arXiv:0904.0037v1 [cs.IT] 1 Apr 2009

Deterministic Capacity of MIMO Relay
Networks

Anders Hgst-Madsen

Abstract

The deterministic capacity of a relay network is the capaaita network when relays are restricted to transmitting
reliable information, that is, (asymptotically) deterministic fition of the source message. In this paper it is shown
that the deterministic capacity of a number of MIMO relaywmtks can be found in the low power regime where
SNR — 0. This is accomplished through deriving single letter uppeunds and finding the limit of these as
SNR — 0. The advantage of this technique is that it overcomes tHeewlify of finding optimum distributions for
mutual information.
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I. INTRODUCTION

Recently there has been a large renewed interest in anglyapacity of networks, in particular wireless networks.
It has been found that the capacity of wireless networks eimtreased by using the fact that the wireless signal
propagates widely (the multicast advantage) and lettirdpa@ooperate (cooperative diversity) [1]. Coding methods
for networks can generally be divided into two classes:ghekere relays process the received signal and forwards
it, and those where the relays decode (a function of) thar@ignessage, and encodes this into a new signal. In the
first class (some times denoted estimate-forward) are rdsthoch as amplify-forward and compress-forward [2],
[3] that have wide set of generalizations [??]. The secoadsc{sometime denoted regenerative coding) has as its
source the original decode-forward strategy of [4]. Forrgylsi antenna single relay channel [4]'s original strategy
appears to be the only member of this class. However, foripheilantenna relay channels [5], [6] and multi-node
networks [7], [8] there are many possible generalizatidviat characterizes these methods, as opposed to the first
class, is that relays decodes the original message, or nesrergly, afunction of the original messageeliably
(which also relates it to [9]), and transmits a message wisiehpossibly different function of the decoded message
(e.g., in [8] the parity information). One way to characterthis class is that the transmission is reliable. Relays
decode their messages with a vanishing error probabilitgt, zase their transmission on deterministic funcﬁons
of the messages. We will therefore denote this type of codiéfigble coding, or deterministic coding. In contrast,
amplify-forward type methods introduces further randossiarough the noise at the relays. Informally one could
say that amplify-forward type methods introduces errorthiir transmission streams, while reliable transmission
eliminates errors.

A. Hgst-Madsen is with the Department of Electrical Engimeg University of Hawaii Manoa, Honolulu, HI 96822 (e-rhamad-
sen@spectra.eng.hawaii.edu. This work was supportedibpdNSF grant CCF 0729152. This paper was presented in plEE& Information
Theory Workshop, ITW 07, Lake Tahoe and Asilomar ConferemeeSignals and Systems, 2008.

1Deterministic in the sense that the functions do no depenthemoise realization in the network. Random encoding cacdmsidered
deterministic as nodes can share a common random numbetatgene
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The aim of this paper is to bound the capacity that can be aethivith reliable transmission. Why reliable
transmission? A number of practical arguments can be madavor of reliable transmission: in large networks
regeneration is needed at some point to avoid errors to adeten It is more similar to traditional multi-hop
networking, making implementation potentially more snimodt can seamlessly be combined with network coding
[10]. When the the signal to noise rattiNR — 0 the noise in amplify-forward type becomes dominating, mgki
the methods inefficient. The motivation for consideringatgle transmission is this paper is mainly intellectual,
though. It is a rather well characterized set of coding meésh@hink linear versus non-linear), and it is therefore
of interests to find what rates can be achieved within thissclaf coding methods. Additionally, there are very
few networks where the actual capacity can be found; eversithplest Gaussian relay channel has an unknown
capacity. However, as will be seen, by restricting codinghis smaller class of methods, tight upper and lower
bounds can be found for some networks under certain conditibhis is of course not the actual network capacity.
However, it could be considered a restricted capacity, ggsthe capacity of a channel with modulation restricted
to for example BPSK could be considered the BPSK capacity.

The rest of the paper is organized as follows. First we needeaige definition of what is meant by reliable
transmission; this is provided in Section II. In Sectiohddme results about the low power regirB&R — 0, are
derived. As the main part, the capacity for reliable trarssimin of some MIMO relay networks is found in Section
V] Finally, generalizations of the results are discussedactior V.

II. DEFINITIONS AND INITIAL REMARKS

We consider a network witlv nodes as in [11, Sec. 14.10]; each nodes may have multipdmaas. We denote
the transmitted symbol (which might be a vector) at timet nodei by x;[m], the transmitted symbol from thieth
antenna byr;;[m], and the string of transmitted symbols in the intetval . k by x;;[k] = [zi;[1], z:5(2], . . ., zi; [K]]-
Similarly for the received signaj;[n] andy;;[n] at nodei. A (lengthn) code for the network is defined as in
[11, Sec. 14.10]: Nodé, the source has a messafé intended for nodeN which it transmits at rate?; we
consider the message a uniform random variable ({\leQ, . ..,2"3}. The encoder at nodeis a function (or
code)z;[m|(y;:[1...m —1]), m € {1,...,n} that depends only opastreceived symbols. The transmitted signal
is a random variableX;[m] with the randomness coming from both the random mes3tgand from the noise
in the received signaj;[m]. The essence of deterministic capacity is to remove thterlaandomness, with the
following precise definition

Definition 1: A sequence of code&e;[n],i = 1... N} is said to bedeterministicor reliable if there exists a
sequence ofleterministicfunctions of the messadgd’,{,[n](W),i =1... N}, so that

Vi€ {l,....N} lim P{X;[n] # X;[n]} = 0 €Y
lim PAW(Yy[n]) #W} = 0 )

The deterministic capacitys the supremum of all rateB that is achievable by deterministic codes.
The definition is related to the computation rate in [9]. listbase, each node needs to compute a function of
the message. This function is precisely the signal it is gamtransmit. The principle is that there is no reason a
node should decode more than needed for transmission. Bonpe, if it transmits parity information about the
message, this is all that it also needs to decode.

Equation [[2) is the usual capacity condition of asymptdificaero decoding error probability. Equatioh] (1)
similarly states that, asymptotically, what nodé&ansmits depends only on the messages in the network, aot th
noise (realization). It therefore clearly excludes codinbemes such as amplify-forward [1] and compress-forward
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[4], [2], [3], but includes all decode-forward schemes kmote the author: namely, in decode-forward a node
decodes the message and forwards it. Since the conditidraishis decoding happens with asymptotically zero
error probability, it satisfieg [1). However, the definitiohdeterministic capacity is much more general than specific
decode-forward schemes, as is allows much flexibility¢df], including schemes such as those in [8].

One feature of definitio]ll is that it allows usage of tradiibmethods of information theory. Equatidd (1)
essentially says that nodeshould be able to decode the functidfy[n]. One can then for example use Fano’s
inequality to outer bound the rate region. If there existfke-forward) coding methods achieving this outer bond,
this is then the (deterministic) capacity.

While definition[1 applies to general channel models, We ivithe following restrict attention to static, wireless
channels with additive complex Gaussian noise of poléf,, where N, is the noise power spectral density, and
B is the bandwidth. The static, complex, channel gain fromenotb nodej is c¢;;, and if nodei has more than
one antenna;;,; we also define;; = [c;j1 ... ¢;;n]. We consider two case of channel state information (CSI):

« The synchronous case: all nodes are assumed to have fulhehstate information, i.e., to know perfectly all

Cjik-

« The phase fading case[3], [12], [5]: all nodes know al);x|, whereas the phase @f;; is unknown to
transmitters, but known at receivers. The phase;of is assumed to vary ergodic during transmission. This
can be used to model nodes that don’t have synchronized dscélators.

As a simple application of the definition we consider the oslay relay network from [4], with a single relay and
one antenna at all nodes. The received signals are

Yyn] = caXi[n]+ Z;n] 3
Yin] = enXin]+ csXyn] + Z;n] (4)

Supposdcai| > |es1|. Then node 2 can form

C31

Yi[n] = oy Lol + caXpn] + Z[n] (%)
= enXaln] + e Xaln] + 2 Zyln] + Zyn] (6)
where Z}[n] is iid Gaussian noise with power— }i;}z Now consider the two companion signals
Zs [n] = e Xy[n] + 032X2 [n] + Z;[n] (@)
Viln] = Yl + csnXoln] + Zi ®)

By assumption node 3 can decodé with small probability of error for largex. Since we consider deterministic
capacity, we know thal’;[n] = Y 4[n] with high probability for largen. A genie-aided node knowind ;]
therefore also can decod® with small error probability (formally, the genie-aideddels error probability is
bounded byP{™ < P™ 4+ P(Y4[n] # Y 4[n])). Now, becauseX, [n] is a deterministic function oV, ¥4[n] and
X; [n] have the same distribution. Thus, a genie-aided node krgpﬁérjn] can also decod&/ with small error
probability. Finally, sinceY;[n] = Xé[n] with high probability, a node knowind@;[n] can also decod&’ with
small error probability. Thus, node 2 can decddfe A similar argument shows that fdes;| < |c31] it does not
help the destination to knoW ,[n]. Therefore, the rate is boundecﬁhylax{I(Xl; Ys|X2), I(X1;Y3|X2)}, as well
as the MAC bound/ (X7, X2;Y3). On the other hand, Cover and El-Gamal's [4] block-Markoding achieves

2The conditioning onX» enters the same way as the proof of Theorem 15.10.1 in [11]
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this bound, and thiss therefore the deterministic capacity. Essentially, thisves, not surprisingly, that Cover and
El-Gamal's scheme is optimum among all decode-forward reeise

It is difficult to extend the above example to larger networksmajor problem is proving that a Gaussian
distribution is optimum. This problem can be overcome bykimag in the low power regime, and the rest of the
paper will therefore restrict attention to this regime.

IIl. THE Low POWERREGIME

The capacity of the channel depends on the bandwidth asM®l[@1]: Fix P (in Watts) and let the available
bandwidth beB (in Hz). The available power per sample is thBpn(2B) and the noise variance per samplg/2.
If we denote byC(B) the capacity (or spectral efficiency, [13]) in nats/s/Hz &ogiven bandwidth, we can define
the following limit (if it exists)

C = lim BC(B) (9)

B—oo

which is the limit of the capacity in nats/s for infinite bandth. We call the infinite bandwidth limit the low power
regime; this has been considered in many papers, with thepapers [13], [14] breakthroughs. Signaling in the
low power regime has a number of advantages: robustnestetfeirence, little interference generation, covertness,
etc., and is the principle behind UWB. For a point-to-poihtianel it is also the most energy efficient signaling.
For multi-terminal channels it is not clear if this is stitle, see e.g., [15].

The low power regime also has the theoretical advantageGhatay be calculated without having explicit
expressions foC'(B) using the techniques in [14] combined with the further ressinl [16], as we will see in the
following.

We will denote rates in the low power regime by sans serif, ifeR < C we say that the rat® (in nats/s) is
achievable. Similarly, ifR < C(B), we say that the rat® (in nats/s/Hz) is achievable.

We need the following generalizations of results in [16].

Lemma 1:Suppose that for each value Bfa random {V-vector) random variablX ( B) that satisfyvar[X(B)] <
Pis givelj[a. LetY = cX(B) + Z, whereZ ~ N(0, NoB). If c is a constant vector

] . . var[e”X(B)]
im BICK(BRY) = Jim =Egm 10
If ¢; = |c;| €%, whered; are iid random variables uniform df, 27] and|c;| constant then
N e Pvar[ X, (B
lim BIX(B);Y]0) — lim 2zi=tlelvarlXi(B)] (11)
B—o00 B—

oo N
Proof: The proof follows quite closely the proof of Lemma 1 ir? [16JorFcompleteness we will provide
the proof in the asynchronous case. We can assumeXth&) has zero mean, as the mean will not influence the
mutual information. Put” ~ A/ (O, Zf.vzl |c;s|>var[ X, (B)] + NOB), and write

I(X(B);Y|0) = D (PyxmllPg|Pxs):Po) (12)
=D (Py||Pg| Po) (13)

SvarX (B) = trE [X(B)X(B)H]
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The first term is

Since

Thus

November 1, 2018

D (Pyx(B)||Pg|Px(5): Po)
= /D (Py|x=xol|Pg) dPx(p)dPs

/b S leiPvar(Xi(B)] + NoB
& NoB

) dPX(B)dPQ

s
Zz 1 leil?var[X;(B)] + NoB
NoB
_|_
Zi:l |c;i|?var[X;(B)] + NoB

N 2 )
log <1 + 2z |Ci|N‘:g[Xz(B)H>

— 1dPX(B)dP9

/ \cHX(B)\2 dPx (pydPe / "B [X(B)X(B)"] cdPs

N

> Jeil*var[X;(B))]

i=1

Jim BD (Py|x(8)l| Py |Px (), Pe)

N
L D laPrarX(B)
B—oc0 NO

(14)

(15)

(16)

(17)

(18)

(19)
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The second term i (12) satisfitisng_..o BD ( Py||Pg| Pe) = 0, which can be proven as follows. F& Then

Py (y)
Py (y)

- ou (gt oo (g

1
—log
<w (S, laf2var(X(B)] + NoB)

1 2
o <_ SoiLy leilvar[Xi(B)] + NoB o ))
g (Eiv_l Pvar( X, (B) + NOB>

log

NoB

1 2
exp |y
<zjv_ lei|2var[X;(B)] + No B

<Zf-v_1 les|2var[X; (B)] + NOB>
NoB

exp ~ 1
>imy |eilPvar[Xi(B)] + NoB

N = (lof* = 2% {yeX} + | X| )ﬂ

Using series expansion we then get

—logE

Py (y)
log
Py (y)
= g (E?_l Pvarl X, (B) + NOB>
NoB

~log B [1 +o (113) + NL (20 {ye"x} - \cHX]Q)}

B
SV Jeil?var[ X
NoB

+o (B) +E [NL (29?{ycHX} \CHXIQ)} :
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where [2#) uses the Lebesgue convergence Theorem to exchanigand expectation.

FEglog

where we have use@ (118) and

Py (y)

Pg(y)

Sy |eilPvar[Xi(B)]
NoB

~(5)

+Exo {L (2 {ye"X} - ’CHX‘Q)}

NoB
1
°\B

/ R {yc"X} dPxp)dPs = 0

Then

(25)

(26)

(27)

Lemma 2:Suppose that for each value Bfwe are given random variablég B), V (B),and a random/{-vector)
random variableéX(B) that satisfyvar[X(B)] < P. Define

i = cIX(B)+2

Y, = c¥X(B)+ 2,

(28)
(29)

where Z; and Z; are independentZ;, Zo ~ N (0, NoB). Suppose thatU(B),V(B)) — X(B) — Y; and
(U(B),V(B)) = X(B) — Y, form Markov chains. Ifc is a constant vector then

lim BI(U(B);Y:)

B—o0

= lim

var[c X (B)]

B—oo Ny
o Vel X(B)U(B)
B—oo N()

Jim BI(X(B); Y2|U(B))

= lim

var[c X(B)|U(B)]
No

B—oc0

lim BI(U(B);YA|V(B))

B—oo
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= lim

varlef X (B)|V(B)
Ny
varlef X(B)U(B), V(B)]
No

B—oo

— lim
B—oo

(30)

(31)

(32)
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If cij = |cij| €%, whered,; are iid random variables uniform df, 2x] and|c;;| constant then
lim BI(U(B);Y1|6)
B—o0

Yo leni|?var[X,(B))]

= g No
_Blznoo Zz 1|Clz| VEX}[O i(B)|U(B)] (33)
Jim BI(X(B); Y2|U(B),0)
2T eailPvar[X(B)|U(B)]
= Jim == No (34

Jim BI(U(B):Y1|V(B),6)
>isy lewlPvar[Xi(B) [V (B)]

= g No
_Bhinooz =y |ewi|Pvar| Ni )|U(B),V(B)] (35)

Assuming all limits are defined.

Proof: For (31[3%), we use a conditional version of Lenitha 1. Ecig30we writel (U (B); Y1) = I[(X(B); Y1)—
I(X(B); Y1|U(B)) (using the Markov chain property). FGr {82 35) we wiité/(B); Y1|V (B)) = I[(X(B); V1|V (B))—
I(X(B); 1|U(B), V(B)). u

IV. DETERMINISTIC CAPACITY OF MIMO RELAY CHANNELS

ZA\ N

2 2

—
N

Broadcast MAC Broadcast MAC

Fig. 1. The relay channels considered.

In this section we will find the low power deterministic cajppof the channels in Fid.]1 under certain conditions.
Define

W = X,[n] (36)

and notice that for deterministic capacity, nadmust be able to decodéd’;. Specifically, we have the following
statement of Fano’s inequality, proven similarly to Fanasquality in [11].

Lemma 3 (Fano’s inequality)Suppose that the source messHges {1 e 2"3}. If a node uses the deterministic
sequence of codeX, [n] the following inequality holds

1+ Pr{X,) # XinljnR > H (XY, (37)
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Now define fori, j € {2,3}
H (W)

Ri = lim (38)
n—oo n

R, = lim 2OV (39)
n—oo n

R = tim 20V (40)
n—00 n

We of course have® = Ro3 + R3 = R39 + Ro.

The channel from node 1 to (2,3) is a MIMO broadcast channbbih networks. The MIMO broadcast channel
was considered in [17] and [18]. However, in our case anbitteependency between the messages are allowed,
and we therefore cannot directly use the results of [18]. &él®x, we can prove the followinguter bound a
generalization (to dependent messages) of Lemma 3.5 in [19]

Proposition 1: The capacity region of the broadcast channel is containéueitonvex closure of allR, R», R3)
that satisfy

Ry < I(UxY2) (41)
Ry < I(Us;Y3) (42)
R = Roz+ Rz < I(Uz;Y2|Us) + I(Us; Y3) (43)
R = Ras+ Ry < I(Us;Y3|Uz2) + I(Us; Y3) (44)

for some joint distributiorp(us, us)p(x|us, us), wherevar[X] < P.
The proof follows quite closely that of [19], so we will notquide it here.
Theorem 1:The deterministic capacity of the relay channel in . Jtajhe low power regime in the syn-
chronous case is given by maximizing
R < (lesun]® + |esiz?) Po
+(lea11]? + [e212]?) cos® (o — 0) Poy (45)
R < (lesu]® + |esiz?) Po

+(|es11)? + |es12/?) cos?(0) P

2
+ (\/Pb1(|0311|2 + |e312/?) + |es2] v/ Pz) (46)
with respect toPs1, Ps1, Pp, andd, SUbjECt toPy1 + P31 + Py < Py. Herea = arccos (%) In the phase
fading case, the capacity is given by
C = min {Inax{|0311|2 + |0312|2,
|0211|2 + |6212|2}P17
(les1n]? + |esi2|*) Py + |es2* Po } (47)
Proof: The rate is bounded by
R < I(X1;Y3|Uz, Xo) + I(Us; Ya| Xo) (48)
R < I(X1,X2;Y3) (49)

The bound [(49) is simply the MAC bound into the destinatiom.the following use the notatioX[m] =
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[X[m], X[m+1],..., X[n]]. The bound[(4B) is then proven by the following chain of inelgies

nR
= H(W) = H(W,)+ H(W|W) (50)
= H(Wa|Yy[n]) + I(Wa; Yy [n])
+H(WI[Y3[n], Wa) + I(W; Y5[n]|Ws2) (51)
< nen + I(Was Yy[n]) + I(W; Y g[n][W2) (52)

= ne, + Z I(Wa; Ya[m]|Y y[m — 1])

m=1
+ Z I(W;Y3[m]|[Wa, Ys[m + 1]) (53)

m=1
= nen+ Y H(Ya[m]|Yy[m — 1])
m=1
=Y H(Ya[m]|Wa, Y, [m —1])

+ > H(Ys[m][Wa, Vam +1])

— > H(Ys[m)|W, Wy, YVa[m + 1]) (54)

A
3

S

J’_
M=
=

Yo[m][Yy[m — 1])

- Zn: H(Ys[m]|[Wa, Y 5[m — 1])

+ Zn: H(Y3[m]| W2, Y3[m + 1])

- Zn: H(Zs[m]|W, Wa, Y3[m + 1]) (55)
= nent Zn: H(Ya[m]|Y p[m — 1], X2[m])

m=1

_ Z H (Ya[m]|Wa, Y o[m — 1], Xa[m])

M:

# 3 HOGmIWS Vol + 1, Xofm)
- anlﬂ(z3[m]|w, W, Vsfm + 1], Xa[m]) (56)
- i 1(Wa: Valm]|Y gl — 1], Xafrm])
i mllWa, Vafim + 1], Xafm]) 57)

m=
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In (B5) we used thab(Ys[m]) = h(cseXa[m] + c& X [m] + Z3[m]) > h(Zs[m]) (in a conditional version), and
in (B8) that X,[m] depends only oY, [m — 1]. We now definel/s[m] = (Wa,Y,[m — 1], Y3[m + 1]), and use
Csiszar's identity as in [19] (2.5-2.8) to obtaln [48).

We will prove the theorem for the synchronous case. The pirotlie phase-fading case is a simpler case that
we will omit. Using lemmdR we get the low power limit df (#8)8s

u var[cii X1 (B)|Uz(B), X2(B)]

<
R = B— oo Ny
e VAR X (B)] Xa(B)]
B—oo Ny
H
i Yerlea Xa(B)|Ua(B), Xz(B)] (58)
B—oo N()
H *
R < ma var[es; X1 (szf—l- 5, X2(B)] (59)
— 00 0
Let u be a unit vector in the direction dfm g, cov[X;(B), X2(B)], and define
. COV[Xl( ), X2(B)]
By Piu = lim (60)
B=oo Noy/var[Xz(B)]
B . cov[Xy(B)]
X = Jm —x (61)
—00 0
B = — 2Piuufl — A (63)
Using Lemmd¥# we then obtain the following outer bound to the power rate
R < cjiBeg +chiAca (64)
R < cif (A+B+p*Pruu’)cs + [es|* P
+ 2R {Bcwcflu} \V P1P2 (65)
subject to
rA+tB+ 3P < P (66)
AB = 0 (67)
B < 1 (68)

on the other hand, iA, B, and 3 satisfy [66-68), therﬂB@S) constitute an upper boundhenrate.
It is clear that[(64-65) is maximized fok = Py “‘:”cﬁa for some positive constari®;. Now notice that if the
angle betweeiy; andcs; is acute (if not, we can just usecs; ), the bounds are maximized when the off-diagonal

elements ofB are maximized, i.e., iB has rank one. Thus, we can @&t= Pz, /Bvv’, wherev is a unit vector
rotated an anglé® from c,; in the real plane spanned iy, c31, as any component outside this plane will not
contribute to the bounds. Finally, the bounds are maximfped: = H 2 It is now a straightforward calculation
to get the bound$ (45) and (46).

For the achievable rate we split the messéeinto two independent partd’y; and W,.. The messagéV, is
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transmitted directly to the destination using pow®i and a rate
Ri = (lesun]® + |esiz]?) P (69)
The messagéV,. is transmitted through the relay using block Markov encgdiith a rate
R, = min {(|0211|2 + |e212]%) cos? (o — 0) Pay,
(les11]? + |esi2]?) cos? () Poy
+ (\/Pb1(|6311|2+ |C312|2)+|032|\/F2)2} (70)

Adding up these rates achieves the upper bound. [ ]
The proof of Theorerh]1 uses the following Lemma
Lemma 4:For any random variableX andY with first and second order moments

cov[X, Y]ecov[X, Y]#

covlX|Y] =< cov[X] vl (71)
Proof: We can assume th& andY are zero mean. First, notice that
covX|Y] = E[XX"]-FE[EX|Y]EX|Y]] (72)
Second, the Cauchy-Schwartz inequality gives
|E[VIXY]| = |E[E[V'X|Y]Y]|
< o]
VE [V E[X|Y]E[X|Y]Hv] (73)
So,
VIEXY*E[YXT]v < valYV'E[EX|Y]EX|Y]"]v (74)
Which meansov [X, Y] cov [X, Y]" < var[Y]E [E[X|Y]E[X|Y]?]. Inserting this gives{71). [

We now turn to the relay channel in Fig. 1(b). From the twoyslto the destination we have a MAC channel.
As opposed to the usual MAC channel, we have messages thdtav@narbitrary dependency. The usual MAC
outer bound can be generalized as follows, with the diffeeelpeing thatX, and X3 can no longer be assumed
independent

Proposition 2: The capacity region of of the multiple access channel witheti€lent messages is contained in
the convex closure of all rates satisfying

Ry < I(X2;Ya|X3) (75)
Rsy < I(X3;Y4|Xo) (76)
R < I(X3,X3Y)) (77)

for some joint distributiorp(x2, x3) that satisfies the power constraints.
The proof follows the usual MAC proof in [11, Theorem 14.3.Rist replacingH (W>) with H(W,|W3) and
H(Ws) with H(W3|Ws).

Since the above bound, as the usual Gaussian MAC bound, isnizad by the Gaussian distribution, we get
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directly the bound in the low power regime
Corollary 1: The capacity region of the MAC channel in the low power regimehe synchronous case is
contained in the convex closure of all 4R, R33, R32) that satisfies

Roz < |eao|*P2(1 - p?) (78)
Rax < leas|?P3(1 — p?) (79)
R < |caa?Py + |cas|* Ps + 2p|caz|cas|/ Po P (80)

for somep € [0,1] in the synchronous case.
In the phase-fading case the rates satisfy

Ros < leao’ P2 (81)
Rz < |cus|?Ps (82)
R S |C42|2P2 + |C43|2P3 (83)

Theorem 2:In the phase fading case, the deterministic capacity of éhayrchannel in Fig[]l is given by

transmitting a common message to the two relays in addibamwb private messages.
Proof: We will prove that upper bound for the broadcast part of thanciel can be achieved with a

common/private message transmission scheme. Since theaidy also true for the MAC part, this will be sufficient
to prove the Theorem. We will prove the theorem for the casensdntenna 1 and antenna 2 of node 1 have separate
power constraints, which we will denofg and P,. The result then clearly applies to the case when there isma su
power constraint, but it also applies to the case when theamtennas are actually on separate nodes.

For the broadcast part of the channel, the achievable ratmimymon/private message transmission is given by

R. = min {|ea11|*Prc + |e212]* Pac, [es11]* Pre + [e312|° Pac }
Ro = Rec+leain|*Pra + |ca12* Pao
Ry = Rc+lesin|*Pis + |csiz*Pos

R = Rc+|ca1/*Pia + [e212]* Poz + |e311|* Pi3 + |es12]* Pas

with the constraints

Pic+ Py + Psy Py

IN

Poo+ P+ Py < P (84)

November 1, 2018 DRAFT



14

For the upper bound we apply Lemifala 2 to the bounds of Propogli

V&I‘[Xll(B)] — V&I‘[Xll(B)|U2(B)]
Ny
V&I‘[Xlg(B)] — V&Y[X12(3)|U2(B)]
No
V&I‘[Xll(B)] — V&I‘[Xll(B)|U3(B)]
Ny
V&I‘[Xlg(B)] — V&Y[X12(3)|U3(B)]
No
V&I’[Xll(B)] — V&I’[Xll(B)lUg(B)]
No
var[X11(B)|Us(B)]
No
V&I‘[Xlg(B)] — V&Y[X12(3)|U3(B)]
No
V&I‘[Xlg(B”Ug(B)]
No
V&I’[Xll(B)] — V&I’[Xll(B)lUQ(B)]
No
V&I‘[Xll(B)|U2(B)]
No
V&I‘[Xlg(B)] — V&I‘[Xlg(B”UQ(B)]
No
var[X12(B)|Uz(B)]
No

Ry < |earn]? Bh—I>noo

+e212/? E}i_f)noo (85)

Rs3

IN

2 1
|
fesnl” Jin,

+|0312|2 Bh—r>noo (86)

R < |C311|2BliilflOO

Hean* iy

+ez12/? E}i_r)noo

+|ca12|? Jim (87)

R < el Blznoo

Heanl® Jim,

Heanl® Jiny

+ez12/? E}i_f)noo (88)

Define
Po — lim var[X11(B)|Us (B)]
B—oo Ny
_ . V&I‘[Xlg(B)lUg(B)]
P = Jim No
. . V&I‘[Xll(B)|U2(B)]
Pig = Jim No
P23 _ lim V&I‘[Xlg(B)lUQ(B)]
B—oo NO
Plc _ lim V&I‘[Xll(B)] — V&I‘[Xll(B)|U3(B)]
B—oo Ny
~ lim V&I’[Xll(B)lUQ(B)]
B—oo Ny
P2c _ lim V&I‘[Xlg(B)]—V&I‘[Xlg(B)lUg(B)]
B—oc0 NO
_ hm V&I‘[Xlg(B)|U2(B)]
B—oo Ny

(89)

(90)

(91)

(92)

(93)

(94)

Clearly P;; > 0, so that we can think of them as powers. Notice that we cansgiraeP;. > 0. However, we
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have the constraints

Pc+Po+hPs < P (95)
Pye+Pyo+ Py < P (96)
P.+Po > 0 (97)
Pot+Pys > 0 (98)
Py +Py > 0 (99)
P+ Ps > 0 (100)
With this we can write
Ry < |c211?Pic + |e212]* Pac
+lea11 [P P2 + [e212|* Pa2 (101)
Ry < esin|*Pre + [esi2]* Pac
+lesi1[*Pis + [esi2|* Pas (102)
R < |ea1[*Pic + |e212]* Poc + |c211]* Pra
+lea12* Paz + [es11 | Prs + |cs12|* Pos (103)
R < |es11*Prc + |esiz|* Pac + |c211]* Pra
+lea12* Paz + [es11 | Pus + |cs12|* Pos (104)

We will show that the upper bound can always be achieved byraraan/private message solution. First consider
the case{|co11], |c212]} < {|es11l, |esi2|}. The optimum solution ha®, = P»x = 0. Namely, puttingP;. —
P + P and P, — P5. + P will not decrease any rate bounds, while the power boundsstitesatisfied.
Notice that we can now assunmig. > 0, P,. > 0. So, we end up with

Ry < lea11|*Prc + |e212]* Pac (105)
Ry < esinf*Prc + |es12]* Pac

+les11 [P Pus + [cs12]* Pos (106)
R < |esi1*Prc + |esiz* Pac

+les11[*Prs + [cs12]* Pos (107)
R < le211|*Pic + |ca12]* Pae

+les11[*Pus + [cs12]* Pos (108)
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Rs3
R4

< ean1]?Pre + |e212]* Pac

< e2n1]?Pre + |e212]* Pac
+lesi1*Pis + [esi2]|* Pas

< ean1*Pre + |e212] Pac

+les112Pis + |eaia]* Pos

16

(109)

(110)

(111)

This can be achieved by transmitting a common message uodéngy both nodes, and a private message to node

4. The symmetric case is similar.

Next consider the cagesi1| < |es11], |esi2] < |e212], with strict inequality in at least one of the inequaliti&sen
a solution withPj5, = P»3 = 0 is optimum, which can be seen by puttify. — Pi. + P12 and Pye — Po. + Pas.
Again we can then assunm@,. > 0, P,. > 0. Then

R3
Ry
R

IN A

IN

IN

|c211[*Pre + |c212* Pac + |c212|* Pa2
|es11[*Pre + |es12* Pac + | 311 Prs
|le311]? Pre + |es12]* Pac

+les11* Prs + [e212]* P2

lc211]* Pre + |c212]* Pac

+les11]* Pris + |e212]* Pao

(112)
(113)

(114)

(115)

We will argue that we can always obtain an optimum solutiothwhe right hand sides of (1114) arid (115) equal.
Assume the right hand side ¢f(114) is smaller than thaf 0B(1\We can decrease (115) by puttiRgs — P53 — 9,

Pi. — Py + 4. Either the bounds become equal, or we end up With= 0, so

R3
R4

But this can be written as
R3
Ry
R

which can be achieved by a common message and a private radssagde 3.

ININ A

IN

IN A

IN

lea11 > Pre + |c212|* Pae + |c212)* Po2
les11 2 Pre + |e312]* Pae
les11 2 Pre + |c312|* Pac + |e212]? Pao

lea11 2 Prc + |c212|* Pac + |e212]* Pao

les11 > Pre + |c312]? Pae + |c212)? Po2
c311|" P + |ca12|* Pac
les11]* Prc + |esi2]* P

les11 > Pre + |e312]? Pae + |c212)? Po2

(116)
(117)
(118)
(119)

(120)
(121)
(122)

On the other hand, suppose the right hand sidé ofl (114) isddhgn that of[{115). Then we can decreésel(114)
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by by putting P13 — Pas — 6, P, — Ps. + 4. If the two bounds don't become equal we end up with

Rs < e211*Prc + |c212/* Pac (123)

Ry < esin|*Pre + |esiz]* Pac + |es11]* Prs (124)

R < Jes11[*Prc + |esiz|* Pac + |es11]* Prs (125)

R < |e2i1]*Prc + |ea12|* Poc + |esi1[* P (126)

which, as above, can be achieved by common/private meggagin ]

Theorem 3:Consider the relay channel in Fig. 1(b) for the synchron@secAssume that

min{||ca1[|%, [[es1 [} < [eeal. (127)

The deterministic capacity is then given by transmittingpenmon message to the relays and a private message to
one of the relays.
Proof: We will prove that the upper bound for the broadcast cut setlm achieved by a common/private
message solution. Without loss of generality we can consitecasé|cz; || > ||cs1||. According to Lemmall and
we have
H
Ry < lim Bvar[c$} X (B)]
B—oo N()
_ lim Bvar[cl] X(B)|Us(B)]
B—oo Ny
lim Bvar|[ci X (B)]
B—o0 N()
~ lim Bvar[cl] X(B)|Us(B)]
B—oo Ny

(128)

R3

IN

(129)

and
H
R < lim Bvar[cy; X(B)|Us(B)]
B—oo N()
+ lim Bvar[cl} X (B)]
B—oo N()
o, ByarlelX(B)|Us(B)]
B—oo Ny
H
R < lim Bvar[ey; X(B)|Uz(B)]
B—oo N()
+ lim Bvar[cl X (B)]
B—oo Ny
~ lim Bvar[cl] X(B)|Us(B))
B—oo Ny

(130)

(131)

As in the proof of Theorerfil2 we can upper bound this by
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Ry < cfi(X—A)en
Ry < c(X-B)es
< ¢ (X —B)cs +ctiBey
< o (X —A)co +cfiAcy (132)
with the conditions

rX < P (133)
X = AB (134)
AB >~ 0 (135)

Notice that the conditioffca: [|* > |cfi cs1| > [|cs1|? ensures thacfi v| > |c£lv| for any vectorv. Consequently
ctl Aco > cgﬁAcu, and we can pufA = 0 without decreasing any bounds. The bounds then are

Ry < cflXea (136)
Ry < c5i(X—-B)en (137)
< ¢ (X —B)ca +c5iBea (138)
< e Xen (139)

Here the right hand side df (1138) is clearly larger than tightrhand side of_(139), so we can rewrite as

Ry, < Cgll Ccsy + CgBCQl (140)
R3 S Cgll CC31 (141)
X — C+B (142)

It is clear that this is optimized faB = ascoicl] andC = a3c31c?{{1, and that this can be achieve by transmitting
a private message in the direction@f, and a common message in the directiorncef. ]
On the other hand, it is shown in the Appendix that Thedrém rdotsnecessarily true if the condition (127) is not
satisfied.

V. CONCLUDING REMARKS

In this paper the deterministic capacity has been foundvior MIMO relay networks in the low power regime.
The methodology certainly can be extended to other netwitissexample, it is not difficult to see that the results
for the networks in Figur€ll can be generalized to the casenwoeles have more antennas. Also, some links
and extra relays can be carefully added. The paper [7] shaowsdeterministic capacity can be generalized to a
two node cooperative MAC channel. That paper also showstlieafunctions of messages are not always simply
sub-messages (already [8] shows that more general functioressages are needed).

On the other hand, it is very difficult to find the determirdstiapacity of larger networks in general with the
present methodology. For example, if a link between theysela Figure[1(b) or between source and destination
is added, or if more relays are added, there is not straighdfial way of generalizing the results presented here.

There are two issues that make generalization difficultstFit is very difficult to find single letter bounds.
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For example, there is no direct way to generalize Nair and &h@é’s bound [19]or Marton’s bound [20] for the
broadcast channel to more than two nodes. Non-single lettends for general networks can easily be found by
using Fano’s inequalityR;, < I(W;;Y;) and R;; < I(W;;Y;|W;). But there seems to be no systematic way of
generating single letter bounds from these for larger nedsvo

Secondly, even when single letter bounds exist, they mapadight, as we have seen for the netwldrk 1(b) in the
synchronous case. This could of course just be because hN&EBGamal's bound is not the best possible single
letter bound. However, thiappearsto be a more fundamental issue. Single letter bounds eabgrgihow that iid
(independent, identically distributed) input is optimumstead take non-single letter bounds suclkas I(WW;;Y;)
and R;; < I(W;;Y;|W;) andassumethat iid input is optimum. Then the counter example in the éutix still
works. This indicates that either there is better transornsscheme than common/private messages, or that Fano-
type bounds are not tight.
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APPENDIX

In this appendix we will show that the upper bound of Theoféris hot necessarily achievable with com-
mon/private message transmission in the synchronous 8aseifically we will prove that the bounf (1132) is not
achievable by common/private message transmission.tigtspeaking it does not prove that Theoréin 1 is not
achievable, as it is not proven that any set of positive defimatrices(X, A, B) (with X > A B) is a valid set
of covariance matrices. However, it indicates that the prechnique does not work in general for the synchronous

case.

We put|jca1||? = ||ea1]|?> = 1 and Z(ca1,¢31) = a = 0.4. We consider the real subspace spanneafycs;,
and in this define an orthonormal basis f;, cs; }. Then

We now define

<

The eigenvalues oK—A are (0.01720,1.9328), soX — A is positive definite. We now have

Ry =

Rs =

Ry =

cs = [ cosa ] (143)
S &
- oo a4
- [ | = Lo
— (146)
= cych] (147)
= 0.05c3;c] (148)
= B+ (X-B) = v +cocl (149)
= wi 4+ czlcg1 — O.O5c31c§€ (150)
B l é:?;i 00..013854016 1 (150
(X — A)cyy
c0s%(0.208) + 1 — 0.05cos®> a = 1.9149
c?fll (X —B)esy
cos?(a — 0.208) = 0.9636
ci (X — B)es; + ¢t Beyy
0.9636 +1 = 1.9636
e (X — A)coy + ¥l Acsy
1.9149 4 0.05 = 1.9649 (152)

Consider the achievable rate by a common/private messagingme in the Gaussian channel. We transmit the
common message along a unit vectoand beamform the private messages to their respectivendgstis. This
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scheme achieves the following rates

Ro
R
Rs3

R

< min{ct uucy, cf uuesz; } Py
< leail*Pe + Ro

< leail*Ps + Ro

< lear|* P2 + [leai||*Ps + Ro

subject to the constrain®, + P>, + P3 < P. Put

2 = max min{c uucy, cuucs; }

In this case it's easy to see that

flull=1

2 = cos*(a/2) = 0.9605

21

(153)
(154)
(155)
(156)

(157)

(158)

Now consider the problem of given a rate triglR2, R3, R) minimizing the total powerP. We have to solve

R R; R:
min{—o + 2= 4+ —32}
lles

subject to

co |leal?

R/2+R0

Y

R2
R,+Ry > Rs

Ry +R;+Ry > R

It's easy to see that the optimum solution is

P =

R,+R;—R R-R; R-Ry
co el fles]?

Inserting(Rz, Re, R) = (1.9149,0.9636, 1.9636) from (152) we get

P =

which shows that the solutiof (152) is
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R, +Rs — R
Rt =R {R-Ry+R—Ry

€o
20011 >trX =2

not achievable by comfgrivate message transmission.

(159)

(160)
(161)
(162)

(163)

(164)
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