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ABSTRACT

Recent image forensic research has resulted in a number of
tampering detection techniques utilizing cues culled from un-
derstanding of various natural image characteristics and mod-
eling of tampering artifacts. Fusion of multiple cues provides
promises for improving the detection robustness, however has
never been systematically studied before. By fusing multiple
cues, the tampering detection process does not rely entirely
on a single detector and hence can be robust in face of miss-
ing or unreliable detectors. In this paper, we propose a sta-
tistical fusion framework based on Discriminative Random
Fields (DRF) to integrate multiple cues suitable for forgery
detection, such as double quantization artifacts and camera
response function inconsistency. The detection results us-
ing individual cues are used as observation from which the
DRF model parameters and the most likely node labels are
inferred indicating whether a local block belongs to a tam-
pered foreground or the authentic background. Such infer-
ence results also provide information about localization of the
suspect spliced regions. The proposed framework is effective
and general - outperforming individual detectors over system-
atic evaluation and easily extensible to other detectors using
different cues.

1. INTRODUCTION

With the ease of digital image manipulation, image forgeries
through operations like copy and paste (splicing) have be-
come frequent concerns in many applications such as news
reporting and criminal investigation. Therefore, verification
of content integrity has become increasingly important. By
analyzing the image formation process, several works have
been proposed for tampering detection. Some explore natu-
ral scene properties such as consistent lighting directions [1].
Some use device characteristics such as demosaicking filters
[2, 3], CCD sensor noise [4], and Camera Response Func-
tion (CRF) [5, 6, 7]. Some are based on post-processing arti-
facts such as Double Quantization (DQ) effects [8]. These ap-
proaches are all passive - no active mechanisms are needed to
generate and embed watermarks. Several of them [1, 5, 6, 7]
are blind approaches, namely, no prior knowledge of the im-
age or list of known sources is required.

An alternative way to categorize these approaches is based
on the type of the detection output - local authenticity or spa-
tial inconsistency. The former focuses on individual sites
(pixels or blocks or regions) and analyzes the level of au-
thenticity for each site [1, 2, 3, 4, 8]. The latter takes two
candidate sites and verifies whether they come from the same
source [5, 6, 7]. These two classes of detectors are of different
natures and complement each other. The goal of this paper,
therefore, is to propose a sound framework to fuse them in
order to improve detection robustness. When one set is unre-
liable or noisy, we can rely on another set toward a more ac-
curate detection of tampering and localization of the spliced
object. To the best of our knowledge, this is the first sys-
tematic study of techniques fusing different types of image
forgery cues.

We formulate the fusion task as a labeling problem and
adopt Discriminative Random Field (DRF) [9] as the fusion
framework. The detector outputs are treated as observations
and used to recover the hidden labels indicating whether each
block in the test image belongs to the foreground spliced ob-
ject or the authentic background. Experimental results show
that fusion is advantageous over individual detectors, both in
terms of inference accuracy and object localization. We also
propose our unconventional edge structure and justify the as-
signment of inconsistency scores to block pairs, as supported
by additional results.

2. IMAGE TAMPERING DETECTION MODULES

We first review two representative image tampering detectors,
one based on local authenticity and the other based on spatial
consistency analysis. We will then present a general frame-
work in the next section for fusing individual detectors like
these two.

2.1. Local Authenticity Score: Double Quantization

The Double Quantization (DQ) detector explores the widely
used JPEG image compression format. As shown in Fig. 1,
most spliced images are created using two source images,
which are often stored in the JPEG format, a second pass of
quantization of applied in addition to the first pass used in the
original compression. After splicing, a Double Quantization
(DQ) effect (see Fig. 1) can be found in the transform coeffi-



cient histograms of the background region. Such effect results
in periodical peaks and/or valleys as opposed to the smooth
patterns in the distributions. It will not appear in the fore-
ground regions which either have been quantized only once
or using different quantization block structures in two passes.

By detecting abnormal histogram shapes, one can distin-
guish which 8x8 DCT blocks have been quantized only once
and which have been quantized twice [8]. The output is a like-
lihood map measuring the probability of the DQ effect pres-
ence. Usually the foreground object is of lower DQ scores and
background of higher scores, however this can be reversed be-
cause it is possible that the foreground was quantized twice
but not the background. Each 8x8 block is associated with
one DQ score between [0, 1] and we will refer to it as a; (for
ith block in the image) in the following sections.
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Fig. 1: Authenticity scores a;’s of individual blocks can be es-
timated by detecting double quantization effect introduced during
splicing

2.2. Inconsistency Score: Camera Response Function

The inconsistency output from our previous works [6, 7] is
built upon one type of specific device characteristics - Camera
Response Function (CRF), the concave function that maps in-
coming irradiance to cameras to the final intensity data stored
in the output image. The hypothesis is different areas within
a spliced image should exhibit inconsistent CRF attributes if
they come from different sources. We use the Locally Pla-
nar Irradiance Points (LPIPs) extracted from a single channel
image to estimate the CRF [10] and Support Vector Machine
(SVM) classifiers to verify whether points in two different re-
gions of the same image are subject to the same CRF. Each
image is first segmented into regions. The SVM classifier is
applied to predict whether two neighboring regions sharing
a boundary are produced by the same source (thus the same
CREF). Our prior experiments over a challenging, heavily post-
processed data set showed an accuracy of 70% precision and
70% recall in detecting spliced images. Unlike local authen-
ticity detectors, the output of such inconsistency checking (re-
ferred to as ¢;; later in the paper) indicates the inconsistency
relation between neighboring areas. The higher ¢;;, the more
likely the boundary between the areas is caused by splicing.
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Fig. 2: Spatial inconsistency scores can be estimated by cross fit-
ting Camera Response Functions to Locally Planar Irradiance Points
from neighboring segmented regions

3. FORMULATION OF THE FUSION PROBLEM

The objective of this work is to develop a sound and effective
framework for fusing multiple image tampering detectors. On
one hand, as different detectors explore cues and artifacts at
different stages of the image formation process, if an image
lacks certain cues, the corresponding detector would not be
of use and we have to rely on other detectors for a correct
decision. For example, a spliced image may be created with
two source images of similar quantization settings but very
different cameras. In this case, the splicing will be success-
fully detected by the CRF inconsistency checker but not the
DQ detector. We thus benefit from having both modules at
hand rather than only using the DQ detector. On the other
hand, if one detector outputs noisy, erroneous scores, having
other detectors at hand makes it possible to complement and
correct such unreliable decisions. Therefore, the advantage of
fusion is twofold: to handle images undergoing diverse types
of tampering and to boost the detection accuracy by making
different modules work with each other.

The challenge, however, lies in the difficulty harnessing
the diversity of detectors. Different detectors are developed
based on distinct physical motivations and report decisions
based on different segmentation structures. For example, the
authenticity scores from the DQ detector cannot be directly
combined with the inconsistency scores from the CRF analy-
sis as they carry information of completely different natures.
Furthermore, the DQ detector computes a score for each 8x8
pixel DCT block while the CRF inconsistency scores are as-
signed to two arbitrarily shaped regions sharing a common
boundary.

We formulate the fusion task described above as a labeling
problem, and adopt the well known Markov Random Fields
(MRF) framework. The following subsections define the la-
beling problem, provide basic review of MRF and a specific
variation, Discriminative Random Field (DRF), that fits very
well to our problem setting described above.

To reconcile the differences in image segmentation used
by different detectors, we adopt the fixed size 8x8 pixel blocks
of JPEG as the common data unit since the arbitrary shape



segmented regions are usually larger than an 8x8 block. The
DQ score is readily computed for each block, while the CRF
inconsistency score between two given blocks can be com-
puted based on the score between the two regions that contain
these blocks.
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Fig. 3: The proposed framework fuses individual tampering detec-
tion scores to infer the likely splicing boundary

3.1. Labeling Problem and Markov Random Field

In a typical labeling problem, each node ¢ has a correspond-
ing label y; which takes on binary values {—1,+1}. These
labels are usually hidden and unobserved. What is observed
is the noisy single node signal x; at node ¢ and pairwise signal
2;; between nodes ¢ and j. The labeling problem starts with
observations x, z and attempts to recover the unknown labels
y.

Markov Random Field (MRF) offers well-established the-
ories for solving such labeling problems. Mathematically, the
MRF formulation looks for maximum a posteriori (MAP) la-
bels y based on single node observations x.
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Note traditional MRF requires models for emission probabil-
ities p(x;|y;), where Gaussians or Mixture of Gaussians are
widely used. Also, it only includes single-node observations
x but not pairwise inconsistency scores z. The relation be-
tween two nodes ¢, j is purely a smoothness constraint, en-
forced by the prior p(y;, y,) which usually favors y; = y; and
penalizes y; # y;. Lastly, as exact MAP solutions for y is
intractable, there have been a significant number of approx-
imate solutions developed, including Mean Field (MF) and
Loopy Belief Propagation (LBP) [11, 12].

3.2. Unconventional Edge Structure

Fig. 4 shows an illustrative example on a 24-block (4x6) im-
age segmented into 3 areas. As shown in Fig. 4(a), traditional
MRFs are built only upon neighboring blocks following the
Markov assumption. However, our inconsistency scores ¢;;
are defined across segmentation boundaries. As long as there
is a score for the boundary segment between two areas, any
block pair from these two areas has a well-defined c;;, even

Fig. 4: Edge structures (a) traditional MRF (b) relaxed structures
that link non-adjacent blocks across the segmentation boundary (c)
relaxed structures that link blocks within same area

though these two blocks might not be neighbors of each other
(Fig. 4(b)). To better utilize the power of our inconsistency
scores (instead of limiting them only to the boundaries, as the
colored dashed lines in Fig. 4(a)), we use an unconventional
edge structure which relaxes the Markov assumption.

For any two areas with a shared boundary (eg., black and
gray sharing the pink boundary in Fig. 4(b)), we randomly
sample a number of block pairs and assign the c¢;; associ-
ated with the shared boundary to these block pairs (Fig. 4(b),
color coded in the same way as the boundaries). For block
pairs within the same area (Fig. 4(c)), we make a simple
assumption and trust the segmentation results and determine
they are strictly consistent with each other, receiving 0 as their
assigned c¢;;’s.

3.3. Discriminative Random Field

Although the traditional MRF offers a seemingly straightfor-
ward solution to the labeling problem, it does not match well
our problem setting and objectives. Firstly, the inconsistency
observations z are not included. Secondly, the emission prob-
ability used in Eqn. 1 is not of the greatest interest to us.
Instead, the posterior probability of y given x and z is more
relevant to our goal. To this end, we adopt a slightly differ-
ent framework Discriminative Random Field (DRF) [9], an
extension of the Conditional Random Field family. The DRF
model is represented as

arg max p(y|x, z)
y
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Note the DRF also looks for the MAP labels y. However,
rather than modeling the emission probabilities p(x;|y;), it
directly maximizes the posterior probabilities p(y;|z;) and
p(Yi, Yj]2i5). This makes the model consistent with our op-
timization objective, focusing on the posterior information. It
also avoids the extra loop through generative models. Unlike

y:



in traditional MRF where the only pairwise relation is spatial
smoothness, the DRF includes pairwise inconsistency as extra
observations in addition to single node observations.

We use logistic models for posterior probabilities p(y;|z;)
and p(yi, yj]#;), parameterized by vectors w and v, as used
in the original DRF work proposed in [9]:

plyile) = (14evex)™
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This choice is theoretically justified in that the logistic model
is a natural form of posterior probabilities if the emission
probability belongs to the exponential family [13]. As most
real world data follow exponential family distributions, using
logistic models for posteriors is a sensible choice.

In this paper, as we are using one detector for authenticity
scores and one for inconsistency scores, both single node ob-
servation vector X; and pairwise observation vector z;; are of
dimension 2: x; = [1,a;]7,z;; = [1,¢;;]7. If the number of
detectors is to be increased, the DRF framework can be easily
adapted by appending additional scores to x; or z;;, resulting
in higher dimensional observation vectors.

3.4. Learning Discriminative Random Field

Having identified an appropriate solution to our fusion prob-
lem, we follow the standard learning procedure for DRFs.
The learning process iterates between two steps: parameter
estimation (look for optimal w, v) and inference (look for op-
timal y based on the estimated w, v of the current step). As
the exact MAP solution for y is intractable, we use MF and
LBP as inference engines. Among these two options, LBP
achieves higher inference accuracy and better converges be-
havior, therefore we report results based on LBP only. We use
the open source CRF2D toolbox implemented by [14].

The learning procedure is outlined as follows:

1. Randomly initialize parameters w and v

2. Based on current parameters w, v, infer labels y

3. Based on current labels ¥, update parameters w and v
4. Iterate between steps 2 and 3 until convergence

The learning stops when the total number of iterations
have reached 5. Thanks to the LBP inference engine, we have
observed that most test cases converge quite fast, usually by
the third run.

Note the above inference process is completely unsuper-
vised. There is no need for annotation of training sets. Given
a new test image, the optimal parameters and the inferred la-
bels are estimated.

4. EXPERIMENTS

We conduct our experiments on a data set of 90 spliced im-
ages taken with four cameras: Canon G3, Nikon D70, Canon
EOS 350D, and Kodak DCS330. These cameras range from
low-end point-and-shoot models (Kodak DCS330) to high-
end DSLR models (Nikon D70, Canon 350D) so that we may
ensure different qualities and settings in captured images. Each

spliced image has content from exactly two cameras, with
visually salient objects from one image copied and pasted
onto another using Adobe Photoshop without post processing.
They are originally stored in uncompressed TIFF format. To
obtain DQ scores, we create the spliced images by first com-
pressing authentic images with a higher quality factor (Q=85),
copying and pasting the foreground object, then recompress-
ing the spliced images with a lower quality factor (Q=70). We
choose these quality factors following the settings used in [8].

Typical image sizes range from 757x568 to 1152x768 pix-
els. This results in 94x71 (a total of 6674) to 144x96 (a total
of 13824) 8x8 DCT blocks within each image. The number of
randomly sampled c;; edges is fixed regardless of image size.
We select 250,000 block pairs across segmentation bound-
aries and 250,000 for block pairs from the same segmented
area. The computation time varies with the convergence be-
haviors. A random field of this size can take 10 minutes or
as long as 60 minutes to reach a steady state on a 2GHz quad
core CPU machine.

The DQ scores a;’s are generated over 8x8 DCT blocks.
The inconsistency scores from the CRF checker is associated
with boundaries between adjacent segmented regions. As dis-
cussed in Sec. 3, we use the finest segmentation granularity
(in this case 8x8 DCT blocks) as the labeling unit and com-
pute the c;; of a block pair using the inconsistency score of the
boundary separating the regions that contain the two blocks.

For each image, we run 5 different w, v initializations.
The performance is evaluated by the inference accuracy, i.e.,
percentage of correctly inferred labels within the image.

5. RESULTS

Inference results from 90 test images comparing a; + ¢;; fu-
sion against a;-only (DQ-only) are evaluated. For every im-
age, the detection accuracy is averaged over its own 5 runs.
Overall average accuracy (across all 90 images) increases from
80.87% to 83.49% when fusing a;’s with ¢;;’s. Among these
90 images, the most significant improvement can reach as
high as 18.44%.

Fig. 5 shows two sets of visual examples. It shows that the
fusion does not only increase the inference accuracy, but also
leads to more compact inference outcome: the detected fore-
ground object is connected, rather than the scattered blocks as
those obtained by using a; alone. This is desirable because in
practical scenarios, the spliced object tends to be a compact,
connected component.

In the following we justify our edge weight assignment
between blocks in the same segmented area. Recall in Sec
3.2, we use actual CRF inconsistency scores for block pairs
belonging to two different areas, and assign zero as the ¢;;’s
between block pairs in the same segmented areas. This may
appear restrictive, as the fact that they belong to the same seg-
mented area does not guarantee their source consistency. The
automatic segmentation process may miss the actual splicing
boundary and thus blocks in the same segmented area may



still come from different sources. To study the effect of such
assignment, we drop these edges in the random field and only
keep c;;’s from across segmented boundaries.

The average inference accuracy over 90 images drops from
83.49% to 80.25%, exhibiting no advantage over a; alone
(80.87%). The degradation can be as dramatic as 39.37%.
This implies that although same area block pairs do not have
proper c;; scores, the image segmentation itself can still serve
as another source of inconsistency scores - blocks in the same
segmented area are more likely to come from the same source.
Therefore, we are essentially fusing three sets of scores: sin-
gle node scores from the DQ detector, neighboring area block
pair inconsistency scores from the CRF checker, and same
area block pair inconsistency scores from automatic image
segmentation.

The role of zero c;;’s is obvious by showing the visual
examples of detection results in Fig. 6. With such scores,
the inference favors same labels for the blocks belonging to
the same segmented area, resulting in a more connected fore-
ground object whose shape loosely follows that of the seg-
mentation boundary.

6. CONCLUSION

In this paper, we proposed a general, effective framework for
fusing multiple cues for image tampering detection. We ad-
dressed the challenges in integrating results from diverse tam-
pering detection components that explore different physical
characteristics and different segmentation granularities. We
formulated it as a labeling problem and apply Discriminative
Random Field based methods to incorporate both local-block
authenticity and inter-block inconsistency measures. The pro-
cess is completely unsupervised, without the need of any train-
ing data annotation. Results have shown the advantage of fu-
sion over individual detectors, both in terms of accuracy and
visual compactness of the detection results. This framework
is not restricted to the use of any specific cues or detectors
and hence can be easily extended to include other tampering
detection methods.
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Fig. 5: Visual examples: (a) original image (b) ground truth label
(c) fusion output (c) a;-only output
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Fig. 6: Visual examples: (a) original image (b) ground truth label
(c) fusion, including zeros ¢;;’s (c) fusion, dropping zeros c¢;;’s
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