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Abstract—Low-frequency modulation of sound carry impor- to the wavelet theory. Then the proposed method based on
tant information for speech and music. The modulation spectrum \W\avelet Modulation Sub-Bands (WMSB) is described with an

is commonly obtained by spectral analysis of the sole temporal omnasis on its filtering capacities through an examplerbefo
envelopes of the sub-bands out of a time-frequency analysis. . . . . .
concluding with a final discussion.

Processing in this domain usually creates undesirable distortions
because only the magnitudes are taken into account and the phase
data is often neglected. We remedy this problem with the use of a Il. PHYSIOLOGICAL ASPECTS ANDCOMPLEX

complex wavelet transform as a more appropriate envelope and MODULATION SPECTRUM

phase processing tool. Complex wavelets carry both magnitude .

and phase explicitly with great sparsity and preserve well A. Signal phase and cochlea

polynomial trends. Moreover an analytic Hilbert-like transform For acoustical signal processing in general there are im-
is possible with complex wavelets implemented as an orthogonal . . .

filter bank. By working in an alternative transform domain pprtant facts to take |'nto account. The first aspept IS the
coined as “Modulation Subbands”, this transform shows very signal phase too often ignored when it comes to digital audio
promising denoising capabilities and suggests new approachesprocessing: two signals with identical magnitude spectra b

for joint spectro-temporal analytic processing of slow frequeny  (ifferent phases do sound different. Ohm’s acoustic latirgta
and phase varying signals. that human hearing is insensitive to phase is persistent but
. INTRODUCTION wrong (to a certain extent). For instance, Lindemann ané¥at

The challenge is to detect, analyze and process slow fiflowed [4] that the phase relationships between clusters of
quency variations in acoustical cues obtained after a timeusoids in a critical band affect its amplitude envelope a
frequency analysis. Modulation frequencies of speech éetw most important, affept Fhe fmlng rate of the inner hair cel!s
2 and 16Hz and especially around 4Hz are of great importarl®gC)- Thus the major issue is to preserve the phase during
for intelligibility [1]. They carry essential syllabic iofmation. @n analysis transform otherwise amplitude envelopes will b
On a physiological side, the phase information is also impdnedified at the reconstruction. Magnitude in a signal gives
tant because of its influence on the human hearing system. Tf@rmation about the power while phase is important for
ability to jointly work on these slow modulation frequergie l0calization. For the human hearing, studies like [5] shbwe
and their phase data is thus crucial for speech. To an otift the basilar membrane in the cochlea, basically acts lik
extent, it is also very important for musical acoustic signa® Weighted map that decomposes, filters and transmits the
[2] or even to such a different field as material surface aigly SI9nal to the IHC. If the phase is altered the mapping on
[3]. the m_embrane may be slightly shifted hence the different

The modulation spectrum is commonly obtained in tw§ounding. _ o .
steps by the spectral analysis of the temporal behavioreof th The second important fact for digital audio and speech
power spectral components. The latter comes first off fromP40cessing is the mechanical role of the human hearingrayste
power spectrum analysi®.g: spectrogram, scalogram, gam-and particularly the middle ear and the cochlea. Studies lik
matone auditory model). The so-called Complex Modulatid§] showed that for frequencies below a threshold of 1.5-
Spectrum (CMS) displays time-frequency patterns invgvin2kHz (and gradually up to 6kHz) the firing rate of the IHC
magnitude and phase that reflects different speech atticsla d8Pends on the frequency (and on the amplitude and duration)
or even timbre in music. While the CMS phase informatiofif the stimulus. At those frequencies it is called time-edk
is important for speech intelligibility, its processing diffi-  activity or phase locking.e. there is a synchrony between the
cult. Modulation filtering requires spectro-temporal ®that tone freq_uency and the audlto_ry nerve response that becomes
jointly work on both CMS- magnitude and phase. In thigrogressively blurred over this threshold: From_2kHz and
purpose the Wavelet Modulation Sub-Bands (WMSB) app@pove 6k|_-|z, the response of the IHCI is fun.ctlon of the
a complex wavelet analysis on the temporal trajectorieef tStimulus signal envelope and the phase is less important [7]
time-frequency densities of the signal. i

The fgllowir)llg paper is organizegd as follow. First a reviev?‘ The Complex Modulation Spectrum
of the Complex Modulation Spectrum (CMS) and its physi- The concept of modulation spectrum lies in the spectral
ological importance is done followed by a short introductioanalysis of the temporal envelopes of each acoustic fraxyuen



. Xi[n] Xi[n] . by a set of time/scale localized oscillating basis fundion
o[n]—p| TiMe/Frea. Envelope propogd > Yi[n] Obtained by dilatations and translations of a single ailys

A”?P;S'S Pmc(‘zsmq Filtering function, the mother wavelet. A waveldt is a function of
Zero average
+o00
Fig. 1. Complex Wavelet Based Modulation Analysis / U(t)dt =0
— 00

dilated with a scale parameterand translated by
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band. Recent researches have explored three-dimensimral e
getic signal representations where the second dimensithie is

frequency and the third is the transform of the time varigbil . .
g y 8b The wavelet transform of at the scales and positionu is

of the signal spectrum. The latter is a time-acoustic fraqye btain b luti # with th let at 15]-
representation,e. usually a Fourier decomposition of the sig—0 ain by convolution off wi e wavelet atom [15]:

nal. The third dimension is the “modulation spectrum”, [BHa +oo 1, u—s

[9]. The second step of this spectro-temporal decompaositio W f(u, s) :/ f(t)ﬁw ( s )dt @)

is an envelope processing and can be seen as the spectral o ) o
analysis of the temporal envelop in each frequency binvitgi A wavelet transform can measure time-frequency variations
three dimensions to the representation of the signal with twPf SPectral components. It may have real or complex coeffi-
dimensional energy distributiors (), w) along timet with ,  Ci€nts and has a different time-frequency resolution tfemn t
being the modulation frequency andthe acoustic frequency. windowed Fourier transform. Howevere, the Parseval theore

\Ilu,s(t)

Fig. 1 presents a usual modulation analysis approach.  9IVes:
Drullmanet al. [10], refined later by Greenberg [1], showed
that the modulation frequency range of 2-16Hz has an im- +oo .
portant role in speech intelligibility. It reflects the sibic Wi, s) = / FO)w s (t)dt
temporal structure of speech [1]. More precisely, modairati 1_ e 4oo
frequencies around 4Hz seem to be the most important for = 5 Jw)¥y, (w)dw
— o0

human speech perception. This is the underlying motivation

for effective investigations and further advanced analysfi \yhere f is the Fourier transform of .

speech. Those perceptually important spectro-tempora@-mo |, relation to the CMS, in order to analyze the time

ulations have to be perfectly decorrelated to really opem n&q|ytion of frequency tones, it is necessary to use amalyti

ways of sparsity for processing as itis showed in the foli@yi \yayelets . whose Fourier transforms are null for negative
Over the past few years the Complex Modulation Spectrusquencies) to extract phase and magnitude informatiéns o

(CMS) has been a successful tool to analyze important infQfiyna|. An analytic function is necessarily complex but is
mation carried by audio signals unaccessible with Usuaé""mentirely characterized by its real part.

frequency energetic representations. Multiple topiceHasen

investigated with relative success over the last yearsnarou f=%R(fa)
modulation frequencies: audio compression [11] , pattern . f
classification and recognition [8], content identificatisignal falw) = faw) + fe(=w)
reconstruction, automatic speech recognitigt, In a slightly 2

different nature, modulation frequencies are used to céenpu In the time-frequency plane, the energy spread of a wavelet
the Speech Transmission Index (STI) as a quality meastime-frequency atom¥,, ; is an Heisenberg box of sizer,

[12]. It was also experimented in the area of speech enhanatng time ands,, /s along frequency d; is the time width
ment (pre-processing method) to improve the intelligipiln  ando,, /s the frequency width). Wheas varies, the height and
reverberant environments [13] or speech denoising [14] bwidth of the rectangle change but the area remains constant
there again with some limitations. The experiments had (6;0, > % uncertainty principle). With these variations it is
usually face either a production of severe artifacts or auese possible to observe both the amplitudes and their evolsition

to post-processing because of musical noise. along time.
This paper focuses on these properties and how to take
HI.- COMPLEX WAVELET MODULATION METHOD advantage of them in order to obtain an equivalence of the

The proposed method is based on a Continuous Wave®S in the wavelet domain.
Transform (CoWT) combined with a non-redundant Complex

Wavelet Transform (CXWT) (Fig. 2). B. The Continuous Wavelet Transform
) The use of a CoOWT at the first step has two roles. It offers
A. Wavelet basics a time-frequency density closer to the psychoacoustic inode

The idea underlying wavelets is to replace the infinitelgf the human hearing system and provides envelopes with
oscillating sinusoidal basis functions of Fourier tramsfs polynomial trends at low and medium frequencies.



Continuous | Xkln]| Complex | X [n] — Furthermore Torrence and Compo [16] showed that syn-
olnj—gpm] Wavelet [ | Wavelet pravas | ’f/—k[n] thesis is possible with only the real part of the transform
Transform Transform Fitering ~ ——» (iCoWT). The reconstructed time signal happens then to be

™M @)

the sum of the real part of the wavelet transform over all
scales. As a result, only the magnitude data of the CoWT is
preserved.

Fig. 2. Proposed method, CoWT: Continuous Wavelet Transform aWdTCx
Complex Wavelet Transform

C. The Complex Wavelet Transform

_ ) N By nature complex wavelets carry both phase and magni-
1) The CoWT provides a time-scale decomposition of thgde informations. Furthermore, phase information presid

signal. The log-scale frequency mapping is as such thdscription of the amplitude and local behavior of a funtio
the low and medium frequencies relevant to speech haxgo an amplitude-phase representation of a functionss le
a high frequency-resolution and a low time-resolutiogsgijjatory than the function. And finally because of the
(Heisenberg uncertainty). Itis similar to a localized widgyportant physiological facts seen in I, it is crucial tihe
band spectrogram. Meanwhile, the high frequencies legscond step of the modulation transform provides reliable
important to speech signals have a better time resolutigRase data. The output of the CoWT is thus decomposed using
and lower frequency resolution closer to the humag complex wavelet transform (CXWT) on each scale/frequency
hearing system. . _ bin. The proposed CxWT is implemented via an orthogonal
2) With speech and music, formants and harmonics, figerbank as shown in Fig. 3. The filterbank has a flexible 3
amplitudes and tones, evolve slowly along time. Thigyhogonal band structure with 2 conjugate high pass filters
means their envelopes are of polynomlal types. In Ofz[n] and ¢*[n]) decimated by 4 to remove the redundancy
der to capture these slow varying envelopes, the tiggsaied by the complex projection [17].
resolution needs to be low. Thus the low and medium |, Fig. 3, X o[n] is a coarse version of the sub-band
frequencies out of the COWT have strong polynomialigna| x, [n]. The transform distinguishes high- positive and
trends. negative, frequenciesy,",[n] and X, ,[n] (respectively the
Not all wavelets are suitable to compute the CoWT. Thsositive and negative frequency components of the assaciat
choice came forward to use the complex Morlet mothefetail signal). They represent Hilbert pairs of waveletae T
wavelet, mostly because it has a bandwidth parametenzatieomplex wavelet filterbank is then iteratéd times on each

The Morlet wavelet consists of a plane modulated by lawpass signalX; o[n], Xi1[n], ... The filterbank creates a

gaussian. Equations 3 and 4 give the mother wavelet anddtsmplex mapping of the real coefficients from the CoWT.

Fourier transform: ho[n], hi[n], go[n] andg: [n] are taken to be orthoconjugate
complex Daubechies wavelet filters of length 10. They are

(et — Kgy) (3) based on the low-pass filtgg[n] given in Table I. Furthermore
the bandpass orthogonal filter condition gn| for analyticity

) o1 2 1,2 17] is given by:
¢g(w) = 00.7'('71(@75(0'740) — Kye 2% ) 4) [17]is ¢ Yy

qln] := j"uln] U]
with o = 10, and K, = e~ 39" is the admissibility criterion
(negllglble here). U*(I/Z)U(Z) + U*(—l/Z)U(—Z) —9 (8)
Co=(1+e7 —2717)7 =1 (5)  with
is the normalization constant. uln)] = @[_1’ 0,5,5,0,—1] + j@[& 1,3,3,1,0]  (9)
The CoWT of a signak(t) is then defined by: 16 16
This orthogonal non-redundant CXWT offers a preservation
+00 of polynomial trends which is very important after the CowT
CoWT,(x) = / U, (t)x(t)dt =< ¥, (t),z(t) > (6) as showed in [18]. A good performance on polynomials
J oo reflects the good performance of the transform itself [19].

The coefficients obtained from equation 6 would be verffhis behavior on polynomials is directly related to the lgya
redundant if they were not evaluated on a discrete grid aétimof their projection on a Softy-space, approximation of the
scale basis functions. Therefore the CoWT behaves like Hardy-space.) The CxWT also provides Hilbert transform
orthonormal basis decomposition and it preserves enefgy. Tpairs of wavelets, as well as orthogonality through a resibn
analyticity and completeness of the CoWT [15] define a locatade of FIR filter approximations to the all-pass IIR filteks.
time-frequency energy density which measures the energysefen in [20], a proper retrieval of the original signal isgbke
x in the Heisenberg box of each wavelet. This density is calléldanks to the perfect reconstruction filterbank, Fig. 4. By i
scalogram pendant of thespectrograntor the wavelet theory complex nature, the CxWT offers good phase information and
(see Fig. 5) improved directionality but no shift invariance. A reduntia



z[n]—

CoWT

k,1

?,;’:1 [n]

higher density implementation is necessary for improveft sh
invariance [21]. However this implementation of the cxwP
could still be a great benefit for applications where sparsit..

Xk,l[n]

¢+
Xk,l[n]

iCoWT

— &[n]

Fig. 4. Reconstruction filterbank

and non-redundancy matter more than shift sensitivity.

TABLE |

COEFFICIENTS FOR ORTHOCONJUGATE COMPLERAUBECHIES FILTERS
OF LENGTH10

Frequency (Hz)

[n] go[n] |
0 | 0.01049245051230  +0.0205904370870R
1 | -0.00872852869034 -0.01712890812780
2 | 0.08063970414533  +0.1179474735381PR
3 | -0.09422365674476  -0.15137970843150
4 | 0.64300323451588  +0.18285216450%5[1
5 | -0.18285216450551 +0.64300323451588
6 | -0.15137970843150 +0.09422365674476
7 | -0.11794747353812  +0.08063970414533
8 | -0.01712890812780 +0.0087285286993¢4
9 | -0.02059043708702  +0.01049245051230

o1 015 [

2 025
Time (s)

’
.
ik
03 035 04

Fig. 5. Morlet scalogram of the word “longing” with noise

Frequency (Hz)

200 f i
sub bands

Fig. 6. Modulation subbands with scalogram replicas

IV. RESULTS AND CAPABILITIES
A. Representation

To illustrate the modulation transform nature of the pro-
osed method, a recording of the word “longing” drowned
white noise and sampled at 22050Hz has been analyzed.
ig. 5 shows the first step of the transforne, the scalogram
resulting from the Morlet CoWT. Only the magnitude is
displayed as the phase is not indispensable at that stage. As
explained previously, the phase data is only important & th
second step of the transform.

Fig. 6 illustrates the modulation subbands. The continuous
DC part and the very low modulation frequencies, in the first
subband, are not shown as they represent too much energy in
comparison. The important observation relates to the gpars
of the decomposition and how replicas of the scalogram
appear. In each subband a replica shows the corresponding
modulation frequency range/scale that is in the scalogram.
Fig. 6 only shows the magnitude of the coefficients but
each coefficient is a complex pair carrying explicitly both
magnitude and phase data.

B. Processing capabilities

This representation (Fig. 6) offers different possilmkti
of processing: estimation, detection, denoising, congioes
enhancement by energy growdtc. Each subband may also be
processed independently. Every scale and replica are éndep
dent thanks to the orthogonality of the decomposition. Low
modulation frequencies are important for intelligibilityhile
higher ones (100-200Hz) show the fundamental frequency of
the talker.

This paper focuses on low modulation frequencies due
to the log-scale decomposition due to the wavelet multi-
resolution behavior. Lower modulation scales represent a
shorter modulation-frequency range. With Daubechiesrdilte
of length 10, the 2-3 first subbands are important to speech
(modulation frequency range of 2-12Hz). Shorter filters ldou
give more precision in the low modulation frequencies bet th



complex mapping projection would not be as good. HencHilbert-like pairs of coefficients, orthogonality and udelR

only filter lengths of 10 are used as a good compromisiers. However the Hilbert pairs are not perfect and shdaireli

between precision and preservation of polynomial trends. aliasing energy in the negative frequency range [17] thghini

affect the reliability of the amplitude and phase inforroati
Nevertheless, the method suggests an alternative approach
Two different estimations can be made on the complexodulation filtering of speech and slow varying audio sig-

modulation subbands depending on the aim. Hard or sefils. The joint magnitude/phase processing overcomes the

thresholding should be used based on the local energy gensistortions encountered by the usual approaches and memis

C. Denoising by thresholding

of the wavelet coefficients.
Hard thresholding

- Xin) i | Xe[n]| > T
Yiln] = { 0 ’ if |f(:[n]l <T (0
Soft thresholding
- [ Xuln]=T if|Xpn]|>T
Yi[n] —{ 0 * if \X:[n]l <r W [1]

whereT is of the formo/2log, N (with o2 the variance
of X, and N the size of the reconstruction basis [15]).[2]
Hard thresholding is used when only the energetic coeffisien
inside the modulation subbands need to be preserved. Hard
thresholding as well as a removal of whole subbands is uséd
for strong noise or high data reduction. For softer noise o0
lower data reduction it is preferable to use soft thresimgidin
that case indeed, will be chosen with the highest probability [5]
to be above the low coefficients. So that they are considered f'a]
be noise-like and the thresholding will have a denoisingaff
[18] on the scale/frequency bins. Different thresholds a@lso  [7]
be applied depending on the targeted acoustical frequency
range. Fig. 6 shows that most of the noise is decomposed g
the high frequencies that are less important to intelllgybi
So high frequencies can usually undergo a heavier proggssi
As the thresholding jointly works on both magnitude and
phase data, disturbing artifacts or musical noise are adoid[10]
Even keeping only the first subband (DC and very low modul?ﬂ]
tion frequencies) yields a speech signal of poor qualityshillt
intelligible. This confirms Greenberg’s [1] and Steenekenl12]
[12] works on the role of low modulation frequencies (4Hz) "ﬂls]
speech. .Naturally most advanced wavelet tools for dempisi
and estimation may also be used in a data reduction goal. More
advanced schemes would also provide scalability featmes[i' 4
the estimation/quality process.
15
V. CONCLUSION AND DISCUSSION 1l
This paper presented a complex valued transform for spee[%:(ﬂ
compression based on modulation frequencies. Low modula-
tion frequencies contain crucial cues for speech intdliligy (17]
so the idea was to exploit that property in combination to the
great sparsity of the non redundant complex wavelet tramsfo [18]
It can primarily be used for speech denoising in a modulation
subband approach but also shows interesting capabilibies figj
compression. The CxWT offers useful phase information @]
the Complex Modulation “Spectrum” that allows joint work

efficient means for modulation denoising.
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