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Abstract— This paper considers the linear transceiver op-
timization problem for multi-carrier multiple-input multiple-
output (MIMO) channels with per-antenna power constraints.
Because in practical implementations each antenna is limited
individually by its equipped power amplifier, this paper adopts
the more realistic per-antenna power constraints, in contrast
to the conventional sum-power constraint on the transmitter
antennas. Assuming perfect channel knowledge both at the
transmitter and the receiver, the optimization problem can be
transformed into a semi-definite program (SDP), which can
be solved by convex optimization tools. Furthermore, several
objective functions of the MIMO system, including average bit
error rate, can also be optimized by the introduction of the
majorization theory. !

Index Terms — Per-antenna Constraints, BER Optimiza-
tion, Schur Convexity, Semi-definite Programming, MIMO
Transceivers.

I. INTRODUCTION

In this paper we consider the optimization of multi-carrier
multiple-input multiple-output (MIMO) communication sys-
tems with per-antenna power constraints. In the MIMO system,
the transmitter has M antennas sending independent infor-
mation to the receiver equipped with J antennas. The signal
vector consisting of M sub-streams is assumed to be linearly
transformed by the channel matrix H, and corrupted by the
additive Gaussian noise.

Based on the assumption of having perfect channel state
information, the transmitter can use appropriate precoding, and
jointly with the equalization scheme at the receiver side, better
performance can be achieved. It is known that the optimal
equalization technique is the maximum likelihood receiver.
However, due to the heavy computation load, usually the
linear precoding and equalization scheme, or other suboptimal
techniques, such as linear precoder with decision feedback
equalizers, are utilized. Under those schemes, several authors
considered the optimization of the MIMO communication
systems. In [12], the authors considered the linear transceiver
optimization problem under the total power constraint. By in-
troducing the majorization theory, several objective functions,
which can be categorized as Schur-convex or Schur-concave
[10] functions of the mean squared errors, were optimized.
Recently, the optimal solution for decision feedback equalizer
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along with precoder, under the total power constraint, was also
found [13], [6].

Instead of total power constraint, in this paper we con-
sider the more realistic per-antenna power constraints on the
transmitter [7], [11], since in practice each antenna is limited
individually by its equipped power amplifier. The optimization
process consists of two steps. We first formulate the MMSE
(Minimum Mean Square Error) linear transceiver design with
per-antenna power constraints to be a semi-definite program
(SDP), which can be efficiently solved by convex optimization
tools. Then, among the family of MMSE transceivers, we
develop a method to find the one that minimizes the average
bit error rate as well as many other Schur-convex objective
functions. The proof of the optimality is also given in the
paper.

This paper is structured as follows. In Section II, after a
brief introduction, the optimal receiver matrix as well as the
resulting error covariance matrix will be given. The formula-
tion of MMSE transceiver optimization problem in the form of
a SDP will also be described. In Section III, the optimization
of average BER problem will be discussed. Section IV presents
the numerical simulation results related to the topics discussed
in the paper. The final conclusions of the paper are summarized
in section V.

II. MMSE TRANSCEIVER DESIGN WITH PER-ANTENNA
POWER CONSTRAINTS

In this section we describe the MMSE transceiver optimiza-
tion with per-antenna power constraints. This serves as the
first step toward minimizing the average BER. We consider
a communication system with M transmit and .J receive
antennas. This gives rise to a MIMO channel that can be
represented by a channel matrix. Consider the system model
in Fig. 1, where s is the M x 1 transmitted symbol vector, H is
the channel matrix with dimension J x M, which is assumed
to be fixed during the transmission of a block, and known at
both sides of the communication links. We assume zero-mean
unit-energy uncorrelated (white) symbols, i.e., E[ssf] = I;.
The received signal prior to equalization is

y = HFs + n. (D)

where F is the precoding matrix, and n is the additive Gaus-
sian noise with covariance matrix R.,,, i.e., n ~ CN(0,R,,).
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The per-antenna power constraints can be formulated as

(E[Fss'Ff)); = (FFY); <P, Vi=1,2,--- .M )

n
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Fig. 1. Communication model.

Usually the performance of the communication system
depends on the mean square error (MSE). To design the
system, we first derive the optimum receiver matrix G which
minimizes the MSE, when H, F, and R,,, are given. The error
vector in Fig. 1 of the transmitted symbols before the hard
decision device is

e=Gy—s=(GHF —I)s + Gn. 3)

Under the assumption that the transmitted symbols have no
correlation with the additive noise, the covariance matrix of
the error vector is

Elee'] = (GHF — I)(GHF —I) + GR,,G' 4)

It is well known that if F is given [12], [9], the optimum
receiver matrix would be the linear minimum MSE (LMMSE)
receiver or so called Wiener filter:

G, = FIHI(HFF'H' + R,) !, (3)

and the resulting error covariance matrix (MSE matrix) can
be written as

E = Eleel] =1 - FFH'WHF (6)
where
W = (HFF'H' + R,)™! (7
This can be rewritten using matrix inversion lemma [4]
E = Elee'] = (I + FHIR, 'HF) ! (8)

In the following we will describe how to solve the MMSE
problem with the per-antenna power constraints. This is done
by formulating the problem as a semi-definite program (SDP)
as we shall see.

The MMSE problem with per-antenna power constraints can
be formulated as

H}Tin Tr(E) )
st. (FFY),; <P, Vi=1,2,---,M
where Tr(E) denotes the trace of the matrix E. From (6)
Tr(E) = Tr(I - FTH'WHF)
= M -Tr(FTH'WHF)
= M- Tr(WHFFH)
M —-Tr(W(W-1-R,))
M —J+Tr(WR,)

Since M and J are constants, R,, is known, and the MMSE
depends only on W, which is a function of F as in (7).
Furthermore, if we define

U = FFf (10)
then according to (7) we can write
W = (HUH'+R,)! 1)

By the above formulation, we can re-cast the problem (9)
as follows:

ml}n Tr(WR,) (12)
S.t. (a) (U)” <P, Vi=1,2,--- M
() U0

(¢) W = (HUH' + R,,) ™!

where U > 0 means that the matrix U is positive semi-
definite. The problem formulation in (12) is not convex though.
Similar to [9], by introducing an auxiliary matrix variable W ),
we can cast the problem in (12) as the following equivalent
problem:

mp TH(WiR,) (13)
(b)) U =0

(c) Wy = (HUH + R,,) ™!

The equivalence of problem formulation (12) and (13) can
be easily explained as follows: In (13) we are minimizing the
trace of matrix WoR,,, where R,, is positive semi-definite.
Therefore we have [9]

Tr(WoR,) > Tr((HU'H' + R,)"'R,,)

since Wy > (HUHT + Rn)_l. The optimal solution of
problem (13) ensures the equality

W, = (HU'H +R,)"!

holds, where U is also the optimal solution for (12). Note that
the constraint

W, = (HUH' + R,,)}

holds if only if the following linear matrix inequality holds
(p- 472 in [4])

et
(HUH—i—Rn 1 >t0
0

I W (14)

Therefore, our final form of problem formulation can be
written as

15{1\17\1110 Tr(WoR,,) (15)
S.t. (a) (U)n <P, Vi = 1,2, M
(b)) U=0
HUH'+R, I
(c) ( I Wy > =0
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In (15) the objective function is linear, and the constraints
are either linear or positive semi-definite, which implies the
problem (15) is a SDP problem [15]. This ensures that the
global minimum of (15) can be found in polynomial time. The
algorithmic complexity of solving SDP using interior points
methods is O(n%®log(1/¢)), where ¢ is the solution accuracy,
and n is the problem size [15], [1]. Once we solve the problem
(15), the precoder matrix F is the Cholesky factorization of
the solution U in (15).

': | X+Y=8 | |

il

Fig. 2. Visualization of the feasible region of the solution of (15) for the
two antenna case.

Fig. 2 shows the visualization of the feasible region of the
solution U in problem (15) for the two antenna case. For

simplicity, we assume
X Z
ZY

o

where Z is a real number. Therefore the constraint U > 0
forms a positive semi-definite cone. The constraints Uy, < 5
define the halfspaces on one side of the hyperplanes U = 5.
The total power constraint Tr(U) < 8, is also a halfspace
formed by the hyperplane cutting through the semi-definite
cone. The convex problem is solved by running the interior
point method [2] in the feasible region, which is formed by
the intersection of the semi-definite cone and the halfspaces.

III. BER OPTIMIZATION OF TRANSCEIVER WITH
PER-ANTENNA POWER CONSTRAINTS

In this section we derive the optimal transceiver for the av-
erage bit error rate (BER), with per-antenna power constraints.
This method is based on distributing the MSE identically in
each substream.

Suppose we already found the solution U ;s to the
problem (15). The optimal MMSE solution F,,,,sc can be
taken as any Cholesky factor of U,,,,se, SO that

16)

meseFanse - Ummse-

Note that for any unitary matrix ¥, the product F' ;.5 ¥ will
still be an MMSE solution. This is the freedom we have, to
optimize the average bit error rate. Suppose matrix V is the

unitary matrix which diagonalizes FlnmseHTR; THF,mse:
Fl, o H R, HE,, = VIV a7
Then the MSE matrix in (8) is
Elee'] = (I+F},, . . HR;THF,,.) "
= VI+x)~'vi (18)

In view of Theorem 1, which will be proved later, the
optimal F' has the form

F=F,msVP (19)

where ® denotes the unitary matrix such that the MSE matrix
as in (8) has the identical diagonal elements. Examples of such
@ are the Hadamard matrix and the discrete Fourier transform
(DFT) matrix [8], [3].

The performance of a digital communication system ulti-
mately is given by the bit error rate (BER). Assuming a Gray
encoding is used to map the bits into the constellation points,
the BER can be approximately obtained from the symbol error
rate (SER), i.e.,

BER =~ SER/k,

where k is the number of bits per-symbol. Under the Gaussian
assumption the SER can be approximately expressed as a
function of SINR:

Pe(SINR) = aQ(/BSINR), (20)

where Q is Q-function defined as in [12] and « and (3
are constants depending on the constellation. The following
lemma is useful in developing the BER optimality of F in
(19).

Lemma 1. In the high SINR region, the bit error rate is a
convex increasing function of the MSE. That is, BER(E ;) is
a convex increasing function of F;;, where E;; is defined as
the ith diagonal term of the MSE matrix in (8).

Proof: See Appendix H in [12]. [ |

The high SINR regions represent the low BER regions,
which are often the focus of the analysis in communication
systems. The following theorem shows that the system with F
in (19), and with the corresponding G in (5), has the minimum
average BER.

Theorem 1. Among all systems in Fig. 1 which satisfy (2),
the F in (19) and the corresponding G in (5) are the optimal
solutions that minimize the average BER, which is defined as

M
—— 1
BER = — E BER(LEy; 21

Proof:  For the system {F,mse, Guumse}s Sup-
pose the diagonal terms of the MSE matrix are £ =
{Ev1, Ea2,- -, Ev}, where Foppse is a Cholesky factor
of U,ymses and Gopmse 18 the corresponding LMMSE filter.
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Suppose there is another system, {F G’ } which has the di-
agonal terms of the MSE matrix E = {E},, Ey,, - -
Trivially we have

]\HM}'

E-FE
where E' is defined as the vector with all elements equal to the
arithmetic mean of E’, and ">’ denotes the majorization as in
[10]. According to Lemma 1, BER(-) is a convex function

of E” Therefore the average BER is a Schur-convex function
of E (p- 70 in [10]). Then we have

’

BER = &M BER(E}) (22)
= BER(M Zi:l u) (23)
> BER(3; Y0, i) (24)
= BER9) (25)

where B—ER(lg) is defined as the BER obtained by using
F in (19). The inequality in (23) follows from the fact that
Schur-convex function preserves majorization. The inequality
in (24) is due to the fact that E is the corresponding MSE of
the solution to problem (15), and the fact that BER(-) is an
increasing function. The equality in (25) is because F in (19)
is the one that makes all diagonal terms of the MSE matrix
identical.

Therefore, any other system satisfying (2) will have larger
average BER than the system with F as in (19) and the
corresponding LMMSE receiver G as in (5). This concludes
our proof. [ ]

Note that the proof given above relies only on the fact that
the average BER is a Schur-convex and increasing function
of MSE’s. Therefore the same concept can also be applied to
other objective functions that have these two properties. Many
examples of such objective functions are provided in [12]. For
all such objective functions, the system with F as in (19) and
the corresponding LMMSE receiver G as in (5) is always the
optimal one!

IV. NUMERICAL RESULTS

In this section we present our simulation results relevant to
the discussions carried out in previous sections. After formu-
lating the problem as in (15), we use the convex optimization
tool “SeDuMi” [14] to obtain the optimal solution.

In both Fig. 3 and Fig. 4 we choose M = 4, J = 5, and per-
antenna power constraints to be [Py, P>, Ps, Py] = «[5,4, 3, 2],
where « controls the total power. The constellation are all
QPSK. The noise is additive white Gaussian for each case,
with covariance matrix R.,, = 4I for Fig. 3, and R,, = 6.251
for Fig. 4. The channels used in the simulations are H; and
H,, for Fig. 3 and Fig. 4 respectively, given as follows:

—1.59 — 0.627 —0.94 — 0.851% —0.44 — 0.431 —0.70 — 0.501%
1.27 + 0.881 0.44 — 1.661 0.75 + 0.341 —0.58 + 1.17%
Hl = —0.40 — 0.05% 0.17 — 0.701% —2.48 4+ 0.514 0.31 — 0.181%
0.22 — 1.167 —0.00 — 0.8017 1.07 — 1.234 0.80 + 0.797
—0.80 — 0.997 —2.09 +0.1317 0.88 — 0.2217 —1.86 + 0.181%
and
0.01 + 0.471 —0.19 + 0.431 0.84 4+ 0.86% 2.27 — 1.371
1.81 — 0.232 —1.14 — 0.621 —1.43 + 2.481 0.63 — 0.831
H2 = 2.47 4+ 1.341 3.66 — 2.191 1.78 + 0.271 1.71 — 1.414
—0.82 — 0.457 —1.19 — 1.5114 0.96 — 0.741 —0.08 — 1.671%
1.38 — 0.154 0.82 — 0.171% 0.26 — 0.971 —1.23 + 1.647

107
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107 —&5— OPT-MMSE-dist 3
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10 1
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Fig. 3. Comparing four different transceivers for channel Hy, with per-
antenna power constraints «[5, 4, 3, 2].

The plots in Fig. 3 and Fig. 4 are with respect to the
variable o, where « controls the total power. “OPT-MMSE-
nodist” denotes the optimal MMSE design but without dis-
tributing the MSE in each sub-stream, i.e., the precoder is
taken to be a Cholesky factor F,,,se as in (16). “OPT-
MMSE-dist” denotes the optimal MMSE design with the
MSE in each sub-stream identical, which corresponds to using
F as in (19). “Naive-nodist” denotes the case where the
power constraints are satisfied by using the simple choice
Froive = diag(a[Py, P, - -+, Pyl). “Naive-dist” corresponds
to the case where the precoder matrix is F = F,,4;,. V® as
in (19), so that (8) has identical diagonal elements.

10
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m
—6— OPT-MMSE-nodist
. —&— OPT-MMSE-dist
10°F Naive-nodist 3
—*— Naive-dist
10°F E
107 : ‘ 5
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o (dB)
Fig. 4. Comparing four different transceivers for channel Hp, with per-

antenna power constraints «[5, 4, 3, 2].

From the simulations, we can see that the proposed op-
timization method is superior to naive designs. Also, both
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the MSE-minimization step and MSE-distribution step are
beneficial for minimizing the average BER.

V. CONCLUDING REMARKS

We have presented a convex formulation for optimal
transceiver design with per-antenna power constraints. The
problem is re-formulated as a SDP, which can be solved
efficiently by convex optimization tools. The optimization for
average BER as well as other Schur-convex functions are
also discussed. Several simulation results were presented to
demonstrate the advantages of the optimized designs.
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