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Abstract— In this paper, we focus on compressed sensing and
recovery schemes for low-rank matrices, asking under what
conditions a low-rank matrix can be sensed and recovered from
incomplete, inaccurate, and noisy observations. We consider
three schemes, one based on a certain Restricted Isometry
Property and two based on directly sensing the row and column
space of the matrix. We study their properties in terms of
exact recovery in the ideal case, and robustness issues for
approximately low-rank matrices and for noisy measurements.
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I. INTRODUCTION

In many data acquisition and reconstruction applications,

e.g., signal processing, communications, and coding, the data

or signal being acquired is sparse. Recent years have seen a

renewed interest and significant research progress in the area

of Compressed Sensing of sparse signals or vectors (see, e.g.,

[3], [5], [4]). A central result in this area shows that a sparse

signal x ∈ R
n with cardinality k may be recovered from

a small number (on the order of k log n) of random linear

measurements, if the measurement matrix satisfies a certain

restricted isometry property [5].

In this paper, we consider a more general notion of parsi-
mony in models and data: the notion of matrix rank, which

covers vector cardinality as a special case, and arises in a

variety of applications. We focus on compressed sensing and

recovery schemes for low-rank matrices, asking under what

conditions a low-rank matrix can be sensed and recovered

from incomplete, inaccurate, and noisy observations. We

consider three such schemes, one based on a condition called

the Restricted Isometry Property (RIP) for maps acting on

matrices, which is reviewed in section II, and two based on

directly sensing the row and column space of the matrix.

For each scheme, we study its properties in terms of exact

recovery in the ideal case, and robustness issues for general

matrices (not necessarily low-rank) and for noisy measure-

ments.

Recent results in [12] on finding the minimum rank matrix

satisfying linear equality constraints could be considered as

a way to sense and recover a low-rank matrix. We take

measurements of the unknown but low-rank matrix X0 ∈
R

m×n using a linear map A : R
m×n → R

p that satisfies the

RIP. Then we recover X0 by minimizing the nuclear norm

‖X‖∗ over y = A(X) which can be done by semidefinite

programming. It is shown in [12] that for a perfectly low-rank

matrix with no measurement noise, the recovery is exact with

very high probability, with the number of measurements on

the order of r(m + n) log(mn). This guarantee is universal

and works for any matrix.

In the present paper, we extend this result to the more

realistic case where the measurements have additive noise

and where X0 is not required to be low-rank, as shown

in section II. We prove that the recovery has excellent

robustness properties in both cases. Then, section III focuses

on another group of sensing and recovery approaches that

are based on sensing the row and column spaces of the

matrix by multiplying it by random vectors. We present two

algorithms, which are computationally cheaper than the RIP-

based approach. We discuss whether these algorithms are

robust to the ubiquitous additive noise (for example arising

from the sensors or quantization), as well as whether they

work for general matrices that are not necessarily low-rank

and thus whether they can be used as viable sensing methods.

We then discuss the properties and relative advantages and

disadvantages of the three approaches, and close the paper

by describing some future directions.

A. Notation

Our notation is mostly standard. For X ∈ R
m×n, σi(X)

denotes the i-th largest singular value of X . The operator

norm of a matrix is the largest singular value ‖X‖ :=
σ1(X), and the nuclear norm (or Schatten 1-norm) of a

matrix is equal to the sum of its singular values ‖X‖∗ :=∑r
i=1 σi(X), where r is the rank of X . X† denotes the

pseudo-inverse of X given by V Σ−1UT , where X = UΣV T

is the singular value decomposition of X in reduced form

(i.e., Σ ∈ R
r×r.

II. SENSING AND RECOVERY BASED ON THE

RESTRICTED ISOMETRY PROPERTY

Let A : R
m×n → R

p be a linear map, and let X0 ∈ R
m×n

be the matrix to be sensed. Consider a sensing and recovery

scheme that consists of two phases:

• Sensing: use the sensing map A to make linear mea-

surements y = A(X0)
• Recovery: Given y (and A), construct X as

X̂ := arg min
X

‖X‖∗ subject to A(X) = y. (1)
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In this section, we first review some known results [12] about

when X0 can be recovered under using this scheme, and how

the number of measurements p required for exact recovery

scales with the dimension and the rank of the matrix. Existing

results have considered only the ideal case, where X0 is

perfectly low-rank and the measurements y are free from

noise. We then consider the more realistic cases that relax

both of these assumptions. We prove that matrix recovery by

nuclear norm minimization is remarkably stable and recovers

the original matrix with an error that is bounded by a constant

factor of the noise level (i.e., the 2-norm of the noise vector).

In the case where the matrix is not perfectly low-rank, we

prove that we recover the closest rank-r approximation with

an error bounded by a constant factor times the error we

would have if X was completely known.

The recovery problem can be cast as a semidefinite

program [2], and various algorithms can be used for its

solution—see [12] and references therein, as well as [11]

for a recent fast, large scale algorithm for a certain class.

1) Ideal case: We begin by reviewing key results in [12]

indicating when we can a priori guarantee that X = X0.

The main conditions are determined by the values of pa-

rameters δr that quantify the behavior of the linear map A
when restricted to the set of matrices of rank at most r.

The following definition is the natural generalization of the

Restricted Isometry Property introduced in [5] from vectors

to matrices.

Definition 1: Let A : R
m×n → R

p be a linear map, and

m ≤ n. For every r with 1 ≤ r ≤ m, define the r-restricted

isometry constant to be the smallest number δr(A) such that

(1 − δr)‖X‖F ≤ ‖A(X)‖ ≤ (1 + δr)‖X‖F (2)

holds for all matrices X of rank at most r.

The following two recovery theorems demonstrate the role

of the restricted isometry constants.

Theorem 2: [12] If δ2r < 1 for some integer r ≥ 1, then

X0 is the only matrix of rank at most r satisfying A(X) = b.

Theorem 3: [12] If r ≥ 1 is such that δ5r < 1/10, then

X = X0.

Thus the RIP provides a sufficient condition for exact recov-

ery. For a linear map A : R
m×n → R

p, we can write its

matrix representation as A(X) = A vec(X), where A is a

p×mn matrix. When such matrices are chosen from a certain

class of probability distributions obeying certain tail bounds,

called nearly isometric random families, the associated linear

maps will obey the Restricted Isometry Property (2) with

very high probability, whenever

p ≥ c0r(m + n) log(mn).

See theorem 4.2 in [12] for more details.

2) General X0 and noisy measurements: In this section,

we are concerned with the situation where we have linear

measurements of a general matrix, which are contaminated

with additive noise. The setup is as follows: we observe

y = A(X0) + z, (3)

where z is a perturbation obeying ‖z‖ ≤ ε. To recover X0,

we propose solving

minimize ‖X‖∗
subject to ‖y −A(X)‖ ≤ ε,

(4)

which is a convex optimization problem, and can be cast as a

semidefinite program [2]. We denote the solution by X̂ . Here,

we do not make any assumption about X0. In particular, X0

is not necessarily low-rank, and we will set X0,r to be the

matrix of rank r that best approximates X0 in the nuclear,

Frobenius, or operator norm; that is, the truncated SVD of

X0. The following two theorems hold.

Theorem 4: Assume that δ5r < 1/10, then X̂ obtained

from (4) obeys

‖X̂ − X0‖F ≤ C0 · ‖X0 − X0,r‖∗√
r

+ C1 · ε, (5)

where C0 and C1 are two (small) constants depending only

on the isometry constants.

The proof is given in appendix I. In a nutshell, the error

is the sum of two terms: an approximation term, namely,

‖X0−X0,r‖∗/
√

r which one would have if we had perfectly

noiseless data, and a measurement-error term proportional to

the noise level ε. This extends the result of [12] since in the

setup studied there we have ε = 0 and X0 = X0,r so that

the right-hand side in (5) vanishes and the reconstruction is

exact.

Whereas the previous result involved mixed norms, the

next theorem is based only on the nuclear norm.

Theorem 5: Assume that δ5r < 1/10 and noiseless data

(ε = 0). Then

‖X̂ − X0‖∗ ≤ C ′
0 · ‖X0 − X0,r‖∗ (6)

where C ′
0 is a small constant depending only on the isometry

constants.

In other words the reconstruction is quantitatively as good

as if one knew the r-largest left and right singular vectors

together with the r largest singular values of the unknown

matrix X0. (One can get better conditions than δ5r < 1/10,

see [], but we will not discuss this here). See Appendix II

for the proof.

III. METHODS BASED ON SENSING THE ROW AND

COLUMN SPACE

In this section we consider a different approach to sensing

and recovery of low-rank matrices. The idea is to sense the

low-dimensional row-space and/or column-space directly, by

multiplying the matrix by random vectors. For example, let

X0 ∈ R
m×n be of rank r, and pick a set of r random

vectors si ∈ R
m with i.i.d. Gaussian entries. Then Xsi gives

a nonzero vector (with probability one) in the column space

or range of X0, and r of these vectors span the column

space (with probability one). Thus we have “sensed” the

column space, and can do the same with the row space.

Unlike the RIP-based approach in section II, these schemes

are not “universal” in the sense that they do not work for all
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matrices X0 (e.g., we cannot recover X0 if some si falls in

the nullspace of X0).

The basic idea of random vector multiplication to find low-

dimensional approximations to the row or column space has

already been successfully used in designing fast randomized

algorithms for matrix operations such as the SVD [14], [15].

In that context, the goal is to approximate the SVD of a

given matrix with a much lower computational cost than

standard SVD algorithms, while bounding the approximation

error compared to the exact SVD. Various approaches have

been taken in the literature: some algorithms sample rows,

columns, submatrices, or entries of the matrix [7], [1],

[6], [13], others form random linear combination of rows

or columns, or compute orthogonal projections of row or

columns onto a lower dimensional space [14], [15], [10].

Our goal in this paper is indeed quite different from

approximating matrix SVD, but we find some ideas from this

literature useful for our purposes. We propose two schemes

for sensing and recovery of low-rank matrices. The first

scheme is based on the approach of Woolfe et al, [15],

and the second one on the relative-error SVD algorithm of

Sarlos [14].

We seek simple sensing schemes to gather or measure a

small amount of information about the matrix X ∈ R
m×n,

then store or transmit this information to be used to recover

the original matrix. It is important to note that in the recovery

phase we do not have access to the original matrix or other

information—the matrix should be retrieved solely from the

measurements. In this section, we adapt and extend existing

results to this new setting, and begin to address the important

issue of robustness to measurement noise in addition to

approximation error bounds.

A. Approach I: sensing row and column spaces

1) Ideal case: We first consider the case where the matrix

X0 ∈ R
m×n to be sensed has rank exactly r, and the product

of X0 and XT
0 with given sensing vectors is measured

without noise. We consider the following simple scheme:

• Sensing: Make linear measurements of X0 as

Y = SX0 and Ỹ = S̃XT
0 , (7)

where S ∈ R
r×m and S̃ ∈ R

r×n are the sensing

matrices.

• Recovery: Given Y , Ỹ (and S), construct

X = Ỹ T (SỸ T )−1Y. (8)

For the sensing matrices, we pick, for example, matrices with

i.i.d. Gaussian entries. Other choices are also possible, such

as the so-called SRFT matrices [15] consisting of randomly

selected rows of the product of a discrete Fourier transform

matrix and a random diagonal matrix. An SRFT construction

allows the fast application of S and S̃ to arbitrary vectors.

Note that SỸ T is invertible with probability one.

The recovery step is based on the fact that any rank

k matrix with row space spanned by the rows of Y and

column space spanned by columns of Ỹ T can be written

as X = Ỹ T WY for some W ∈ R
r×r. (To implement the

recovery efficiently, we could first carry out QR decom-

positions for Y T = Q1R1 and Ỹ T = Q2R2, then obtain

W ∈ R
r×r by solving RQ2W = Y Q1 by some efficient

linear equation solver.)

Lemma 6: (Exact recovery) Suppose entries of S are i.i.d.

Gaussian. If rank(X0) = r, the algorithm described by (7)

and (8) yields X = X0 with probability one.

Proof: We observe that SX = SX0 or S(X−X0) = 0,

which means either X = X0 holds, or all rows of S (which

is from the Gaussian or SRFT ensembles, for example) fall

in the nullspace of (X−X0)T implying that S would belong

to a set of measure zero.

Note that this scheme requires a total of r(m + n)
measurements to recover X0, which is smaller than the

number required by the RIP-based method discussed in the

previous section. The recovery is also far simpler compared

to solving an SDP for the RIP-based scheme.

2) When X0 is not low-rank: In this case, we are in-

terested in recovering the best rank-r approximation of the

general matrix X0. To do this, we make a slight (and

intuitive) change in the recovery phase of the above scheme.

Instead of the whole row or column space of X0, we need

to find only the span of the top k singular vectors, so given

measurements Y and Ỹ , we form their truncated r-term

SVD denoted by Y T
r = UrΣrV

T
r and Ỹ T

r = ŨrΣ̃rṼ
T
r and

construct X̂r as

X̂r = Ỹ T
r (SỸ T

r )†Yr. (9)

The scheme we obtained is in fact equivalent to the SVD

algorithm of Woolfe, Liberty, Rokhlin and Tygert [15], where

they take the number of sensing vectors to be l > r. They

show the following approximation error bound that applies

to the reconstruction (9).

Theorem 7: [15, sec. 5.2] If S ∈ R
l×m and S̃ ∈ R

l×n are

SRFT matrices, and if there exist α, β > 0 satisfying

α2β

(α − 1)2
(2r2) ≤ l < m,

then the approximation error bound

‖X̂r − X0‖ ≤ C
√

max{m,n}σr+1(X0), (10)

holds with probability at least 1− 3/β. Constant C depends

on α (see [15] for precise value).

3) Measurement noise: Consider the case with additive

noise in the measurements,

Y = SX + δY, Ỹ = S̃XT + δỸ , (11)

where the noise terms are assumed to have bounded norm

‖δY ‖ ≤ ε1 and ‖δỸ ‖ ≤ ε2. The analysis of the case where

both sets of measurements are noisy may be complicated,

but we point out that in the special case where one set

of measurements is noise-free, we can bound the error

‖X̂−X0‖ in terms of noise level and σmin(S). Furthermore,

the distribution of σmin(S) is known for various random

matrices, for example it is concentrated around 1−√
l/m for

a Gaussian matrix. See [8] for more details and discussion

of several special cases and their error bounds.
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B. Approach II: random row-space projection

1) Ideal case: In this section we outline a scheme that is

based on the approximate SVD algorithm of Sarlos [14].

Suppose rank(X0) = r, we again perform two sets of

measurements of X0. The difference between this scheme

and the previous one is that here the output of the first set

is used as the “sensing matrix” for the second set. Thus this

method needs to access X0 and XT
0 to obtain the two sets of

measurements sequentially. The second set of measurements

are in fact quadratic in X0. We again have several choices

for the sensing matrix S ∈ R
r×m, for example we can

pick S with i.i.d. Gaussian entries. It is also possible to use

structured matrices that are faster to apply, for example the

SRFT matrix mentioned earlier. We consider the following

scheme:

• Sensing: Make linear measurement

Y = SX0, followed by Z = Y XT
0 . (12)

• Recovery: Given measurements Y , Z (and S), construct

X̂T = Y †Z. (13)

The recovery step can be implemented efficiently using a

QR decomposition of Y ; see [14] for details.

A geometric interpretation is as follows: using X̂T =
Y †Y XT

0 = (SX0)†(SX0)XT
0 and noting that Y †Y is the

orthogonal projection matrix onto the range of Y , we see

that the estimate X̂ is given by the projection of each row

of X0 onto the row-space of SX0, which is spanned by

random linear combinations of the rows if X0. That is, each

row of X0 is approximated by its closest vector in the row-

space of SX . Note that the projection can also be expressed

as X̂T = X0UUT , where Y T = UΣV T is the SVD.

Lemma 8: (Exact recovery) Suppose entries of S are i.i.d.

Gaussian. If rank(X0) = r, the scheme described in (12)

and (13) yields X̂ = X0 with probability one.

Proof: Let si denote the ith row or S (for example, from

a Gaussian or SRFT ensemble). If rank(X0) = r the set of

random vectors XT
0 si, i = 1, . . . , r are linearly independent

with probability one, which implies that row-space of SX0 is

equal to row-space of X0 with probability one, and projecting

X0 onto its own row-space gives X0.

2) When X0 is not low-rank: When rank(X0) > r,

a modification of this scheme gives the algorithm of Sar-

los [14], in which the measurements are as above but the

estimate is given by X̂r = (Y †Z)r, i.e., the truncated r-

term SVD of X̂ . For SRFT matrices, the following bound

was shown in [15] as an aside to their proof for the bound

in (10).

Lemma 9:[15, sec. 5.2] Suppose S is an SRFT matrix and

there are α, β > 1 such that

α2β

(α − 1)2
(2r2) ≤ l < m.

Then,

‖X̂ − X0‖ = ‖X0UrU
T
r − X0‖ ≤ C

√
mσr+1(X0)

holds with probability at least 1− 1/β. Constant C depends

on α (see [15] for the precise version of the bound and

constant C).

Sarlos in [14, sec. 4] gave the first relative error bound for

this estimate (in Frobenius norm). His result implies the

bound above.

Note that the probability that the bound holds can be

boosted by repeating the measurements with several indepen-

dent sensing matrices, which is a standard trick for boosting

success probability from constant to any desired level in

randomized algorithms (see, e.g., [14]).

3) Measurement noise: If rank(X0) = r, columns of X
are the least-norm solutions to the set of under-determined

linear equations Y XT = Z. Thus, in this case noise analysis

boils down to sensitivity analysis of the solution to this set of

equations with respect to norm-bounded perturbations in Z
and Y . This is a well-studied problem in numerical linear

algebra, and we can apply known results from this area

(e.g., [9]) to obtain error bounds. We derive and discuss such

bounds in [8].

IV. CONCLUSIONS AND FUTURE DIRECTIONS

We discussed compressed sensing of matrices and pre-

sented three approaches, one based on the Restricted Isom-

etry Property and two based on directly sensing row and

column spaces. We showed that sensing a matrix with a

linear map satisfying the RIP and recovery via nuclear

norm minimization is robust both when the measurements

are noisy and when the matrix is not exactly low-rank,

with a recovery error that is on the order of the best

achievable error. We then presented two approaches based

on sensing the low-dimensional row and column spaces, that

are easy to carry out and less computationally demanding in

sensing and especially recovery compared to the RIP-based

approach. We explored their robustness properties. Bounds

on approximation error, for the case when the matrix is

not perfectly low-rank, already exist for the closely related

problem of fast randomized SVD; which we adapted to our

problem. We also briefly discussed bounds on the effect of

noise.

Current and future directions include detailed noise anal-

ysis, bias-variance tradeoff, and characterizing the unrecov-

erable part of the matrix with respect to the noise level.

Numerical study of the schemes and comparisons will also

be pursued. In addition, we will explore concrete application

areas, for example, wireless channel sensing and feedback,

identification of linear operators and dynamical systems via

input/output measurements.

APPENDIX I

Proof of Theorem 4. The proof parallels that of Candès,

Romberg and Tao about the recovery of nearly sparse vectors

from a limited number of measurements [4]. Set R = X−X0

and observe that by the triangle inequality,

‖A(R)‖ ≤ ‖A(X) − y‖ + ‖y −A(X0)‖ ≤ 2ε, (14)
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since X0 is feasible for the problem (4). Let X0 = X0,r +Δ.

Following lemma 3.4 in [12], we can decompose R as R =
R0 + Rc, where

rank(R0) ≤ 2 rank(X0,r), X0,rR
∗
c = 0, and X∗

0,rRc = 0.

We have

‖X0 + R‖∗ ≥ ‖X0,r + Rc‖∗ − ‖Δ‖∗ − ‖R0‖∗
= ‖X0,r‖∗ + ‖Rc‖∗ − ‖Δ‖∗ − ‖R0‖∗,

where the equality ‖X0,r+Rc‖∗ = ‖X0,r‖∗+‖Rc‖∗ follows

from X0,rR
∗
c = 0 and X∗

0,rRc = 0 (lemma 2.3 in [12]).

Since by definition, ‖X0 + R‖∗ ≤ ‖X0‖∗, this gives

‖Rc‖∗ ≤ ‖R0‖∗ + 2‖Δ‖∗, (15)

where we used the fact that ‖X0‖∗ = ‖X0,r‖∗ + ‖Δ‖∗.

Next, we use a classical estimate developed in [4] (see also

[12]). Decompose Rc into a sum of matrices R1, R2, . . .,
each of rank at most 3r. For each i define the index set

Ii = {3r(i− 1)+1, ..., 3ri}, and let Ri := UIi
diag(σIi

)V ∗
Ii

;

that is, R1 is the part of Rc corresponding to the 3r largest

singular values, R2 is the part corresponding to the next 3r
largest and so on. A now standard computation (see (3.6) in

[12]) shows that

∑
j≥2

‖Rj‖F ≤ 1√
3r

‖Rc‖∗, (16)

and thus

∑
j≥2

‖Rj‖F ≤
√

2
3
‖R0‖F +

2√
3
‖Δ‖∗√

r
,

since ‖R0‖∗ ≤ √
2r ‖R0‖F by the Cauchy-Schwarz in-

equality. The triangle inequality and the restricted isometry

property now give

‖A(R)‖ ≥ ‖A(R0 + R1)‖ −
∑
j≥2

‖A(Rj)‖

≥ (1 − δ5r)‖R0 + R1‖F − (1 + δ3r)
∑
j≥2

‖Rj‖F .

Let e0 = ‖Δ‖∗/
√

r. Because R0 is orthogonal to R1, we

have that ‖R0 + R1‖F ≥ ‖R0‖F , which gives

(1 − δ5r)‖R0 + R1‖F ≤

‖A(R)‖ + (1 + δ3r)

[√
2
3
‖R0 + R1‖F +

2√
3
e0

]
.

Therefore,

‖R0 + R1‖F ≤ C ′
0 e0 + C ′

1 ε, (17)

where C ′
0 = 1

α
2√
3
(1 + δ3r), C ′

1 = 2
α and

α = (1 − δ5r) −
√

2
3
(1 + δ3r) > 0,

where the positivity is guaranteed by the condition of the

theorem, namely, δ5r < 1/10. We conclude with

‖R‖F ≤ ‖R0 + R1‖F +
∑
j≥2

‖Rj‖F

≤
(

1 +

√
2
3

)
‖R0 + R1‖F +

2√
3
e0.

Substituting (17) in this last inequality establishes our claim.

APPENDIX II

Proof of Theorem 5. The proof of (6) is similar to that

of (5) and we only indicate where the argument differs. We

start as in the previous section and from (14), we conclude

that

‖R‖∗ ≤ 2‖R0‖∗ + 2‖Δ‖∗. (18)

We continue as before and obtain ‖R0‖F ≤ C ′
0
‖Δ‖∗√

r
thanks

to (17) since ε = 0. Applying Cauchy-Schwarz gives

‖R0‖∗ ≤
√

2r‖R0‖F ≤ C ′
0

√
2 ‖Δ‖∗, (19)

and, therefore, it follows from (18) and (19) that

‖R‖∗ ≤ 2(
√

2C ′
0 + 1) ‖Δ‖∗,

which is what we needed to establish.
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