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Abstract—Low-frequency modulation of sound carry impor-
tant information for speech and music. The modulation spectrum
is commonly obtained by spectral analysis of the sole temporal
envelopes of the sub-bands out of a time-frequency analysis.
Processing in this domain usually creates undesirable distortions
because only the magnitudes are taken into account and the phase
data is often neglected. We remedy this problem with the use of a
complex wavelet transform as a more appropriate envelope and
phase processing tool. Complex wavelets carry both magnitude
and phase explicitly with great sparsity and preserve well
polynomial trends. Moreover an analytic Hilbert-like transform
is possible with complex wavelets implemented as an orthogonal
filter bank. By working in an alternative transform domain
coined as “Modulation Subbands”, this transform shows very
promising denoising capabilities and suggests new approaches
for joint spectro-temporal analytic processing of slow frequency
and phase varying signals.

I. I NTRODUCTION

The challenge is to detect, analyze and process slow fre-
quency variations in acoustical cues obtained after a time-
frequency analysis. Modulation frequencies of speech between
2 and 16Hz and especially around 4Hz are of great importance
for intelligibility [1]. They carry essential syllabic information.
On a physiological side, the phase information is also impor-
tant because of its influence on the human hearing system. The
ability to jointly work on these slow modulation frequencies
and their phase data is thus crucial for speech. To an other
extent, it is also very important for musical acoustic signals
[2] or even to such a different field as material surface analysis
[3].

The modulation spectrum is commonly obtained in two
steps by the spectral analysis of the temporal behavior of the
power spectral components. The latter comes first off from a
power spectrum analysis (e.g.: spectrogram, scalogram, gam-
matone auditory model). The so-called Complex Modulation
Spectrum (CMS) displays time-frequency patterns involving
magnitude and phase that reflects different speech articulators
or even timbre in music. While the CMS phase information
is important for speech intelligibility, its processing isdiffi-
cult. Modulation filtering requires spectro-temporal tools that
jointly work on both CMS- magnitude and phase. In this
purpose the Wavelet Modulation Sub-Bands (WMSB) apply
a complex wavelet analysis on the temporal trajectories of the
time-frequency densities of the signal.

The following paper is organized as follow. First a review
of the Complex Modulation Spectrum (CMS) and its physi-
ological importance is done followed by a short introduction

to the wavelet theory. Then the proposed method based on
Wavelet Modulation Sub-Bands (WMSB) is described with an
emphasis on its filtering capacities through an example before
concluding with a final discussion.

II. PHYSIOLOGICAL ASPECTS ANDCOMPLEX

MODULATION SPECTRUM

A. Signal phase and cochlea

For acoustical signal processing in general there are im-
portant facts to take into account. The first aspect is the
signal phase too often ignored when it comes to digital audio
processing: two signals with identical magnitude spectra but
different phases do sound different. Ohm’s acoustic law stating
that human hearing is insensitive to phase is persistent but
wrong (to a certain extent). For instance, Lindemann and Kates
showed [4] that the phase relationships between clusters of
sinusoids in a critical band affect its amplitude envelope and
most important, affect the firing rate of the inner hair cells
(IHC). Thus the major issue is to preserve the phase during
an analysis transform otherwise amplitude envelopes will be
modified at the reconstruction. Magnitude in a signal gives
information about the power while phase is important for
localization. For the human hearing, studies like [5] showed
that the basilar membrane in the cochlea, basically acts like
a weighted map that decomposes, filters and transmits the
signal to the IHC. If the phase is altered the mapping on
the membrane may be slightly shifted hence the different
sounding.

The second important fact for digital audio and speech
processing is the mechanical role of the human hearing system
and particularly the middle ear and the cochlea. Studies like
[6] showed that for frequencies below a threshold of 1.5-
2kHz (and gradually up to 6kHz) the firing rate of the IHC
depends on the frequency (and on the amplitude and duration)
of the stimulus. At those frequencies it is called time-locked
activity or phase locking,i.e. there is a synchrony between the
tone frequency and the auditory nerve response that becomes
progressively blurred over this threshold. From 2kHz and
above 6kHz, the response of the IHC is function of the
stimulus signal envelope and the phase is less important [7].

B. The Complex Modulation Spectrum

The concept of modulation spectrum lies in the spectral
analysis of the temporal envelopes of each acoustic frequency



Fig. 1. Complex Wavelet Based Modulation Analysis

band. Recent researches have explored three-dimensional ener-
getic signal representations where the second dimension isthe
frequency and the third is the transform of the time variability
of the signal spectrum. The latter is a time-acoustic frequency
representation,i.e. usually a Fourier decomposition of the sig-
nal. The third dimension is the “modulation spectrum”, [8] and
[9]. The second step of this spectro-temporal decomposition
is an envelope processing and can be seen as the spectral
analysis of the temporal envelop in each frequency bin. It gives
three dimensions to the representation of the signal with two-
dimensional energy distributionsSt(η, ω) along timet with η
being the modulation frequency andω the acoustic frequency.
Fig. 1 presents a usual modulation analysis approach.

Drullmanet al. [10], refined later by Greenberg [1], showed
that the modulation frequency range of 2-16Hz has an im-
portant role in speech intelligibility. It reflects the syllabic
temporal structure of speech [1]. More precisely, modulation
frequencies around 4Hz seem to be the most important for
human speech perception. This is the underlying motivation
for effective investigations and further advanced analysis of
speech. Those perceptually important spectro-temporal mod-
ulations have to be perfectly decorrelated to really open new
ways of sparsity for processing as it is showed in the following.

Over the past few years the Complex Modulation Spectrum
(CMS) has been a successful tool to analyze important infor-
mation carried by audio signals unaccessible with usual time-
frequency energetic representations. Multiple topics have been
investigated with relative success over the last years around
modulation frequencies: audio compression [11] , pattern
classification and recognition [8], content identification, signal
reconstruction, automatic speech recognition,etc. In a slightly
different nature, modulation frequencies are used to compute
the Speech Transmission Index (STI) as a quality measure
[12]. It was also experimented in the area of speech enhance-
ment (pre-processing method) to improve the intelligibility in
reverberant environments [13] or speech denoising [14] but
there again with some limitations. The experiments had to
usually face either a production of severe artifacts or a recourse
to post-processing because of musical noise.

III. C OMPLEX WAVELET MODULATION METHOD

The proposed method is based on a Continuous Wavelet
Transform (CoWT) combined with a non-redundant Complex
Wavelet Transform (CxWT) (Fig. 2).

A. Wavelet basics

The idea underlying wavelets is to replace the infinitely
oscillating sinusoidal basis functions of Fourier transforms

by a set of time/scale localized oscillating basis functions
obtained by dilatations and translations of a single analysis
function, the mother wavelet. A waveletΨ is a function of
zero average

∫ +∞

−∞

Ψ(t)dt = 0

dilated with a scale parameters and translated byu

Ψu,s(t) =
1√
s
Ψ(
t− u

s
) (1)

The wavelet transform off at the scales and positionu is
obtain by convolution off with the wavelet atom [15]:

Wf(u, s) =

∫ +∞

−∞

f(t)
1√
s
Ψ∗(

u− s

s
)dt (2)

A wavelet transform can measure time-frequency variations
of spectral components. It may have real or complex coeffi-
cients and has a different time-frequency resolution than the
windowed Fourier transform. Howevere, the Parseval theorem
gives:

Wf(u, s) =

∫ +∞

−∞

f(t)Ψ∗
u,s(t)dt

=
1

2π

∫ +∞

−∞

f̂(ω)Ψ̂∗
u,s(ω)dω

wheref̂ is the Fourier transform off .
In relation to the CMS, in order to analyze the time

evolution of frequency tones, it is necessary to use analytic
wavelets (i.e. whose Fourier transforms are null for negative
frequencies) to extract phase and magnitude informations of
signal. An analytic function is necessarily complex but is
entirely characterized by its real part.

f = ℜ(fa)

f̂a(ω) =
f̂a(ω) + f̂∗a (−ω)

2

In the time-frequency plane, the energy spread of a wavelet
time-frequency atomΨu,s is an Heisenberg box of sizesσt

along time andσω/s along frequency (σt is the time width
andσω/s the frequency width). Whens varies, the height and
width of the rectangle change but the area remains constant
(σtσω ≥ 1

2 , uncertainty principle). With these variations it is
possible to observe both the amplitudes and their evolutions
along time.

This paper focuses on these properties and how to take
advantage of them in order to obtain an equivalence of the
CMS in the wavelet domain.

B. The Continuous Wavelet Transform

The use of a CoWT at the first step has two roles. It offers
a time-frequency density closer to the psychoacoustic model
of the human hearing system and provides envelopes with
polynomial trends at low and medium frequencies.



Fig. 2. Proposed method, CoWT: Continuous Wavelet Transform and CxWT:
Complex Wavelet Transform

1) The CoWT provides a time-scale decomposition of the
signal. The log-scale frequency mapping is as such that
the low and medium frequencies relevant to speech have
a high frequency-resolution and a low time-resolution
(Heisenberg uncertainty). It is similar to a localized wide
band spectrogram. Meanwhile, the high frequencies less
important to speech signals have a better time resolution
and lower frequency resolution closer to the human
hearing system.

2) With speech and music, formants and harmonics, as
amplitudes and tones, evolve slowly along time. This
means their envelopes are of polynomial types. In or-
der to capture these slow varying envelopes, the time
resolution needs to be low. Thus the low and medium
frequencies out of the CoWT have strong polynomial
trends.

Not all wavelets are suitable to compute the CoWT. The
choice came forward to use the complex Morlet mother
wavelet, mostly because it has a bandwidth parameterization.
The Morlet wavelet consists of a plane modulated by a
gaussian. Equations 3 and 4 give the mother wavelet and its
Fourier transform:

Ψσ(t) = Cσπ
− 1

4 e−
1

2
t2(eiσt −Kσ) (3)

ψ̂σ(w) = Cσπ
− 1

4 (e−
1

2
(σ−ω)2 −Kσe

− 1

2
ω2

) (4)

with σ = 10, andKσ = e−
1

2
σ2

is the admissibility criterion
(negligible here).

Cσ = (1 + e−σ2 − 2e−
3

4
σ2

)
−1

2 = 1 (5)

is the normalization constant.
The CoWT of a signalx(t) is then defined by:

CoWTσ(x) =

∫ +∞

−∞

Ψσ(t)x(t)dt =< Ψσ(t), x(t) > (6)

The coefficients obtained from equation 6 would be very
redundant if they were not evaluated on a discrete grid of time-
scale basis functions. Therefore the CoWT behaves like an
orthonormal basis decomposition and it preserves energy. The
analyticity and completeness of the CoWT [15] define a local
time-frequency energy density which measures the energy of
x in the Heisenberg box of each wavelet. This density is called
scalogram, pendant of thespectrogramfor the wavelet theory
(see Fig. 5)

Furthermore Torrence and Compo [16] showed that syn-
thesis is possible with only the real part of the transform
(iCoWT). The reconstructed time signal happens then to be
the sum of the real part of the wavelet transform over all
scales. As a result, only the magnitude data of the CoWT is
preserved.

C. The Complex Wavelet Transform

By nature complex wavelets carry both phase and magni-
tude informations. Furthermore, phase information provides a
description of the amplitude and local behavior of a function.
Also, an amplitude-phase representation of a function is less
oscillatory than the function. And finally because of the
important physiological facts seen in II, it is crucial thatthe
second step of the modulation transform provides reliable
phase data. The output of the CoWT is thus decomposed using
a complex wavelet transform (CxWT) on each scale/frequency
bin. The proposed CxWT is implemented via an orthogonal
filterbank as shown in Fig. 3. The filterbank has a flexible 3
orthogonal band structure with 2 conjugate high pass filters
(q[n] and q∗[n]) decimated by 4 to remove the redundancy
created by the complex projection [17].

In Fig. 3, X̃k,0[n] is a coarse version of the sub-band
signalXk[n]. The transform distinguishes high- positive and
negative, frequencies,̃X+

k,1[n] and X̃−
k,1[n] (respectively the

positive and negative frequency components of the associated
detail signal). They represent Hilbert pairs of wavelets. The
complex wavelet filterbank is then iteratedN times on each
lowpass signalX̃k,0[n], X̃k,1[n], . . . The filterbank creates a
complex mapping of the real coefficients from the CoWT.
h0[n], h1[n], g0[n] andg1[n] are taken to be orthoconjugate

complex Daubechies wavelet filters of length 10. They are
based on the low-pass filterg0[n] given in Table I. Furthermore
the bandpass orthogonal filter condition onq[n] for analyticity
[17] is given by:

q[n] := jnu[n] (7)

U∗(1/z)U(z) + U∗(−1/z)U(−z) = 2 (8)

with

u[n] =

√
3

16
[−1, 0, 5, 5, 0,−1] + j

√
5

16
[0, 1, 3, 3, 1, 0] (9)

This orthogonal non-redundant CxWT offers a preservation
of polynomial trends which is very important after the CoWT
as showed in [18]. A good performance on polynomials
reflects the good performance of the transform itself [19].
(This behavior on polynomials is directly related to the quality
of their projection on a Softy-space, approximation of the
Hardy-space.) The CxWT also provides Hilbert transform
pairs of wavelets, as well as orthogonality through a realization
made of FIR filter approximations to the all-pass IIR filters.As
seen in [20], a proper retrieval of the original signal is possible
thanks to the perfect reconstruction filterbank, Fig. 4. By its
complex nature, the CxWT offers good phase information and
improved directionality but no shift invariance. A redundant



Fig. 3. Analytic and orthogonal filtebank

Fig. 4. Reconstruction filterbank

higher density implementation is necessary for improved shift
invariance [21]. However this implementation of the CxWT
could still be a great benefit for applications where sparsity
and non-redundancy matter more than shift sensitivity.

TABLE I
COEFFICIENTS FOR ORTHOCONJUGATE COMPLEXDAUBECHIES FILTERS

OF LENGTH 10

n g0[n]

0 0.01049245051230 +0.02059043708702j

1 -0.00872852869034 -0.01712890812780j

2 0.08063970414533 +0.11794747353812j

3 -0.09422365674476 -0.15137970843150j

4 0.64300323451588 +0.18285216450551j

5 -0.18285216450551 +0.64300323451588j

6 -0.15137970843150 +0.09422365674476j

7 -0.11794747353812 +0.08063970414533j

8 -0.01712890812780 +0.00872852869034j

9 -0.02059043708702 +0.01049245051230j

Fig. 5. Morlet scalogram of the word “longing” with noise

Fig. 6. Modulation subbands with scalogram replicas

IV. RESULTS AND CAPABILITIES

A. Representation

To illustrate the modulation transform nature of the pro-
posed method, a recording of the word “longing” drowned
in white noise and sampled at 22050Hz has been analyzed.
Fig. 5 shows the first step of the transform,i.e. the scalogram
resulting from the Morlet CoWT. Only the magnitude is
displayed as the phase is not indispensable at that stage. As
explained previously, the phase data is only important in the
second step of the transform.

Fig. 6 illustrates the modulation subbands. The continuous
DC part and the very low modulation frequencies, in the first
subband, are not shown as they represent too much energy in
comparison. The important observation relates to the sparsity
of the decomposition and how replicas of the scalogram
appear. In each subband a replica shows the corresponding
modulation frequency range/scale that is in the scalogram.
Fig. 6 only shows the magnitude of the coefficients but
each coefficient is a complex pair carrying explicitly both
magnitude and phase data.

B. Processing capabilities

This representation (Fig. 6) offers different possibilities
of processing: estimation, detection, denoising, compression,
enhancement by energy growthetc.Each subband may also be
processed independently. Every scale and replica are indepen-
dent thanks to the orthogonality of the decomposition. Low
modulation frequencies are important for intelligibilitywhile
higher ones (100-200Hz) show the fundamental frequency of
the talker.

This paper focuses on low modulation frequencies due
to the log-scale decomposition due to the wavelet multi-
resolution behavior. Lower modulation scales represent a
shorter modulation-frequency range. With Daubechies filters
of length 10, the 2-3 first subbands are important to speech
(modulation frequency range of 2-12Hz). Shorter filters would
give more precision in the low modulation frequencies but the



complex mapping projection would not be as good. Hence,
only filter lengths of 10 are used as a good compromise
between precision and preservation of polynomial trends.

C. Denoising by thresholding

Two different estimations can be made on the complex
modulation subbands depending on the aim. Hard or soft
thresholding should be used based on the local energy density
of the wavelet coefficients.

Hard thresholding

Ỹk[n] =

{

X̃k[n] if |X̃k[n]| > T

0 if |X̃k[n]| ≤ T
(10)

Soft thresholding

Ỹk[n] =

{

X̃k[n] − T if |X̃k[n]| > T

0 if |X̃k[n]| ≤ T
(11)

whereT is of the formσ
√

2 logeN (with σ2 the variance
of X̃k and N the size of the reconstruction basis [15]).
Hard thresholding is used when only the energetic coefficients
inside the modulation subbands need to be preserved. Hard
thresholding as well as a removal of whole subbands is used
for strong noise or high data reduction. For softer noise or
lower data reduction it is preferable to use soft thresholding. In
that case indeed,T will be chosen with the highest probability
to be above the low coefficients. So that they are considered to
be noise-like and the thresholding will have a denoising effect
[18] on the scale/frequency bins. Different thresholds canalso
be applied depending on the targeted acoustical frequency
range. Fig. 6 shows that most of the noise is decomposed in
the high frequencies that are less important to intelligibility.
So high frequencies can usually undergo a heavier processing.

As the thresholding jointly works on both magnitude and
phase data, disturbing artifacts or musical noise are avoided.
Even keeping only the first subband (DC and very low modula-
tion frequencies) yields a speech signal of poor quality butstill
intelligible. This confirms Greenberg’s [1] and Steeneken’s
[12] works on the role of low modulation frequencies (4Hz) in
speech. .Naturally most advanced wavelet tools for denoising
and estimation may also be used in a data reduction goal. More
advanced schemes would also provide scalability features in
the estimation/quality process.

V. CONCLUSION AND DISCUSSION

This paper presented a complex valued transform for speech
compression based on modulation frequencies. Low modula-
tion frequencies contain crucial cues for speech intelligibility
so the idea was to exploit that property in combination to the
great sparsity of the non redundant complex wavelet transform.
It can primarily be used for speech denoising in a modulation
subband approach but also shows interesting capabilities for
compression. The CxWT offers useful phase information to
the Complex Modulation “Spectrum” that allows joint work
on both magnitude and phase. Precisely what was needed to do
filtering in the modulation domain. It still does not have shift
invariance but provides a preservation of polynomial trends,

Hilbert-like pairs of coefficients, orthogonality and usesFIR
filters. However the Hilbert pairs are not perfect and show little
aliasing energy in the negative frequency range [17] that might
affect the reliability of the amplitude and phase information.

Nevertheless, the method suggests an alternative approach
modulation filtering of speech and slow varying audio sig-
nals. The joint magnitude/phase processing overcomes the
distortions encountered by the usual approaches and promises
efficient means for modulation denoising.
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