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Abstract—Channel estimation algorithms are proposed for the
initialization phase of a wireless sensor network, during which the
nodes are still unaware of their neighbors or channel qualities.
Both expectation propagation (EP) and diffusion least mean
squares (LMS) algorithms are applied to this problem of channel
estimation while the network employs a random duty cycling
strategy to conserve power. Simulations results which showEP
giving better performance are given for both algorithms for a
small network.

I. I NTRODUCTION

Energy consumption is a key issue in wireless sensor net-
works because they are often deployed in inaccessible terrains
that forbid replacement or replenishment of the sensor node
power sources. While part of the energy in the sensors is
spent on processing data, a sizable portion of their energy is
expended on communication between the nodes because of the
necessary power amplification of the communications signals.
This energy consumption for communications purposes can be
minimized, maximizing the communications energy efficiency
of the network, through distributed power control if the
network nodes are are aware of the link gains on the network’s
wireless channels.

However, in many cases sensors are deployed randomly,
for instance by dropping them out of the back of a plane, and,
thus, they do not initially know their neighbors or the channel
gains. Thus, they must first estimate the channel gains in order
to determine their neighbors and to minimize transmission
powers. During this initial channel gain estimation phase,
power consumption may be further reduced by duty cycling
[1], [2], i.e. keeping only a small subset of the sensors in a
high power “awake” state at each time instant.

Following these practical constraints, this paper considers
a wireless sensor network in which each sensor estimates the
channel gains by collaborating with a few other network nodes.
While performing this channel estimation we maintain a low
average network energy consumption by employing a random
sleep strategy. We apply two estimation algorithms, Expec-
tation Propagation (EP) and diffusion Least-Mean Squares
(LMS), in order to estimate the channel gains, and compare
their performance in terms of estimation error.
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II. SYSTEM MODEL

Consider a network ofN sensor nodess1, . . . , sN which are
randomly placed on a flat terrain according to some position
probability distribution. Here we choose the sensor positions
{x1, . . . ,xN} to be i.i.d. according to a Gaussian distribution
satisfying a minimum separation between any two nodes,
although other position distributions may be equally viable
and will also be amenable to our analysis. We apply to the
network a regular cyclic random sleep strategy [3], in which
at each discrete time instant a randomly selected collection
of d nodes are awake and each sensor maintains the same
average power consumption. Define the set of nodes awake at
time instantk to be{S(k) | k ∈ {1, . . . , K}}, whereK is the
total number of time instants in a sleep cycle. Each sleep cycle
consists ofK time instants, after which the cycle repeats, so
thatS(K +k) = S(k). Let us denote the number of times one
node is awake during a sleep cycle withc, which we require to
be the same for all nodes in order to equal power consumption
throughout the network and thus equal node lifetime. Then, the
total number of time instants in a sleep cycle isK = c

d
N .

Consider next the channel gains on links in the network.
Statistical channel modeling studies have consistently shown
that the channel gain on a link between any two sensor nodes
heavily depends on the distance between them. Frequently this
dependence is captured via a path loss model ([4] Ch. 1, [5]
Ch. 7), in which the channel gain between two nodes separated
by a distance ofR is deemed proportional toR−n, where
n is known as the pathloss exponent. It has been practically
shown that depending on the nature of the ground on which
the network lies, the path loss exponent varies between 2 and
6. We have chosen a path loss exponent of 4 for our work,
although our analysis is amenable to other exponents as well.
We then model the channel gainhi,j between two nodesi and
j as distributed a priori according to

hi,j ∝ ‖xi − xj‖
−4
2

wherexi andxj are the random positions of the nodesi and
j, respectively.

Thus, if the nodes are placed randomly and independently of
one another, and these positions are unknown, any two channel
gains incident on a common network node are statistically
dependent. Conversely, any two channel gains which do not
share any common network nodes are statistically independent.



This knowledge may be expressed in terms of a prior
distribution for the network channel gains, which due to the
inverse nonlinear dependence on the node positions is both
analytically complex and intractable. Thus, it is interesting
to consider channel estimation statistical inference algorithms
such as EP [6], [3] which can make effective use of this
prior information while not falling prey to unbearable compu-
tational complexity. This is achieved in the present context by
approximating the complex nonlinear joint prior distribution
for the channel gains with a Gaussian with the same mean
and covariance. Under this Gaussian approximation, exact
statistical inference with belief propagation can be performed,
provided the associated approximated factor graph is without
loops. Presently we provide the specific information about this
Gaussian approximation. More details about the EP iterative
method will be given in Section IV-A.

Collect all the channel gains in the network into a vector

h := [hi,j | i, j ∈ {1, 2, . . . , N}, i < j]

and denote the channels gains in dB withhdB. Suppose that
the mean and covariance of the channel gains in dB are
m and Σ, respectively. Then, we can write the approximate
distribution ofhdB as

hdB ∼ N (m,Σ)

Furthermore, we can writehdB as

hdB = m + w

wherew is a random vector with distributionN (o,Σ).
We can now write the channel gainsh as

h = 10( m

10+ w

10 ) = 10
m

10 e
ln(10)

10 w

where element-wise operationexp and element-wise multi-
plication is implied. Approximating the terme

ln(10)
10 w, the

channel gainsh can be written as

h ≈ 10
m

10

(

1 +
ln(10)

10
w

)

Thus the prior distribution of the channel gains can be approx-
imated as

h ∼ N
(

10
m

10 ,
( ln(10)

10

)2

diag(10
m

10 )Σ diag(10
m

10 )
)

In the next section, we discuss how information about the
channels can be obtained in order to update the statistics of
the channel gains and to estimate them.

III. M ODEL FORCHANNEL TRAINING

Channel estimation of wireless links is typically performed
by transmitting a known sequence of data over the channels
that are to be estimated and make observations in order
to obtain information about the channels. This technique is
known aschannel training or channel sounding and the known
data sequence is calledtraining sequence.

In order to estimate the channel gain of each point to point
wireless link in the network, we transmit from each node

a training sequenceu1, . . . , uM and collect the observations
r1, . . . , rM at the receiver nodes. Suppose that the channel
gain of the point to point link ish, then the observations can
be modeled as

rm = hum + vm

wherem ∈ {1, . . . , M} andvm is noise which is assumed to
be independent over the time and to be Gaussian distributed.

Because of the random sleep strategy we use, a node which
is awake during a sleep cycle instantk can gather information
about only the links with the other nodes that are awake at
that particular time instant. Each sleep cycle time instantk

is further divided into more time slots. During each of the
first c of these slots, each awake node takes turns transmitting
its training sequence while all other awake nodes record their
observations. The remaining slots of a sleep cycle time instant
are used for the nodes to exchange estimate information in a
manner to be described momentarily.

Suppose that nodesi and j are awake at the sleep cycle
instantk and nodei transmits its training sequence. Then the
observations at the nodej can be written as

rk,i,j,m = hi,jui,m + vk,i,j,m

for all i, j ∈ S(k) and m ∈ {1, . . . , M}, whereM is the
length of the training sequence. Note that the observations
collected at the nodes are independent given the channel gains.

If we collect all the observations at the sleep cycle instant
k into a vectorrk

rk := [rk,i,j,m | i, j ∈ S(k), m ∈ {1, . . . , M}, i 6= j]

then rk is independent over sleep cycle instantsk given
the channel gain vectorh. Therefore we can write the joint
probability distribution ofr andh as

pr,h = ph

K
∏

k=1

prk|h

wherer := [rk | k ∈ {1, . . . , K}].
Each nodei ∈ {1, 2, . . . , N} in the network has an estimate

hiof the channel gain vectorh. Since we want the same a
posteriori distributionph|r at each node at the end of the
channel estimation, we write the joint distribution as

pr,h,h1,...,hN
=

K
∏

k=1

prk|h

N
∏

i=1

δ(h − hi)(ph(hi))
1
N (1)

whereδ is the point mass distribution at zero.
We can associate a bipartite graph called a factor graph

[7] with the model which we discussed above, as in Fig.
1. Let us represent the nodess1, . . . , sN with the left side
nodes (variable nodes) of the factor graph and the time instants
1, 2, . . . , K of the random sleep cycle with the right side nodes
(factor nodes) of the factor graph. We use an edge to connect
the right nodesi ∈ S(k), which is awake during the sleep
cycle instantk, with kth left node in the factor graph which
corresponds to thekth sleep cycle instant.
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Fig. 1. An example factor graph used for EP based channel estimation with
only one sleep cycle (l = 1)

Because of the limited computational abilities, we assume
that the nodes will take time on the order of the amount of
an entire sleep cycle to decode the messages (messages are
encoded because they are to be sent over the noisy channels)
and to use them in calculating the outgoing messages. There-
fore, afterl complete sleep cycles a sensor nodesi will have
opportunity to obtain information from only those nodes that
are no more than2l edges away fromsi on the factor graph.
Thus, afterl complete sleep cycles the estimate forhi can
only directly exploit observations at the nodes that are no more
than2l edges away fromsi. This enables us to write a joint
distribution indicating the information available to nodesi as

pl
r(T (i,j)),h,h(P(i,l)) =

∏

k∈T (i,j)

prk|h

∏

j∈P(i,l)

δ(h− hj)(ph(hj))
1

g(l) (2)

whereg(l) = c(c− 1)l(d− 1)l is the number of sensor nodes
no more than2l edges away from sensor nodesi on the factor
graph afterl iterations, andT (i, j) andP(i, l) are the sleep
cycle instantsk′ and node indicesj no more than2l edges
away from sensor nodesi in the factor graph respectively.
Also

h(P(i, l)) := {hj |j ∈ P(i, l)}

r(T (i, j)) := {rk|k ∈ T (i, j)}

We presently show how EP and LMS can be applied for the
channel gain estimation.

IV. A LGORITHMS FORDISTRIBUTED ESTIMATION

There are a number of algorithms, such as belief propagation
(BP), expectation propagation (EP) and least-mean square
(LMS), which may be used for distributed estimation in sensor
networks. In this paper we compare the performance of EP
and LMS in estimating the channel gains of the sensor nodes.
We first show how EP can be used for distributed channel
estimation when the random sleep strategy is used during the
initialization phase of the sensor network.

A. Expectation Propagation

Suppose that the mean and covariance of the channel gains
are mh and Σh, respectively. Then the approximated prior
joint distribution onh can be written as

ph(h) ∝ exp{−
1

2
[(h − mh)T

Σ
−1
h

(h − mh)]} (3)

Also the conditional joint distribution on the observations
rk,i collected during sleep cycle instantk at nodei ∈ S(k)
can be written as

prk,i|h(rk,i|h) ∝ exp{−
1

2
[(rk,i−mrk,i)

T
Σ

−1
rk,i

(rk,i−mrk,i)]}

(4)
where

mrk,i := [hi,juj |j ∈ S(k) \ i]

Σrk,i|h := σ2
N I(d−1)M×(d−1)M

whereσ2
N is noise variance.

Each node in the network, knowing the prior statistics on
the channel gains, has an initial estimate of channel gains
ĥ = mh. They may want to update their estimates by updating
the statistics (mean and covariance) of the gains using the
observations they made during the training phase. Once we
have associated the joint distribution onh with a factor graph
as shown in Fig. 1, we can apply EP [6] [3] to calculate
posterior distribution ofh. EP iteratively passes messages
on the edges of the factor graph in order to calculate the
posterior distribution. We have to first select a message family
[3] in order to apply EP on the factor graph. Considering the
prior distributionph(h) and the conditional joint distributions
prk,i|h(rk,i|h), we select the the message exponential family
to be used in EP to be multivariate Gaussian distributed with
sufficient statistics

v(h) =
(

hy hz h

)T

where

hy := [h2
i,j |i, j ∈ {1, . . . , N}, i < j]

hz := [hi,jhm,n|i, j, m, n ∈ {1, . . . , N}, i < j, m < n,

m > i]

We can rewrite the prior distribution in terms of parameter-
ization of the message exponential family as

ph(h) ∝ exp{−
1

2
(v(h).τ + mh

T
Σ

−1
h

mh)}

where the parameter vectorτ is

τ =
(

ay 2az − 2Σ−1
h

mh

)T

whereΣ
−1
h

= [ai,j ] 1
2N(N−1)× 1

2N(N−1) and

ay := [ai,i|i ∈ {1, . . . ,
1

2
N(N − 1)}]

az := [am,n|m, n ∈ {1, . . . ,
1

2
N(N − 1)}, n > m]



We can also rewrite the conditional joint distribution on the
observations as

prk,i|h(rk,i|h) ∝ exp{−
1

2
(v(h).tk,i + r

T
k,irk,i)}

where

tk,i =
(

uy,i 0 µk,i

)T

where

uy,i := [uT
nunδ(i − m)δ(j − n)|m, n ∈ {1, . . . , N},

m < n if i < j, m > n if i > j, j ∈ S(k) \ i]

µk,i := [−2uT
nrk,n,mδ(i − m)δ(j − n)|m, n ∈ {1, . . . , N},

m < n if i < j, m > n if i > j, j ∈ S(k) \ i]

Here note that each vector intk,i is of the same length as the
corresponding vectors inv(h).

It is useful to note an important property of exponential
family distributions before we continue. Consider a set of dis-
tributions {pθi|h|i ∈ {1, . . . , L}}, in which each distribution
takes the form

pθi|h ∝ exp{−
1

2
[v(h).fi(θi) − wi(θi)]}∀i ∈ {1, . . . , L}

Then, the product of the distributions can be written as

L
∏

i=1

pθi|h ∝ exp{−
1

2
[v(h).

L
∑

i=1

fi(θi)]}

We presently explain how the nodes apply EP to calculate
the posterior distribution. At every iterationp and every sleep
cycle instantk, the awake nodesi ∈ S(k) multiply prk,i|h

with the messages obtained in all of theother c − 1 sleep
cycle time instants (N (i)\k) it was awake during the previous
(p − 1)th sleep cycle to obtain the outgoing message. Since
all the messages are from the same exponential family, when
the messages are multiplied the parameters of the messages
sum up. Thus, it is sufficient for each node to pass only the
parameters of the messages. Furthermore, nodes need to pass
only the vectorsµk,i, because each node can calculate the
other vectors based on the information available at the node.
Thus, the nodesi ∈ S(k) sum µk,i with the vectorsλ(p−1)

k′→i

to obtainρ
(p)
i→k.

ρ
(p)
i→k = µk,i +

∑

k′∈N (i)\k

λ
(p−1)
k′→i

The N(N−1)
2 dimensional vectorρ(p)

i→k is then broadcast to all
other awake nodes.

Each nodei ∈ S(k) then sums thed− 1 messagesρ(p)
j→k it

heard from the other awake nodesj ∈ S(k) \ {i} with µk,i,

and stores the result inλ(p)
k→i.

λ
p
k→i = µk,i +

∑

i′∈S(k)\i

ρ
p
i′→k

At the final iteration, nodei calculates the parameters of the
posterior distribution by summingλ(p)

k→i from k in all c sleep
cycle instants it was awake, stacking it with the parameter

vectors calculated using the information available at the node,
and adding it toτ . Each node calculates its estimate by finding
the mean of the posterior distribution.

B. Diffusion LMS Algorithm

The least-mean square algorithm is an adaptive filtering
technique which can be used for the distributed estimation
of the channel gains. We assume that each node has a copy of
the channel gain vectorh and it takes an initial value ofmh.

Suppose that nodei transmits its training sequence during
a sleep cycle instantk. Then all other nodes which are awake
during the sleep cycle instantk have access to{ui,m, rk,i,i′,m}
where

i′ ∈ S(k) \ i

and ui,m is the input regression signal andrk,i,i′,m is the
desired signal. Note thatui,m andrk,i,i′,m obey the equation

rk,i,i′,m = hi,i′ui,m + vk,i,i′,m

The network nodesi′ ∈ S(k) \ i can use diffusion LMS
algorithm [8] to estimatehi,i′ . Let us denote the estimate of
hi,i′ at time instantm of sleep cycle instantk by ĥ

k,m
i,i′ . Then,

ĥ
k,m
i,i′ = ĥ

k,m−1
i,i′ + µui,m(rk,i,i′,m − ĥ

k,m−1
i,i′ ui,m) (5)

whereµ is step size.
We assume that at the end of each sleep cycle instantk, the

nodes awake atk diffuse their estimates by

h̃
k =

∑

i∈S(k)

a(k, i)ĥk
i (6)

whereĥ
k
i is the estimate ofh at nodei at the end of the sleep

cycle instantk and a(k, i) satisfy
∑

i∈S(k) a(k, i) = 1. The

nodesi ∈ S(k) use the combined estimatẽhk for estimation
during the later sleep cycle instants.

V. SIMULATION RESULTS

We have done some simulations and have plotted the esti-
mation errors for both algorithms. In this section we discuss
our simulation results.

First we generate candidate sensor positions on the plane
R

2 such that they are i.i.d. and Gaussian distributed with zero
mean and variance1. These candidate sensor positions are
the refined to actual sensor positions by keeping only those
positions that are0.08 apart from one another, because when
the separation is less than0.08 the channel gains become
unrealistically large. Then, we generate the channel gains. We
calculate the statistics (mean and covariance matrix) of the
channel gains using many sensor positions generated in this
manner, then generate a new set of sensor positions to test the
algorithms with. Next, we generate the training sequences of
length 1000 randomly and uniformly with values of either 1
or -1. We run400 Monte Carlo simulations for each algorithm
for the experiment presented below.

In this experiment, we estimate the channel gain vectorh for
a network with20 sensors applying EP and LMS. We apply a
random sleep strategy withK = 10 andd = 4 to the network.
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Fig. 2. Average squared estimation error of only those channel gains observed
directly or indirectly by the nodes after 1st, 2nd and 3rd sleep cycles

Due to the random sleep strategy, and to the local nature of
both algorithms, afterl iterations the observations made at a
particular network node can propagate to the nodes only up to
2l edges away from that node in the factor graph. Thus, after
l iterations each node will have observed information (either
directly or indirectly) about only a subset of the network links
and this subset differs for each node. It is obvious that the
nodes cannot make good estimates of the unobserved channels
unless the correlations between the channels incident on the
same node is very (physically unrealistically) large, and thus,
including the estimation errors of those channels unobserved
gives large average estimation errors. For these reasons, we
plot the average estimation errors of only those channel gains
which can be observed directly or indirectly by the nodes after
first, second and third sleep cycles.

Fig. 2(a) shows the average squared estimation error of the
observed channel gains in dB when EP is applied. Note that
there is a drastic change in the estimation error after first
sleep cycle for the channel gains which were observed directly
by the nodes. Also note that the drastic change shifts to the
second sleep cycle and third sleep cycle for the channel gains
observed directly or indirectly after second sleep cycle and
third sleep cycle, respectively, as is to be expected. Another
interesting thing that can be observed in the plot is that the
estimation errors decrease even after the the drastic change,
which is because the nodes make use of the correlation with
the other channel gains observed in subsequent iterations to
refine estimates of these particular channel gains.

Fig. 2(b) shows average squared error of the estimated
channel gains when diffusion LMS is used with step size
µ = 1.995. This step size was chosen to be the maximum

step size for which the diffusion LMS does not diverge in
order to give the algorithm the chance to converge as quickly
as possible, since EP converges faster. Note that EP gives
better performance than the diffusion LMS when the network
is required to estimate the channel coefficients within a small
number of sleep cycles. The message passing overhead of the
two algorithms is exactly the same at each sleep cycle time
instant: they both exchange messages of equal dimension to
the number of channel gains between each pair of nodes that
are awake at a particular sleep cycle time instant. The compu-
tational complexity of the two algorithms is also comparable.
EP requires no more than(d(c+1)+d(d+1))N(N−1)

2 +d2M

additions andd2M multiplications per sleep cycle time instant
and the solution of aN(N−1)

2 dimensional linear system at
each sensor node in the network during the final iteration. Dif-
fusion LMS requiresd2 N(N−1)

2 +2d(d−1)M multiplications

andd(d − 1)
(

N(N−1)
2 + 2M

)

additions per sleep cycle time
instant iteration with no additional computation necessary at
the final iteration.

VI. CONCLUSION

EP converges to the exact a posteriori distribution provided
that there has no loop occurred during the message passing.
Since the probability of encountering loops on the factor graph
for finite number of iteration→ 0 as the number of nodes
in the network→ ∞ [3], for finite number of iterations̀
EP calculates the exact a posteriori distribution given those
observations no more that` edges away in the sleep cycle
(factor) graph. The mean of the a posteriori distribution gives
us the estimate of the channel coefficients at the end of the
random sleep cycles, which is the best estimate in the mean
squared error sense. We have extended these theoretical results
established in [3] by simulations showing that EP achieves
better performance with faster convergence than the diffusion
LMS algorithm in the distributed channel estimation. The
computational complexity of the two methods for this problem
were also compared.
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