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Abstract—The two major approaches to sparse recovery are
L1-minimization and greedy methods. Recently, Needell and
Vershynin developed Regularized Orthogonal Matching Pursuit
(ROMP) that has bridged the gap between these two approaches.
ROMP is the first stable greedy algorithm providing uniform
guarantees.
Even more recently, Needell and Tropp developed the sta-

ble greedy algorithm Compressive Sampling Matching Pursuit
(CoSaMP). CoSaMP provides uniform guarantees and improves
upon the stability bounds and RIC requirements of ROMP.
CoSaMP offers rigorous bounds on computational cost and
storage. In many cases, the running time is just O(N log N),
where N is the ambient dimension of the signal. This review
summarizes these major advances.

I. INTRODUCTION

Sparse signals are those that contain much less information
than their ambient dimension suggests. The conventional sig-
nal compression scheme acquires the entire signal and then
compresses it. This methodology has been questioned for
decades, and new approaches in compressed sensing have been
developed to overcome this seemingly wasteful approach.
Suppose x is a signal in R

N , and define the �0 quasi-norm1

‖x‖0 = |supp(x)| = |{j : xj �= 0}| .
When ‖x‖0 ≤ s, we say that the signal x is s-sparse. In
practice, signals are not exactly sparse, but are rather close
to sparse vectors. For example, compressible signals are those
whose coefficients decay rapidly when sorted by magnitude.
We say that a signal x is p-compressible with magnitude R if
the sorted components of the signal decay at the rate

|x|(i) ≤ R · i−1/p for i = 1, 2, 3, . . . . (I.1)

The sparse recovery problem is the reconstruction of such
signals from a set of nonadaptive linear measurements. The
measurements are of the form Φx where Φ is some m ×N
measurement matrix. Although in general this recovery is NP-
Hard, work in compressed sensing has shown that for certain
kinds of measurement matrices, recovery is possible when the
number of measurements m is nearly linear in the sparsity s,

m = s logO(1)(N). (I.2)

The survey [2] contains a discussion of these results.
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1We consider real numbers here for simplicity, but similar results hold for

the complex case.

The two major algorithmic approaches to sparse recov-
ery are based on L1-minimization and on greedy methods
(Matching Pursuits). In this review we briefly describe these
methods, as well as two new iterative methods that provide
the advantages of both approaches. The first method, ROMP,
is the first stable algorithm to provide uniform guarantees. The
second method, CoSaMP, improves upon the results of ROMP,
and provides rigorous computational bounds.

II. MAJOR APPROACHES
A. L1-minimization

To recover the sparse signal x from its measurements Φx,
one needs to find the the solution to the highly non-convex
problem

min ‖z‖0 subject to Φz = Φx. (L0)

Donoho and his associates [6] suggested that for some
measurement matrices Φ, the generally NP-Hard problem (L0)
should be equivalent to its convex relaxation:

min ‖z‖1 subject to Φz = Φx, (L1)

where ‖z‖1 =
∑

i |zi| denotes the �1-norm. The convex prob-
lem (L1) can be solved using methods of linear programming.
Clearly if the measurement matrix Φ is one-to-one on all

2s-sparse vectors, then the s-sparse signal x will be recovered
by solving (L0). Candès and Tao [4] proved that if Φ satisfies
a stronger condition then recovery is possible by solving the
convex problem (L1).
Definition II.1 (Restricted Isometry Condition): A

measurement matrix Φ satisfies the Restricted Isometry
Condition (RIC) with parameters (n, δ) for δ ∈ (0, 1) if we
have

(1−δ)‖v‖2 ≤ ‖Φv‖2 ≤ (1+δ)‖v‖2 for all n-sparse vectors.
When δ is small, the restricted isometry condition says that

every set of n columns of Φ is approximately an orthonormal
system. It has been shown (see [13] and [7]) that random
Gaussian, Bernoulli and partial Fourier matrices satisfy the
restricted isometry condition with number of measurements
as in (I.2). In the more practical case when x is not exactly
sparse and corrupted with noise, we consider the mathematical
program:

min ‖y‖1 subject to ‖Φy − u‖2 ≤ ε. (II.1)

This program approximately recovers the signal x even in
the presence of noise.
Theorem II.2 (Recovery under RIC [3]): Assume that the

measurement matrix Φ satisfies the Restricted Isometry Con-
dition with parameters (3s, 0.2). Let Φ be a measurement
matrix and let u = Φx + e be a noisy measurement vector
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where x ∈ R
N is an arbitrary signal and ‖e‖2 ≤ ε. Then the

program (II.1) produces an approximation x# that satisfies:
∥∥x− x#

∥∥
2
≤ C

[
1√
s
‖x− xs‖1 + ε

]
,

where xs denotes the s-sparse vector consisting of the s largest
coefficients in magnitude of x.
In [5], Candès sharpened this theorem to work under the

restricted isometry condition with parameters (2s,
√

2 − 1).
This theorem also demonstrates that in the noiseless case, the
L1 approach provides exact reconstruction. This was proved
initially in [4].

B. Orthogonal Matching Pursuit (OMP)

An alternative approach to sparse recovery is via greedy
algorithms. These methods find the support of the signal x

iteratively, and reconstruct the signal using the pseudoinverse.
Orthogonal Matching Pursuit (OMP) is such an algorithm,

analyzed by Gilbert and Tropp in [14]. Since we expect the
columns of the measurement matrix Φ to be approximately
orthonormal, Φ

∗
Φx is locally a good approximation to x.

OMP uses this idea to compute the support of a s-sparse signal
x. First, the residual r is set to the measurement vector u. At
each iteration, the observation vector is set, y = Φ∗r, and the
coordinate of its largest coefficient in magnitude is added to
the index set I . Then by solving a least squares problem, the
residual is updated to remove this coordinate’s contribution,

y = arg min
z∈RI

‖u− Φz‖2; r = u− Φy.

Repeating this s times yields an index set of s coordinates
corresponding to the support of the signal x. Tropp and Gilbert
[14] showed that OMP recovers a sparse signal with high
probability.
Theorem II.3 (OMP Recovery [14]): Let Φ be a m × N

subgaussian matrix, and fix a s-sparse signal x ∈ R
N . Then

OMP recovers (the support of) x from the measurements u =
Φx correctly with high probability, provided the number of
measurements is m ∼ s log N .

C. Advantages and challenges of both approaches

The L1-minimization method provides uniform guarantees
for sparse recovery. Once the measurement matrix Φ satisfies
the restricted isometry condition, this method works correctly
for all sparse signals x. The method is also stable, so it works
for non-sparse signals such as those which are compressible,
as well as noisy signals. However, the method is based on
linear programming, and there is no strongly polynomial time
algorithm in linear programming yet.
OMP on the other hand, is quite fast both provably and

empirically. The speed of OMP is a great advantage, but it
lacks the strong guarantees that L1 provides. Indeed, OMP
works correctly for a fixed signal and measurement matrix with
high probability, and so it must fail for some sparse signals
and matrices [12]. It is also unknown whether OMP succeeds
for compressible signals or on noisy measurements.
There has thus existed a gap between the approaches.

The development of Regularized Orthogonal Matching Pursuit

(ROMP) bridges this gap by providing a greedy algorithm with
the same advantages as the L1 method. Compressive Sampling
Matching Pursuit (CoSaMP) improves upon these results and
provides rigorous runtime guarantees. We now discuss these
new algorithms.

III. REGULARIZED OMP
Regularized Orthogonal Matching Pursuit (ROMP) is a new

algorithm developed by Needell and Vershynin in [11], [10]
for sparse recovery that performs correctly for all measurement
matrices Φ satisfying the restricted isometry condition, and for
all sparse signals. Again, since the restricted isometry condi-
tion gaurantees every set of s columns forms approximately
an orthonormal system, every s coordinates of the observation
vector y = Φ

∗u are in a loose sense good estimators of the
corresponding s coefficients of x. This notion suggests to use
the s largest coefficients of the observation vector y rather than
only the largest, as in OMP. We also include a regularization
step to ensure that each coordinate carries close to an even
share of the information. The ROMP algorithm is described
in Algorithm III.1.

Algorithm III.1: ROMP Recovery Algorithm [11]

ROMP(Φ, u, s)
Input: Measurement matrix Φ, measurement vector u,
sparsity level s
Output: Index set I ⊂ {1, . . . , d}

1) Let the index set I = ∅ and the residual r = u.
Repeat the following steps s times or until |I| ≥ 2s:

2) Choose a set J of the s biggest coordinates in
magnitude of the observation vector y = Φ∗r,
or all of its nonzero coordinates, whichever set is
smaller.

3) Among all subsets J0 ⊂ J with comparable coor-
dinates:

|y(i)| ≤ 2|y(j)| for all i, j ∈ J0,

choose J0 with the maximal energy ‖y|J0
‖2.

4) Add the set J0 to the index set: I ← I ∪ J0, and
update the residual:

w = arg min
z∈RI

‖u− Φz‖2; r = u− Φw.

For measurement matrices that satisfy the RIC, ROMP
stably recovers all s-sparse signals. This is summarized in the
following theorem from [10].
Theorem III.1 (Recovery by ROMP [10]): Assume a mea-

surement matrix Φ satisfies the restricted isometry condition
with parameters (8s, ε) for ε = 0.01/

√
log s. Consider an

arbitrary vector x in R
N . Suppose that the measurement

vector Φx becomes corrupted, so we consider u = Φx + e

where e is some error vector. Then ROMP produces a good
approximation x̂ to x:

‖x̂− x‖2 ≤ C
√

log s
(
‖e‖2 +

‖x− xs‖1√
s

)
. (III.1)
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In the case where the signal x is exactly sparse without
noise, this theorem guarantees exact reconstruction. Note also
that in the noisy case, ROMP needs no knowledge about the
error vector e to approximate the signal. In the special case
where x is a compressible signal as in (I.1), the theorem
provides the bound

‖x− x̂‖2 ≤ R′
√

log s

sp−1/2
+ C

√
log s‖e‖2. (III.2)

ROMP thus provides the first greedy approach with these
uniform and stable guarantees. See [11], [10] for runtime
analysis and empirical results. The results are optimal up to the
logarithmic factors, and the runtime is similar to that of OMP.
There is, however, room for improvement which leads us to
the CoSaMP algorithm, developed by Needell and Tropp [9].
CoSaMP provides optimal guarantees as well as an important
implementation analysis.

IV. COSAMP
CoSaMP is an iterative recovery algorithm that provides the

same guarantees as even the best optimization approaches. As
in the case of ROMP and the L1 approach, CoSaMP recovers
signals using measurement matrices that satisfy the RIC. Thus
as before, the observation vector y = Φ

∗u serves as a good
proxy for the signal x. Using the largest coordinates, an
approximation to the signal is formed at each iteration. After
each new residual is formed, reflecting the missing portion of
the signal, the measurements are updated. This is repeated until
all the recoverable portion of the signal is found. (See [9] for
halting criteria.) The algorithm is described in Algorithm IV.2.

Algorithm IV.2: CoSaMP Recovery Algorithm [9]

COSAMP(Φ, u, s)
Input: Sampling matrix Φ, noisy sample vector u,
sparsity level s
Output: An s-sparse approximation a of the target signal

a0 ← 0, v ← u, k ← 0 { Trivial initial approximation }

repeat
k ← k + 1
y ← Φ

∗v { Form signal proxy }
Ω ← supp(y2s) { Identify large components }
T ← Ω ∪ supp(ak−1) { Merge supports }

b|T ← Φ
†
T u { Signal estimation by least-squares }

b|T c ← 0

ak ← bs { Prune to obtain next approximation }
v ← u−Φak { Update current samples }

until halting criterion true

For a recovery algorithm to be used efficiently in practice,
the least squares step must be analyzed carefully. By the
restricted isometry condition, the matrix ΦT in the estimation
step is very well-conditioned. This suggests the use of an

iterative method such as Richardson’s iteration [1, Sec. 7.4]
to apply the psuedoinverse Φ

†
T = (Φ∗T ΦT )−1

Φ
∗
T . This

method is analyzed in the context of CoSaMP and shown
to provide an efficient means of acquiring the estimation [9].
The following theorem from [9] summarizes the fundamentally
optimal recovery guarantees and rigorous computational costs
of CoSaMP.
Theorem IV.1 (Recovery by CoSaMP [9]): Suppose that Φ

is an m × N measurement matrix satisfying the restricted
isometry condition with parameters (2s, c). Let u = Φx + e

be a vector of samples of an arbitrary signal, contaminated
with arbitrary noise. For a given precision parameter η, the
algorithm CoSaMP produces an s-sparse approximation a that
satisfies

‖x− a‖2 ≤ C ·max

{
η,

1√
s

∥∥x− xs/2

∥∥
1

+ ‖e‖2 .

}

The running time is O(L · log(‖x‖2 /η)), where L bounds
the cost of a matrix–vector multiply with Φ or Φ

∗. Working
storage is O(N).
In [8] it is shown that only a fixed number of iterations

is required to reduce the error to an optimal amount. The
report [8] also discusses variations on the CoSaMP algorithm
that may improve results in practice.
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