fused 

radix-2 and radix-4 butterflies are more accurate than the results from the discrete radix-2 

and radix-4 butterflies whether the butterflies were used individually or as part of FFT 

computation. Figure 90 shows the max and average errors recorded for the radix-2 and 

radix-4 butterflies as a percentage of the discrete radix-4 butterfly max and average 

errors, respectively, while Figure 91 shows the max and average errors recorded for 64K 

FFT calculation using the radix-2 and radix-4 butterflies as a percentage of the discrete 

radix-4 64K FFT max and average errors, respectively. 
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7.2 Future Research 

The fused add-subtract and fused two-term dot-product primitive units can be 

used to realize many other DSP algorithms, including the basic butterfly computation of 

the discrete cosine transform and many forms of the wavelet transform. 

The proposed fused add-subtract and two-term dot-product designs were 

implemented with no pipelines. The two units could be redesigned employing pipelining 

to achieve higher operation speeds. If proper pipeline gating were employed, then power 

consumption could be reduced as well. 

The fused two-term dot-product unit can be modified to perform two-term 

addition, two-term subtraction, and fused multiply add. If the implementation results 

show a reasonable overhead over an equivalent fused multiply-add unit then the enhanced 

fused two-term dot-product unit could be used as a building block for microprocessors 

and digital signal processors. 

Last but not least, the fusing concept could be extended to other types of 

computation extensive applications and might result in delay, area and power 

consumption reduction. 
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