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Abstract— In this paper we present several strategies for
multiple relay networks which are constrained by a half-duplex
operation, i. e., each node either transmits or receives on a
particular resource. Using the discrete memoryless multiple relay
channel we present achievable rates for a multilevel partial
decode-and-forward approach which generalizes previous results
presented by Kramer and Khojastepour et al.. Furthermore,
we derive a compress-and-forward approach using a regular
encoding scheme which simplifies the encoding and decoding
scheme and improves the achievable rates in general. Finally,
we give achievable rates for a mixed strategy used in a four-
terminal network with alternately transmitting relay node s.

I. I NTRODUCTION

Infrastructure based wireless communications systems as
well as ad hoc networks form an integral part of our everyday
life. An increased density and availability of mobile terminals
pose the question which techniques next generation networks
shall employ to improve reliability and data rate. One way
to exploit the capabilities of these networks is the use of
relay nodeswhich support communication pairs. The idea of
relaying was introduced in [1] and substantially refined forthe
three-terminal case in [2].

More recent publications focus their attention on relay
networks of arbitrary size, e. g., [3] presents general cod-
ing strategies using differentdecode-and-forward(DF) and
compress-and-forward(CF) approaches. When relay nodes are
cooperating using decode-and-forward, they must decode the
complete source message and provide additional information
similar to Slepian-Wolf coding [4]. In contrast, when following
a compress-and-forward approach, each relay quantizes its
own channel output which has to be decoded by the actual
information sink (similar to Wyner-Ziv coding [5]).

Practical restrictions as well as cost issues imply anor-
thogonality constrainton relay nodes, i. e., in contrast to the
previously mentioned work we consider half-duplex terminals
which either transmit or listen on a particular resource. First
information-theoretical results considering this constraint were
presented for the three-terminal network in [6], [7]. For the
N -terminal case, [8] derives upper bounds on the achievable
rates. While these papers assume fixed transmission schedules
known to all nodes, a new strategy was presented in [9] for the
three-terminal case where the node states, i. e., sleep, listen or
transmit, are used to exchange information.

In the sequel we will take up the idea of [9] and present
more general formulations for relay networks of arbitrary size.
First, we introduce in Section II the channel model for the
half-duplex multiple relay network. Afterwards, we discuss
in Section III a partial decode-and-forward protocol based

on the regular encoding approach introduced in [10]. Then,
we present in Section IV a generalized compress-and-forward
approach using a regular encoding structure which might be of
interest for other problems such as the successive refinement
problem [11]. Finally, we derive a mixed protocol for two
alternately transmitting relay nodes in Section V. This scheme
is dedicated to an application in wireless networks where each
relay has only sufficient channel conditions either to the source
or destination.

II. N ETWORK MODEL, NOMENCLATURE AND DEFINITIONS

In the following we will use non-italic uppercase letters
X to denote random variables, non-italic lowercase letters
x to denote events of a random variable (r.v.) and italic
letters (N or n) to denote constant values. Ordered sets are
denoted byX , the cardinality of an ordered set is denoted
by ‖X‖ and [b; b+ k] is used to denote the ordered set of
numbers(b, b+ 1, · · · , b+ k). Let Xk be a random variable
parameterized byk, thenXC denotes the vector and{Xk}k∈C

the set of allXk with k ∈ C (this applies similarly to sets
of events). Furthermore, we will usep(x|y) to abbreviate
the conditional probability density function (pdf)pX|Y(x|y)
for the benefit of readability.I(X;Y|Z) denotes the mutual
information between r.v.sX andY givenZ [12]

This paper considers a network ofN +2 nodes: the source
node s = 0, the set ofN relays t ∈ R := [1;N ] and
the destination noded = N + 1. The discrete memoryless
multiple relay channel is defined by the conditional pdf
p
(

y[1;N+1]|x[0;N ],m[0;N ]

)

over all possible channel inputs
(xs, x1, · · · , xN) ∈ Xs × X1 × · · · XN , channel outputs
(y1, · · · , yN , yd) ∈ Y1 × · · · YN × Yd and node states
(ms,m1, . . . ,mN ) ∈ Ms×M1×. . .MN with Mt = {L, T }.
Each t ∈ [0;N ] is either listening (Mt = L) or transmitting
(Mt = T ) on a particular resource. In contrast to [9] we do
not consider a possible sleep state where the node is neither
listening nor transmitting. Besides, it is possible that the
source remains silent, e. g., to reduce interference in a wireless
network. As an immediate consequence of the orthogonality
constraint we can state that(Mt = T ) → (Yt = ϕ) and
(Mt = L) → (Xt = ψ) whereϕ andψ are arbitrary, known
constants. The previous definitions further assume that the
destination is always listening.

Let π(X ) be the set of all permutations of a setX . The
source chooses an orderingos ∈ π([1;N + 1]) whereos(l)
denotes thel-th element ofos andos(N + 1) = N + 1. For
the sake of readability, we abbreviate in the followingYos(l)

by Yl and the relay nodeos(l) by l or as thel-th level. All
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Fig. 1. Information exchangeof partial decode-and-forward forN = 2.

results presented in the sequel are given for a specificos,
though a maximization overπ([1;N + 1]) is necessary.

We further divide all transmissions in blocksb ∈ [1;B] of
lengthn. Now, consider the following standard definitions:

Definition 1: A (2nR, n, λn) code for the multiple relay
channel consists of

• a set of indicesW = [1; 2nR] with equal probability and
the corresponding r.v.W overW ,

• the source encoding functionf0 : [1; 2nR] → Xn
s ×Mn

s ,
• relay encoding functionsfl;b : Y

n·(b−1)
l → Xn

l ×Mn
l ,

• the decoding functiong : Yn
d → [1; 2nR],

• and the maximum probability of error

λn = max
w∈W

Pr{g(yd) 6= w|W = w} .

Definition 2: A rate R is achievable if there exists a se-
quence of(2nR, n, λn) codes such thatλn → 0 asn,B → ∞.

III. D ECODE-AND-FORWARD PROTOCOLS

The first protocols we present in this paper are an ap-
plication of the partial decode-and-forward approach [2] to
multiterminal half-duplex relay networks.

A. Multilevel partial decode-and-forward

Our first proposal is a partial decode-and-forward approach
illustrated in Fig. 1. The source messageW is mapped to
the tuple

(

Ms,U
1
s, . . . ,U

N+1
s

)

, with Uk
s ∈ [1; 2nR

k

s ]. As
previously mentioned, we have a specific orderingos which
implies that each relayl ∈ [1;N + 1] must decode the
source messagesU[1;l]

s and provides additional information
by transmitting the independently generated message tuple
(

Ml,V
1
l , . . . ,V

l
l

)

, with Vk
l ∈ [1; 2nR

k

s ]. Using the example in
Fig. 1, relay1 decodesU1

s and transmits the support message
V1

1, whereas relay2 decodes the tuple
(

U1
s,U

2
s

)

and provides
additional information with the tuple

(

V1
2,V

2
2

)

. Relay 2 can
additionally exploitV1

1 to decodeU1
s. As we employ a Markov

superposition coding, nodel transmits in blockb additional
information for the source messages transmitted in blockb− l.
In this way, we ensure that levell is able to support the
transmission of relaysl′ > l and message levels[1; l].

Finally, when decoding the source message levelk ∈
[1;N + 1] in block b, the destination jointly decodes the
messagesUk

s transmitted in blockb−N , and the relay message

Vk
l transmitted in blockb− l+1 for l ∈ [k;N ]. Furthermore,

if k = 1 the destination also decodes the node statesM[0;N ]

which carry additional information. This regular encodingand
decoding structure was introduced in [10] and applied to a
mixed protocol structure for full-duplex networks in [13].Now
we are able to formulate the following theorem:

Theorem 1:The achievable rateR =
N+1
∑

k=1

Rk
s using partial

decode-and-forward with a random schedule is given by

R1
s ≤ sup

p

min
l∈[1;N+1]

I

(

Ms,U
1
s; Yl|

{

Vi
[i;N ]

}l

i=1
,M[1;N ]

)

+
l−1
∑

j=1

I

(

Mj ,V
1
j ; Yl|

{

V
[1;i]
i

}l

i=j+1
,V

[1;l]
[l;N ],M[j+1;N ]

)

(1)

Rk
s ≤ sup

p

min
l∈[k;N+1]

I

(

Uk
s ; Yl|U

[1;k−1]
s ,

{

Vi
[i;N ]

}l

i=1
,M[0;N ]

)

+

l−1
∑

j=k

I

(

Vk
j ; Yl|V

[1;k−1]
j ,

{

V
[1;i]
i

}l

i=j+1
,V

[1;l]
[l;N ],M[j;N ]

)

(2)

for k ∈ [2;N +1]. The supremum in (1) and (2) is taken over
all joint pdfs of the form

p
(

y[1;N+1], u
[1;N+1]
s , v

[1;l]
l∈[1;N ],m[0;N ]

)

=

p
(

y[1;N+1]|u
[1;N+1]
s , v

[1;l]
l∈[1;N ]

)

·

N
∏

l=s

p
(

ml|m[l+1;N ]

)

·

N
∏

l=1

l
∏

k=1

p
(

vkl |v
[1;k−1]
l , vk[l+1;N ],m[l;N ]

)

·

N+1
∏

k=1

p
(

uks |u
[1;k−1]
s , vkl∈[k;N ],m{s,[k;N ]}

)

.

(3)

Proof: Using the result given in [13, Theorem 1] we
apply the substitutionsU1

s 7→
(

U1
s,Ms

)

andV1
l 7→

(

V1
l ,Ml

)

and skip the CF part, yielding the joint pdf in (3). Eq. (1) can
be slightly simplified by modifying (3) such that the Markov
conditionMs ↔ U1

s ↔ U
[2;N+1]
s is satisfied (and similar for

all relay messages) which yields the results given in [9].
In the previous theorem we assumed a random channel

access by each node. To improve for instance the interference
mitigation in wireless networks it might be preferable to have
a fixed transmission scheme (beside the fact that the random
access strategy can provide at most an improvement ofN +1
bits). Therefore, consider the following corollary:

Corollary 1 (to Theorem 1):In case of a fixed strategy
known to all nodes, we can achieve any rates satisfying

Rk
s ≤ sup

p

min
l∈[k;N+1]

I

(

Uk
s ; Yl|U

[1;k−1]
s ,

{

Vi
[i;N ]

}l

i=1
,M[0;N ]

)

+

l−1
∑

j=k

I

(

Vk
j ; Yl|V

[1;k−1]
j ,

{

V
[1;i]
i

}l

i=j+1
,V

[1;l]
[l;N ],M[0;N ]

)
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Fig. 2. Multihopping with limited resource reuse1/k. Edge labeling identifies
the used resource for the respective transmission.

for all k ∈ [1;N + 1]. The supremum is taken over all joint
pdfs similar to (3) with the appropriate changes reflecting that
M[0;N ] is now known to all nodes.

B. Multilevel decode-and-forward

Assume that the source uses only a single message level. In
this case we obtain an application of the multilevel DF proto-
col presented in [10] to half-duplex networks. The achievable
rates are summarized in the following corollary:

Corollary 2 (to Theorem 1):The achievable rateR using
multilevel DF with a random schedule is given by

R ≤ sup
p

min
l∈[1;N+1]

I
(

M[0;l−1],X[0;l−1]; Yl|X[l;N ],M[l;N ]

)

.

(4)
For fixed transmission strategies it is given by

R ≤ sup
p

min
l∈[1;N+1]

I
(

X[0;l−1]; Yl|X[l;N ],M[0;N ]

)

. (5)

In both cases the supremum is taken over all joint pdfs of the
form given in (3) withk = 1 instead ofk ∈ [1;N ].
It turns out that the rates are in general lower than in Theorem
1. Besides, it shows that the previously described protocols
generalize the results presented in [6] and [9].

C. Multihopping with limited resource reuse

This case treats multihopping protocol with limited resource
reuse as discussed in [14]. Consider the network in Fig.
2 showing an example for multihopping with reuse factor
1/k. This implies that one resource is only occupied by1/k-
th of all nodes, or that one node only uses1/k-th of the
available resources. Applied to our half-duplex relay network
this implies that the joint pdf in (3) must satisfy

∀l ∈ [0;N ] : Pr
(

ml = T
∣

∣

∣
∃j ∈ [1; k − 1] : ml−j = T

)

= 0,

that is none of the nodes in levels[l− k+1; l− 1] is allowed
to transmit on the same resources as nodel.

IV. A COMPRESS-AND-FORWARD APPROACH

In the previous section we presented different decode-and-
forward based approaches. These protocols are likely to suffer
from the necessity of decoding the complete source message
at eachnode, which is an even more severe drawback in half-
duplex networks. In this section, we discuss a compress-and-
forward protocol which might overcome this issue. We assume
a fixed transmission scheme implying exact knowledge at each
node about the current transmission state of any other node.

More specifically, each relayl ∈ [1;N ] creates the quantiza-
tion messageŝYl and the corresponding broadcast messages
Xl, both with rates∆l. Consider the transmission in block
b: node l searches for a quantization vector which is jointly

typical with its channel outputYl in block b. Once the node
found a quantization̂Yl with indexql,b+1 it transmits in block
b+ 1 the broadcast messageXl assigned to the same index.

Consider the decoding process at the destination for the
quantization of relay nodeN . At first it searches for the set of
all broadcast messagesXN which are jointly typical withYd

in block b. Furthermore, it builds the set of all quantizations
ŶN jointly typical with yd(b−1) while knowingxN (qN,b−1),
which was decoded in the previous block. By building the
intersection of both sets the destination is now able to decode
the quantization of relayN for block b − 1. Similarly, the
destination proceeds to decode the quantization of all other
relays l ∈ [1;N − 1] whereŶ[l+1;N ] is used to improve the
rate ofŶl. Based on the previous description we can formulate
the following theorem:

Theorem 2:With the previously presented compress-and-
forward scheme we achieve any rate up to

R ≤ sup
p

I
(

Xs; Ŷ[1;N ],Yd|X[1;N ],M[0;N ]

)

, (6)

subject to

∀l ∈ [0;N − 1] : I
(

ŶN−l; YN−l|M[0;N ]

)

≤

I
(

ŶN−l,XN−l; Ŷ[N−l+1;N ],Yd|X[N−l+1;N ],M[0;N ]

)

, (7)

and with the supremum over all joint pdf of the form

p
(

y[1;N+1], x[0;N ], ŷ[1;N ],m[0;N ]

)

= p
(

y[1;N+1]|x[0;N ],m[0;N ]

)

·

N
∏

l=1

p
(

ŷl|yl,m[0;N ]

)

· p
(

xl|m[0;N ]

)

.

(8)
Proof: From rate distortion theory we know [12, Ch. 13]

∆l ≥ I
(

Ŷl; Yl|M[0;N ]

)

. (9)

To decode the quantization index of nodeN− l corresponding
to the destination channel output in blockb − l − 1, the
destination searches for âqN−l,b−l such that

∃q̂N−l,b−l : q̂N−l,b−l =
{

q̃N−l,b−l :
(

ŷN−l (q̃N−l,b−l) , {ŷN−l′ (qN−l′,b−l)}
l−1
l′=0 ,

{xN−l′ (qN−l′,b−l−1)}
l

l′=0 , yd (b− l − 1)
)

∈ A∗(n)
ǫ

}

∩

{

q̃N−l,b−l :
(

xN−l (q̃N−l,b−l) , {ŷN−l′ (qN−l′,b−l+1)}
l−1
l′=0 ,

{xN−l′ (qN−l′,b−l)}
l−1
l′=0 , yd (b− l)

)

∈ A∗(n)
ǫ

}

,

whereA
∗(n)
ǫ is the ǫ-strongly typical set as defined in [12,

Ch. 13.6]. The requirement ofstrong typicality arises from
the necessity to apply the Markov lemma [12, Lemma 14.8.1]
to prove joint typicality. The previous equation can only be



fulfilled iff (9) holds and

∆N−l ≤ I
(

ŶN−1; Ŷ[N−l+1;N ],Yd|X[N−l;N ],M[s;N ]

)

+ I
(

XN−l; Ŷ[N−l+1;N ],Yd|X[N−l+1;N ],M[s;N ]

)

≤ I
(

ŶN−l,XN−l; Ŷ[N−l+1;N ],Yd|X[N−l+1;N ],M[s,N ]

)

Similarly the destination decodes in blockb the source mes-
sage transmitted in blockb−N iff (6) holds. Using standard
methods extensively discussed in literature [12], (7) and the
proof for achievability follow.
Due to theregular encoding, i. e., quantization and broadcast
messages are generated with the same rate, we are able to
alleviate the drawbacks of source-channel coding separation.
Assume multiple descriptors and anirregular encoding. In this
case, the decoders are forced to decode at first the broadcast
and then the quantization messages where the first step is a
severe bottleneck. For our CF scheme the achieved rates are
the same as the destination is the only descriptor, but the next
section presents a mixed protocol combining DF and CF where
regular encoding can improve the achievable rates.

V. A MIXED PROTOCOL FOR TWO RELAYS

Finally, we present a protocol for two relay nodes which are
alternately transmitting. The idea of alternately transmitting
relays goes back to [15] and achievable rates were presented
in [16] for the Diamond network as well as in [17] where DF
and CF based protocols are discussed.

Consider a mobile communications system where fixed
infrastructure relay nodes are deployed. We design the deploy-
ment such that sufficiently good channel conditions between
relay and base station as well as between relay and mobile
can be guaranteed. In networks supporting more than two
hops it is likely to face the situation where only one relay
has an excellent connection towards the base station and
the second relay towards the mobile terminal. In this case
it is recommendable to use neither a purely decode-and-
forward based protocol nor a purely compress-and-forward
based approach. The latter one would be beneficial for the
downlink when mobile terminals act as relay nodes whereas
the former one is preferable for the uplink, or if fixed relays
are used in rural areas for coverage extension.

Based on the previous motivation we will present now a
protocol where one relay operates as decode-and-forward and
the other one as compress-and-forward relay. Consider the
setup illustrated in Fig. 3: the overall transmission period is
divided into two phases with probabilitiesp1 andp2 such that

pMs
(T ) = 1, pM1|M2

(T |L) = 1,

p1 = pM1
(T ) , p2 = 1− p1,

with each phase of lengthn1 = n · p1 and n2 = n · p2,
respectively. Each source message is divided into two parts
of ratesRCF and RDF with the overall rateRDF + RCF =
R. Both source transmission partsXs,1 andXs,2 are chosen
independently and randomly from the setsXs,1 andXs,2 with
‖Xs,1‖ = 2nRCF and‖Xs,2‖ = 2nRDF. Relay node2 generates

Phase 1,
[1;n1]:

s 1 2 d
xs,1 x2 x2

xs,1

Phase 2,
[n1+1;n]:

s 1 2 d
x1

xs,2

Fig. 3. Example for a half-duplex channel with two alternately transmitting
relay nodes. The solid lines indicate actual information exchange while the
dashed line indicates the probably interfering transmission from node2 to 1.
The edge labeling indicates the exchanged message.

Node2: y2(b) 7→ ŷ2(b) 7→ x2(b+ 1)

n1 = n · p1

x2(b)

n2 = n · p2

Node1: x1(b) y1(b) 7→ x1(b + 1)

Source: xs,1(b) xs,2(b)

Fig. 4. Coding structure for the mixed strategy withN = 2 where both
nodes are alternately transmitting.

2n∆2 quantizationŝY2 of lengthn1 and the same number of
broadcast messagesX2 of lengthn2. Node1 further creates
2nRDF support messagesX1 of lengthn1 at raten/n1RDF.

Now consider the coding procedure illustrated in Fig. 4.
Node 2 tries to find at the end of phase1 in block b an
index q2,b+1 such that the corresponding quantizationŶ2 is
jointly typical with the node’s channel output. In the second
phase of blockb + 1 node 2 then transmits the broadcast
message assigned to indexq2,b+1 (there is no advantage in
terms of achievable rates if node2 already transmits the
corresponding message in blockb). Node 1 decodes at the
end of phase2 in block b the quantization index of node2
by taking into consideration that it contains information about
the support message of node1. Alternatively, if the inter-relay
channel is rather poor it might skip this step and consider this
transmission as interference. Afterwards, it decodes the source
messageXs,2 and the corresponding message indexqs,2,b. In
block b + 1 the first relay transmits the supporting message
X1 assigned to indexq1,b+1 = qs,2,b.

Obviously, the quantization of node2 does not only contain
information about the source transmission but also about the
support information transmitted by node1. Our approach
exploits this fact as follows: At the end of blockb the
destination decodes at first the quantization of node2, i. e.,
q2,b. Using this quantization it searches for all relay messages
jointly typical with this quantization and its own channel
output. Then, it reuses the quantization decoded at the end
of the previous block to search for all source messages jointly
typical with this quantization and its channel output in block



b− 2. Finally, building the intersection of both sets gives the
source message index transmitted in the phase2 of block b−2.
To decode the message index of the phase1 in block b− 2, it
uses the quantization of node2 and its own channel output.

As mentioned in the previous section, we do not use an
intermediate binning of all quantization messages to a set of
broadcast messages. By decoding both jointly, we avoid the
bottleneck of decoding at first the broadcast messages and then
the quantization separately. Based on the previous description
we have the following theorem:

Theorem 3:The previously described mixed protocol
achieves any rateR = RDF +RCF subject to

RDF ≤ sup
p

min
{

p2I(Xs,2; Yd|X2) + p1I
(

X1; Ŷ2,Yd|X2

)

,

p2I(Xs,2; Y1|X2)
}

, (10)

if node 1 decodes the quantization of node2 and

RDF ≤ sup
p

min
{

p2I(Xs,2; Yd|X2) + p1I
(

X1; Ŷ2,Yd|X2

)

,

p2I(Xs,2; Y1)
}

(11)

otherwise. Furthermore,

RCF ≤ sup
p

p1I
(

Xs,1; Ŷ2,Yd|X1

)

(12)

subject to

p1I
(

Ŷ2; Yd

)

+ p2I(X2; Yd) ≥ p1I
(

Ŷ2; Y2

)

, (13)

and if node1 decodes the quantization of node2

p1I
(

X1; Ŷ2

)

+ p2I(X2; Y1) ≥ p1I
(

Ŷ2; Y2

)

. (14)

We further have the supremum over all joint pdf of the form

p
(

y[1;3], xs,[1;2], x[1;2], ŷ2,m[0;2]

)

= p
(

m[0;2]

)

· p
(

y[1;3]|xs,[1;2], x[1;2],m[0;2]

)

· p
(

ŷ2|y2,m[0;2]

)

·
2
∏

l=1

p
(

xl|m[0;2]

)

p
(

xs,l|m[0;2]

)

.

(15)

Proof: From rate distortion theory we can immediately
state that∆2 ≥ p1I

(

Ŷ2; Y2

)

. Node1 decodes the quantiza-
tion index at the end of blockb iff

∃q̃2,b : q̃2,b ∈
{

q̂2,b : (x2 (q̂2,b) , y1(b)) ∈ A∗(n)
ǫ

}

∧ (ŷ2 (q̃2,b) , x1 (q1,b−1)) ∈ A∗(n)
ǫ ,

which implies∆2 ≤ p1I
(

X1; Ŷ2

)

+p2I(X2; Y1), summarized
in (14). Then, node1 decodes the source message which gives
the r.h.s. of the minimum in (10).

The destination uses the same method as node1 to decode
the quantization of node2 which gives (13). To decode the
source message at the end of blockb it searches for

∃q̃s,2,b−2 : q̃s,2,b−2 =
{

q̂1,b−1 :
(

x1 (q̂1,b−1) , yd (b− 1) , . . .

ŷ2 (q2,b)
)

∈ A∗(n)
ǫ

}

∩
{

q̂s,2,b−2 :
(

xs,2 (q̂s,2,b−2) , . . .

ŷ2 (q2,b−1) , yd (b− 2)
)

∈ A∗(n)
ǫ

}

,

which implies the l.h.s. of the minimum in (10). Finally, using
the quantization message of node2 and its own channel output
it can decode the message transmitted in the first phase which
implies the constraint given in (12). The proof for achievability
again follows standard methods [12].

VI. SUMMARY AND OUTLOOK

This paper presented strategies for multiple relay networks
constrained by a half-duplex operation. More specifically,
we derived achievable rates for anN -terminal implemen-
tation of the decode-and-forward and compress-and-forward
approaches as well as for a mixed strategy used by two alter-
nately transmitting relay nodes. Based on this paper we will
present in our upcoming work achievable rates for wireless
channels such as the Gaussian channel.
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