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Abstract — We introduce a new family of space-time
codes called embedded Alamouti space-time (EAST) codes
which offer high rate, a nonvanishing determinant and
low decoding complexity. The family is parameterized by
both the number of transmit antennas, which can range
from two to eight, and by the rate, which can range from
one to half the number of transmit antennas. The EAST
codes combine a modified version of the perfect space-
time codes with an Alamouti embedding. For rates higher
than one, the resulting space-time codes are
simultaneously lower in decoding complexity and better
performing than all known previous constructions in
terms of the error probability achieved on a quasistatic
Rayleigh fading channel with a given dimension. 

Index Terms — transmit diversity, space-time coding.

I.  INTRODUCTION

Recent work in space-time code design has shifted away
from increasing the diversity order [1,2] or transmission rate
[3] alone to increasing both simultaneously [4-9]. The
continuous tradeoff between the achievable diversity and
multiplexing gains as a function of the signal-to-noise ratio
(SNR) was characterized in [10]. The threaded algebraic
space-time (TAST) codes of [4] achieve the extremal points
of the diversity-multiplexing tradeoff for any number of
antennas and arbitrary rates. The perfect space-time codes of
[7] achieve the entire frontier of the diversity-multiplexing
tradeoff. Perfect space-time codes were originally proposed
for only two, three, four and six antennas in [7] and later
generalized for any number of antennas in [8].

One approach to constructing a high-rate code is to start
with a maximal-rate TAST or perfect space-time code and
then puncture one or more of its layers. For example, TAST
and perfect space-time codes of rate R  {1, 2, 3, 4} are
easily obtained by puncturing 4 – R layers of a rate-4 code.
Unfortunately, the resulting codes often have a high
decoding complexity and worse BER performance than
space-time codes that were designed for a particular rate and
a particular number of antennas.

No previously reported space-time code achieve an
arbitrary rate for arbitrary number of antennas while
maintaining low decoding complexity. In this paper we
partially fill this gap by proposing a framework for the
construction and decoding of high rate space-time block
codes. In particular, we make three contributions. First, we
show that the complex rotation matrices of the perfect space-

time code of [7] can be replaced by equivalent real-valued
matrices without affecting the diversity or coding gain; the
real matrices lead to lower-complexity decoding. Second, we
use the equivalent real generator matrices to construct the
embedded Alamouti space-time (EAST) codes, which is a
family of codes for any number of antennas up to eight, and
for any rate up to half the number of antennas. When
compared to previously reported codes with the same
number of antennas and the same rate larger than one, the
EAST codes are simultaneously lower in complexity and
lower in error probability. Lastly, we show that the proposed
code subsumes the rate-one semi-orthogonal algebraic space-
time (SAST) codes of [11] as a special case.

The remainder of the paper is organized as follows. In
Section II, we present the system model, review the design
criteria of space-time codes, and review the construction of
the perfect, TAST and SAST codes. In Section III, we
present the equivalent real generator matrix of the perfect
space-time code. In Section IV, we present the proposed
family of embedded Alamouti space-time codes, and we
describe their decoder. In Section V, we present numerical
results. In Section VI, we conclude the paper.

II.  SYSTEM MODEL AND BACKGROUND

A. System Model and Code Design Criteria

We consider a space-time code with M transmit antennas
transmitting P complex information symbols over T {M,

M + 1} symbol periods, so that the rate of the space-time
code is R = P/T symbols per channel use. The transmitted
codeword can be expressed as a T M matrix:

C =  , (1)

where cm[ t ] denotes the symbol transmitted from antenna
m  {1,  M} at time t  {1,  T}. The received signal
yn[ t ] at receive antenna n  {1,  N} at time t is:

yn[ t ] =
Mm= hm,ncm[ t ] + wn[ t ], (2)

where wn[ t ] is the complex AWGN at receive antenna n at
time t, and hm,n is the channel coefficient between the m-th
transmit antenna and n-th receive antenna. We assume
quasistatic fading, so that hm,n is independent of time.

The maximum spatial diversity order for the M-input N-
output channel is the product MN. The following two design
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criteria for space-time codes over quasistatic fading channels
were derived in [2]:

• Rank Criterion: To achieve a full diversity of MN, the
difference matrix C = C – C̃ must have full rank for
any pair of distinct codewords C and C̃.

• Determinant Criterion: To further optimize
performance, a code with full diversity should be chosen
to maximize the asymptotic coding gain:

 = minC  C̃ det (C – C̃)*(C – C̃) . (3)

B. Review of the Perfect, TAST and SAST Codes

We begin with a review of the perfect [7], TAST [4], and
SAST [11] codes. The perfect codes were originally designed
as full-rate codes for square channels, but with puncturing,
they can achieve any rate in the range R{1, , M}. The
rate of the TAST codes is limited to the same range and the
rate of the SAST codes is always R = 1.

Let a = [a , , a , , , a ,M ]T denote the vector of M
information symbols for the -th thread,  {1, , R},
where a ,m is a complex symbol drawn from a q-ary QAM or
HEX alphabet. A QAM alphabet is a subset of [ i ]

{u + vi, u, v  }, where i = , while a HEX alphabet
is a subset of [ j ]  {u + vj, u, v  }, where j = ei /3.

LetGM denote an M  M real or complex unitary rotation
or generator matrix, and let em denote the m-th column of
the M  M identity matrix. Finally, let D = ddiag(GM a )

be the diagonal matrix with diagonal elements consisting of a
rotated version of the -th symbol vector. 

In terms of these definitions, the perfect space-time code
[7], TAST [4] and SAST [11] codes are defined as follows.

• The rate-R perfect space-time code for an M-input N-
output MIMO system is [7]:

CPERFECT =
R = D J –

, (4)

where J = [eM, e , , eM  , eM  ] and is a unit-
magnitude complex number that ensures full diversity.
When M  {2, 4}, then  = i and the alphabet is QAM;
when M  3 or M  6, then  = j or  = -j,
respectively, and the alphabet isHEX. 

• The rate-R TAST code for an M-input N-output MIMO
system is [4]:

CTAST =
R = D (U)

–
, (5)

where U = [eM, e , , eM  , eM  ], and is a unit-
magnitude complex number that ensures a full-diversity
TAST code. The value depends on both the modulation
alphabet size and number of transmit antennas M.

• An equivalent form of the rate-one SAST code for M
transmit antennas is [11]:

CSAST = , (6)

where D = ddiag(GM/ a ) is a diagonal algebraic
space-time (DAST) codeword for M/2 antennas and
M/2 information symbols a . This version of SAST
differs from the original in [11] only by the fact that the
submatrices D  are diagonal instead of circulant. The
circulant matrix reduces the peak-to-average-power
ratio (PAPR) but has no impact on the diversity, coding
gain, and decoding complexity. We simply use a
diagonal matrix in (6) to simplify the presentation, and
to better align with our newly proposed codes.

III.  PERFECT CODES WITH REAL GENERATORS

We now show that we can replace the complex generator
matrices of the perfect codes of [7] for two, three and four
antennas with a real generator matrix without affecting the
diversity or coding gain.

We next examine separately the structure of the generator
matrix for the perfect code of [7] for the special cases of
M = 1, M = 2, M = 3, and M = 4 antennas, respectively.

• When M = 1, the perfect code is equivalent to no code
at all, with the scalar identity generator:

G  = 1. (7)

• When M = 2, the perfect code reduces to the golden
code [5], whose generator is equivalent to the following
real generator matrix (obtained independently in [6]):

G  = , (8)

where   = cos( ),   = sin( ) and  tan– ( 2 ). 

• When M = 3, the perfect-code generator matrix can be
written as Gc = G X, where

G = , (9)

and X = diag([ei  , ei  , ei  ]),   = 1 + j
  = –1 + j+    = –1/ + jand = 2cos(2/7). 

• When M = 4, the perfect-code generator matrix can be
written as Gc = YG , where

G  = , (10)

and Y = diag([ei  , ei  , ei  , ei  /2)]),

 = 1 4i + i   = 1 + i( 1)  = (1  3i)
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+i   = –i + (–3 + 4i) + (1  i) ,  = (1 +

)/2, and = 2cos(2/15).

Theorem 1. If the entries of v are drawn from [ j ], then
diag(Gc v) and diag(G v) have the same coding gain
and diversity.

Theorem 2. If the entries of v are drawn from [ i ], then
diag(Gc v) and diag(G v) have the same coding gain
and diversity.

We omit the proofs for brevity.

IV.  THE PROPOSED EMBEDDED ALAMOUTI CODES

A. Encoding

We will assume that the number of transmit antennas is
even, falling in the range M  {2, 4, 6, 8}; the space-time
code for an odd number of antennas is obtained by deleting
the last column of a space-time code for M + 1 antennas. 

The rate-R EAST code is constructed by combining a pair
of rate-R perfect space-time codes with real generators in a
modified ABBA format. 

Specifically, let P( a ) =
R = diag(GM/ a )J –

denote a rate-R perfect space-time encoder for M/2

antennas and RM/2 information symbols a = [a ,T  aR
T ]T,

with real generator specified by either (7), (8), (9) or (10),
where J = [eM/ , e , , eM/  ]. The constant  and the
modulation alphabet depends on M: when M = 6, the
constant is  = j and the alphabet is HEX. Otherwise, the
constant is  = i and the alphabet is QAM. 

Similarly, let P( b ) be a second such codematrix for an
independent set of RM/2 information symbols b. The
proposed rate-R EAST code is then:

CEAST = . (11)

In theory, the maximum rate R for the proposed EAST codes
is M/2. In practice, a rate of R  min(N, M/2) will be
needed to ensure reliable decoding at the receiver.

The modified ABBA construction of (11) is referred to as
an Alamouti embedding, because it can be expressed as a
linear dispersion code with the Alamouti dispersion matrices.
The alternative form of the code is omitted for brevity but the
Alamouti structure is readily apparent in (11); the
information symbols a  appear along with their conjugate
and the information symbols b  appear along with their
negative conjugate. Furthermore, when the number of
transmit antennas is M = 2, the EAST code reduces to the
original Alamouti code [1].

Proposition 1. Let the coding gain (3) of the perfect
space-time code [7] for M/2 transmit antennas with rate

R  min(N, M/2) be  = dmin , where 0 <  < 1,
and where dmin is the minimum Euclidean distance of
the q-QAM or q-HEX constellation. Then the coding
gain of the proposed EAST code with the same rate but
for M transmit antennas is also given by dmin .

We make several important remarks regarding the
construction of the proposed space-time code. 

• When the rate of the code is R = 1, the EAST code
simplifies to the equivalent form of the SAST code
given in (6). The proposed code thus has the same
diversity, coding gain, and decoding complexity as the
SAST code when R = 1, albeit with a larger PAPR.

• The EAST code has twice has many layers as the perfect
and TAST codes. Specifically, the EAST code has 2R
layers, each layer encoding M/2 symbols, for a total of
MR symbols. In contrast, the perfect and TAST codes
encode R layers, with M symbols in each layer. 

• Besides the number of layers, the EAST code also
differs from the perfect and TAST codes because it
encodes the symbols and their conjugate in each layer.

• The proposed EAST code differs from other ABBA
codes in [11] and [12] in that the symbols are conjugated
before encoding. In fact, if the code matrices P( a*) and
P(–b*) are replaced with either the conjugate matrices
( P( a))* and ( P(–b))* respectively, as done in [12], or
with the conjugate transpose matrices ( P( a))H and
( P(–b))H, respectively, as done in [11], then the
codematrix in (11) is no longer full rank.

• The Alamouti embedding of (11) offers two advantages.
First, when compared to the perfect space-time codes or
TAST codes, the proposed codes have a few number of
zeros in the space-time code matrix, and hence, a lower
PAPR. Second, Alamouti embedding reduces the
decoding complexity because it allows the layers to be
grouped in pairs, so that the two layers in a pair are
separately decodable. This feature reduces both the
worst-case and average decoding complexity.

B. Decoding

In order to ensure reliable detection at the receiver, we will
assume that . After conjugating the last M/2 received
samples, the received vector at the n-th receive antenna
during time slots t  {1, ..., M} can be written as:

 =
˜Hn  + , (12)

where = I R  GM/2,  is the Kronecker product and
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˜Hn = ,(13)

where H ,n(k) = diag(J – hn(k))
and hn(k) = [hkM/ +1,n, hkM/ + ,n, , hkM/ +M/ ,n]

T. 

In matrix form, (12) can be expressed as follows:

Yn =
˜HnS + Wn. (14)

Stacking the received vectors from the N antennas yields:

Y =  = S +  = HS + W. (15)

The maximum-likelihood receiver decides on the transmitted
symbol vector S that minimizes kY – HSk . Let H = QR
be a Q-R decomposition, where rl,p = ql*hp is the inner
product between the l-th column of Q and the p-th column of
H. The ML decoding of (15) is equivalent to minimizing kV
– RSk , where V = Q*Y. We next discuss properties of the
R matrix that allows for reduced complexity decoding.

The following properties of the R matrix in the Q-R
decomposition of the effective channel matrix H can be
verified by direct computation, where L = M/2:

(a) rl,p = 0, l  {1,  L}, p  {L+1,  2L} and
R  {1,  4}

(b) rl,p = 0, l  {2L+1,  3L}, p  {3L+1,  4L}
and R  {2,  4}

(c) rl,p = 0, l  {4L+1,  5L}, p  {5L+1,  6L}
for R  {3, 4}

(d) rl,p = 0, l  {6L+1,  7L}, p  {7L+1,  8L}
for R  4

(e) rl,p  , l, p  {1, , L}, and
l, p  {L+1,  2L}, for R  {1,  4}

(f) rl,p  , l, p  {2L+1,  3L} and
l, p  {3L+1,  4L} for R  {2,  4}

(g) rl,p  , l, p  {4L+1,  5L} and
l, p  {5L+1,  6L} for R  {3, 4}

(h) rl,p  , l, p  {6L+1,  7L} and
l, p  {7L+1,  8L} for R  4.

The first four properties (a) – (d) follow directly from the
orthogonality of the corresponding columns in H. The last
four properties (e) – (h) follow from using a real rotation
matrix to encode each layer.

In determining the worst-case decoding complexity, it is
only necessary to consider properties (a) and (e). This is
because the proposed EAST code is not separable and the
reduction in the worst-case complexity is determined by the
reduction in decoding complexity of the last decoded layer.

Due to property (a), the symbols a  can be decoded
separately from the symbols b . Due to property (e), the real
components of the vector a  and b  are separately decodable
from the imaginary components. As a result, the worst-case
decoding complexity is 4qM/4 for any layer in the proposed
space-time code for q-QAM alphabet. For q-HEX alphabet
(M = 6, R  2), coordinate interleaving prior to encoding
can be used to reduce the worst-case complexity. The worst-
case complexity of the perfect, TAST, quasiorthogonal,
SAST, and proposed EAST code is summarized in Table I.

We note that when the number of transmit antennas M is
odd, the decoding steps are identical to the case of M + 1

antennas, with the exception that the channel coefficients for
the (M + 1)-th antenna are simply set to zero in (15).

V.  NUMERICAL RESULTS

In this section we compare the BER performance and
complexity of the proposed space-time codes with the best
performing space-time codes of [4, 7-12] over quasistatic
Rayleigh-fading channel with additive Gaussian noise. As a
representative example, we compare BER and complexity
for four transmit antennas and two receive antennas for R =

2. In Fig. 1, we show BER as a function of SNR per bit for
the proposed space-time code, TAST [4] code and the fast-
decodable code (FAST) of [9]. At BER = 10– , the proposed
space-time code outperforms the fast-decodable code and
TAST code by 0.3 dB and 1 dB, respectively.

In Fig. 2 we show a plot of average node count as a
function of SNR per bit for proposed EAST code, TAST and
fast-decodable code. In all cases, the ML decoder was
implemented using the complex sphere decoder with sorting,
sphere radius update and depth-first tree search. For the
proposed EAST code and fast-decodable code, the sphere
decoding algorithm was implemented as a 4-level sphere
decoder to decode the first layer, followed by four 1-level
sphere decoders to decode the second layer, which has a
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worst-case decoding complexity of 4q, resulting in overall
worst-case decoding complexity of 4q . For the TAST code,
the sphere decoding algorithm was implemented as a 4-level
sphere decoder to decode the first layer, followed by two 2-
level sphere decoders to decode the second layer, which has a
worst-case complexity of 2q , resulting in overall worst-case
decoding complexity of 2q . As can be seen from Fig. 2, the
average complexity of the proposed space-time code is about
30% and 20% less complex than the TAST and FAST codes.

We omit simulation results for other configurations due to
lack of space but note that the EAST codes space-time codes
of [4,7-12] except for the R = 1 configuration, where the
quasiorthogonal codes perform slightly better. 

VI.  CONCLUSIONS

We have proposed a family of space-time codes for up to
eight transmit antennas and rates up to half the number of
transmit antennas. The proposed space-time codes were
constructed using the real versions of the complex generator
matrices of the perfect code; these equivalent generators
offer the same diversity and coding gain but enable reduced-
complexity decoding. Alamouti embedding was used to not
only obtain space-time codes with higher coding gain than
the perfect codes, but also lower decoding complexity. The
proposed construction is the first systematic construction of
space-time codes with low-complexity decoding, not only
for rate one, but for rates up to half the number of transmit
antennas. Furthermore, the proposed space-time codes
outperform all previous constructions with the same number
antennas, diversity gain and rate for rates higher than one.
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