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Abstract—Channel estimation algorithms are proposed for the Il. SYSTEM MODEL
initialization phase of a wireless sensor network, during \kich the . .
nodes are still unaware of their neighbors or channel qualies. Consider a network oV sensor nodes;, . .., sy which are

Both expectation propagation (EP) and diffusion least mean randomly placed on a flat terrain according to some position
squares (LMS) algorithms are applied to this problem of chamel  probability distribution. Here we choose the sensor posgi

estimation while the network employs a random duty cycling ¢y 1 to be i.i.d. according to a Gaussian distribution
strategy to conserve power. Simulations results which shoP t" ) L. i bet i d
giving better performance are given for both algorithms for a satisfying a m'n'mlj'm se_par.a '9” etween any two n_o €s,
small network. although other position distributions may be equally wéabl

and will also be amenable to our analysis. We apply to the
network a regular cyclic random sleep strategy [3], in which
at each discrete time instant a randomly selected collectio
gf_d nodes are awake and each sensor maintains the same

Energy consumption is a key issue in wireless sensor n ) ,
average power consumption. Define the set of nodes awake at

works because they are often deployed in inaccessiblansrra.” " .
that forbid replacement or replenishment of the sensor nc?t'f@e instantk to be{S(k) | k € {1,..., K}}, whereK is the

power sources. While part of the energy in the sensorstf)stal _number O_f time instants in asle_ep cycle. Each sleefecyc
nsists ofK' time instants, after which the cycle repeats, so

. . . . C

spent on processing data, a sizable portion of their enargy, P B .

expended on communication between the nodes because o S_(K+k) - S(.k)' Let us denote the ngmber of tmes one
pode is awake during a sleep cycle withwhich we require to

necessary power amplification of the communications sign eethe same for all nodes in order to equal power consumption
This energy consumption for communications purposes can .
9y b pu'p throughout the network and thus equal node lifetime. Them, t

minimized, maximizing the communications energy efficienc

S ) .
of the network, through distributed power control if théOtal number of time instants in a sleep (.:ycle[.sl’s_ -
,SConS|der next the channel gains on links in the network.

network nodes are are aware of the link gains on the networ o . . .
g gtat|st|cal channel modeling studies have consistentbyvsh

wireless channels. ) -
. that the channel gain on a link between any two sensor nodes
However, in many cases sensors are deployed randorrF]I v d d he di b h il th
for instance by dropping them out of the back of a plane, an avily epends on the |s_tance etween them. Frequerdly t
' ependence is captured via a path loss model ([4] Ch. 1, [5]

thqs, they do not |n|t|ally know.thelr neighbors or th? chahn h. 7), in which the channel gain between two nodes separated
gains. Thus, they must first estimate the channel gains ieror . . . -
Y a distance ofR is deemed proportional t&® ", where

to determine their neighbors and to minimize transmission. .
owers. During this initial channel gain estimation phasg is known as the pathloss exponent. It has been pract|cr_;\||y
P ) Shown that depending on the nature of the ground on which

power c_onsumptl_on may be further reduced by duty CVC.'”}ﬂe network lies, the path loss exponent varies between 2 and
[1], [2], i.e. keeping only a small subset of the sensors Né& We have chosen a path loss exponent of 4 for our work

high power *awake” state at each time instant. although our analysis is amenable to other exponents as well

Following these practical constraints, this paper corrsidg,ve then model the channel gaiin; between two nodesand
a wireless sensor network in which each sensor estimates thg 7

channel gains by collaborating with a few other network rsaode7 S distributed a priori according to

While performing this channel estimation we maintain a low hij o ||x; — Xj|‘2*4

average network energy consumption by employing a random

sleep strategy. We apply two estimation algorithms, Expe@herex; andx; are the random positions of the nodeand

tation Propagation (EP) and diffusion Least-Mean Squarésrespectively.

(LMS), in order to estimate the channel gains, and compareThus, if the nodes are placed randomly and independently of

their performance in terms of estimation error. one another, and these positions are unknown, any two channe

gains incident on a common network node are statistically
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|I. INTRODUCTION



This knowledge may be expressed in terms of a priertraining sequences,...,uys and collect the observations
distribution for the network channel gains, which due to the,...,r,; at the receiver nodes. Suppose that the channel
inverse nonlinear dependence on the node positions is bg#in of the point to point link is, then the observations can
analytically complex and intractable. Thus, it is inteiegt be modeled as

to consider channel estimation statistical inference ritlyms T = Wty + Um
such as EP [6], [3] which can make effective use of this _ ) o
prior information while not falling prey to unbearable comp Wherem € {1,..., M} anduv,, is noise which is assumed to

tational complexity. This is achieved in the present conbgx Pe independent over the time and to be Gaussian distributed.
approximating the complex nonlinear joint prior distriiot ~ Because of the random sleep strategy we use, a node which
for the channel gains with a Gaussian with the same melgrAwake during a sleep cycle instdntan gather information
and covariance. Under this Gaussian approximation, exa&out only the links with the other nodes that are awake at
statistical inference with belief propagation can be penfed, that particular time instant. Each sleep cycle time instant
provided the associated approximated factor graph is wtthds further divided into more time slots. During each of the
loops. Presently we provide the specific information abhist t first ¢ of these slots, each awake node takes turns transmitting

Gaussian approximation. More details about the EP iteratilfS training sequence while all other awake nodes recoru the
method will be given in Section IV-A. observations. The remaining slots of a sleep cycle timenist

Collect all the channel gains in the network into a vectorare used for the nodes to exchange estimate information in a
manner to be described momentarily.

h:=[h;;|i,j€{1,2,...,N},i<j] Suppose that nodesand j are awake at the sleep cycle
and denote the channels gains in dB withs. Suppose that instantk and node transmits its training sequence. Then the
the mean and covariance of the channel gains in dB aservations at the nodecan be written as
m a_nd E respectively. Then, we can write the approximate Phigom = P jUim + Ukijm
distribution ofhyp as ’ ’

for all i, € S(k) andm € {1,...,M}, where M is the

hap ~ N(m, %) length of the training sequence. Note that the observations
Furthermore, we can writh, as collected at the nodes are independent given the chanmel.gai
If we collect all the observations at the sleep cycle instant
hijp =m+w k into a vectorry,
wherew is a rand_om vector with dls_tnbutloh/(o, 3). v = [Fhigm | 6,5 € S(k),m € {1,...,M},i % j]
We can now write the channel gaihsas
In(10) then r, is independent over sleep cycle instaritsgiven

h=100+15) = 108 ¢ 10 W the channel gain vectds. Therefore we can write the joint

where element-wise operatianp and element-wise multi- Probability distribution ofr andh as

plication is implied. Approximating the terna%w, the K
channel gaind can be written as Dr.h = Dh Hpmh
- In(10) =1
h =~ 10w (1+ 10 W) wherer :=[ry, | k € {1,...,K}].
Thus the prior distribution of the channel gains can be appro Each node € {1,2,..., N} in the network has an estimate
imated as h;of the channel gain vectdi. Since we want the same a
(100 2 posteriori distributionpy,, at each node at the end of the
h ~ /\[(10%, (%O)) diag(1019) zdiag(l()%)) channel estimation, we write the joint distribution as

In the next section, we discuss how information about the s N 1
channels can be obtained in order to update the statistics of Pk hy = Hprk\h H5(h —hi)(pu(h))™ (1)
the channel gains and to estimate them. =1 =t

whered is the point mass distribution at zero.
I1l. M ODEL FORCHANNEL TRAINING We can associate a bipartite graph called a factor graph

Channel estimation of wireless links is typically perfoane[7] with the model which we discussed above, as in Fig.
by transmitting a known sequence of data over the channglsLet us represent the nodes, ..., sy with the left side
that are to be estimated and make observations in orderdes (variable nodes) of the factor graph and the timenitsta
to obtain information about the channels. This technique is2,..., K of the random sleep cycle with the right side nodes
known aschannel training or channel sounding and the known (factor nodes) of the factor graph. We use an edge to connect
data sequence is callérhining sequence. the right nodes; € S(k), which is awake during the sleep

In order to estimate the channel gain of each point to poiaycle instantk, with kth left node in the factor graph which
wireless link in the network, we transmit from each nodeorresponds to théth sleep cycle instant.



A. Expectation Propagation

Suppose that the mean and covariance of the channel gains
are my, and 3, respectively. Then the approximated prior
joint distribution onh can be written as

1
pesn TTsara 8 — o) pu(h) o exp{—Z[(h —mp) S (h—mw)]} ()

Proin [Lim15.656(h — hy) Also the conditional joint distribution on the observaton
o ri.; collected during sleep cycle instahtat nodei € S(k)
can be written as

1 _
Fig. 1. An example factor graph used for EP based channeha&stin with pl‘k,ilh(rk-,i|h) S8 exp{——[(rkﬂi—mrk,i)TErkli (rk,i_mrk7i)]}
only one sleep cyclel = 1) 2 ’ @)

where

I . my,, = |h;;uiljeSk)\i

Because of the limited computational abilities, we assume vkt [2” ili € SR\ 1]

that the nodes will take time on the order of the amount of Erpin = onla-nmx@-nm
an entire sleep cycle to decode the messages (message@vﬁg-?r-eojzv is noise variance.

encoded because they are to be sent over the noisy channelgl, . node in the network, knowing the prior statistics on

and to use them in calculating the outgoing messages. Th&fgs channel gains, has an initial estimate of channel gains
fore, after/ complete sleep cycles a sensor nedevill have f _ \,  They may want to update their estimates by updating
opportunity to obtain information from only those nodestthgye statistics (mean and covariance) of the gains using the

are no more thaal edges away from; on the factor graph. gpservations they made during the training phase. Once we
Thus, afteri complete sleep cycles the estimate for can 1 5ye associated the joint distribution hrwith a factor graph
only directly exploit observations at the nodes that are Boem o« shown in Fig. 1, we can apply EP [6] [3] to calculate

than2/ edges away from;. This enables us to write a joint yogterior distribution ofh. EP iteratively passes messages
distribution indicating the information available to nosieas , the edges of the factor graph in order to calculate the

posterior distribution. We have to first select a messagéyam

1 _
Pr(7(i,5)),b,h(P(i,) = [3] in order to apply EP on the factor graph. Considering the
H Prylh H §(h —h;)(pn(h;)) 0 (2) prior distributionpy, (h) and the conditional joint distributions
kT (ir)) JEPGL) ' Pr. . n(rri|h), we select the the message exponential family

to be used in EP to be multivariate Gaussian distributed with
whereg(l) = c(c — 1)!(d — 1)! is the number of sensor nodessufficient statistics
no more thare! edges away from sensor nosleon the factor T
graph afterl iterations, andZ (i, j) andP(i,l) are the sleep v(h) = (hy h, h)
cycle instantsk’” and node indiceg no more thar2! edges

away from sensor node; in the factor graph respectively.Where
Also h, = [hi,li,je{l,...,N}, i<l
. . . h, = [|hijhmalt,sjmne{l,..., N} i<jm<n,
B(P(.0) = {hjlje P} fualmaltg o € M
.. .. m 1
r(7(i,j)) = Arelk € T(i,j)}

. We can rewrite the prior distribution in terms of parameter-

We presently show how EP and LMS can be applied for thgation of the message exponential family as
channel gain estimation. 1
pn(h) « exp{—i(v(h).‘r +mp S 'my,)}

IV. ALGORITHMS FORDISTRIBUTED ESTIMATION .
where the parameter vecteris

There are a number of algorithms, such as belief propagation .
(BP), expectation propagation (EP) and least-mean square T= (ay 2a; — 2%y mh)
(LMS), which may be used for distributed estimation in se&nso 1
networks. In this paper we compare the performance of €€ = [aijlin(v_1)xin(v-1) @nd
and LMS in estimating the channel gains of the sensor nodes. 1
We first show how EP can be used for distributed channel a, = [ai;|i € {1,---,51\7(]\7— 1)}]
estimation when the random sleep strategy is used during the
initialization phase of the sensor network. ay

1
[amn|m,n e {1,..., §N(N —1}n>m]



We can also rewrite the conditional joint distribution o thvectors calculated using the information available at theen
observations as and adding it tor. Each node calculates its estimate by finding
the mean of the posterior distribution.

1
Pryqn(th,i[h) o exp{—2 (v(h).ty; + v Thi)} - _
B. Diffusion LMS Algorithm

where T The least-mean square algorithm is an adaptive filtering
tri = (uw- 0 Hk,i) technique which can be used for the distributed estimation
Where of the channel gains. We assume that egc_h_ node has a copy of
the channel gain vectdi and it takes an initial value afy,.
u,; = [uiw,5(i—m)i(j—n)|m,ne{l,...,N}, Suppose that nodetransmits its training sequence during
m < nifi < j,m>nifi>j,j € Sk)\ i a sleep cycle instarit. Then all other nodes which are awake
s = [—2u§rk7n,m6(i —m)d(j — n)mn € {1,.... N}, \(,jvtﬁ]rér:g the sleep cycle instahthave access t0u; ., k,i,i7 m }
m < nifi <jm>nifi>j,jeSk)\ 1 i € S(k)\ i
Here note that each vector t ; is of the same length as thegnd v, .m is the input regression signal and ;. ,, is the
corresponding vectors if(h). desired signal. Note that; ,, andry ;. ., obey the equation
It is useful to note an important property of exponential
family distributions before we continue. Consider a setisf d Thisitm = PigWiim + Vk,i it m

tributions {pg, n|i € {1,...,L}}, in which each distribution  1ha network nodes’ S(k) \ i can use diffusion LMS
takes the form algorithm [8] to estimatér; ;. Let us denote the estimate of
1 . i gl i i i A]_c,m
Do, b & exp{—i[v(h) £,(0;) — wi(0:)]}Vi € {1,...,L} h;q+ at time instantn of sleep cycle instant by & i - Then,

plm — phm=l plmt

Then, the product of the distributions can be written as + pttin (Thiirm = hy wim)  (5)

wherey is step size.

Hpg Ih O exp{—— Z f;(0 We assume that at the end of each sleep cycle instahe
nodes awake at diffuse their estimates by
We presently explain how the nodes apply EP to calculate hr — Z a(k,i)ﬁf (6)

the posterior distribution. At every iteratignand every sleep
cycle instantk, the awake nodes € S(k) multiply p,, ,|n
with the messages obtained in all of tbther ¢ — 1 sleep Wherehk is the estimate oh at nodei at the end of the sleep
cycle time instantsX/ (i) \ k) it was awake during the previouscycle mstantk anda(k,i) satisfy ), s (k) a(k,i) = 1. The

(p — 1)th sleep cycle to obtain the outgoing message. Sing@desi € S(k) use the combined estlmahé“ for estimation

all the messages are from the same exponential family, wh@iiving the later sleep cycle instants.

the messages are multiplied the parameters of the messages

sum up. Thus, it is sufficient for each node to pass only the V. SIMULATION RESULTS

parameters of the messages. Furthermore, nodes need to paédé& have done some simulations and have plotted the esti-
only the vectorsu, ;, because each node can calculate theation errors for both algorithms. In this section we discus
other vectors based on the information available at the no@err simulation results.

i€S(k)

Thus, the nodes € S(k) sum p, ; with the vectorsAEC’,’;li) First we generate candidate sensor positions on the plane
to obtampz”) R? such that they are i.i.d. and Gaussian distributed with zero
mean and variancé. These candidate sensor positions are
pz@)k M+ Z A(p 1) the refined to actual sensor positions by keeping only those
K EN(i)\k positions that ar®.08 apart from one another, because when

the separation is less thah08 the channel gains become
unrealistically large. Then, we generate the channel galiles
calculate the statistics (mean and covariance matrix) ef th
channel gains using many sensor positions generated in this
manner, then generate a new set of sensor positions to ést th

The X2=1 dimensional vectop & 1S then broadcast to all
other awake nodes.

Each node € S(k) then sums thel — 1 message$ k it
heard from the other awake nodgs S(k) \ {7} with B is

and stores the result ix|” . algorithms with. Next, we generate the training sequenées o
N » length 1000 randomly and uniformly with values of either 1
ki = Mg T Sz:(k)\ Pi—k or -1. We rurd00 Monte Carlo simulations for each algorithm
i€ 7

for the experiment presented below.

At the final iteration, node calculates the parameters of the In this experiment, we estimate the channel gain veetior
posterior distribution by summlntg;,H from & in all ¢ sleep a network with20 sensors applying EP and LMS. We apply a
cycle instants it was awake, stacking it with the parameteandom sleep strategy with = 10 andd = 4 to the network.



40— step size for which the diffusion LMS does not diverge in
——after 1st cycle . . .
~after 2nd cycle order to give the algorithm the chance to converge as quickly
—after 3rd cycle as possible, since EP converges faster. Note that EP gives
better performance than the diffusion LMS when the network
is required to estimate the channel coefficients within allsma

number of sleep cycles. The message passing overhead of the

Average Squared Error (dB)
o

-20
two algorithms is exactly the same at each sleep cycle time
-40; s 10 instant: they both exchange messages of equal dimension to
Sleep Cycle the number of channel gains between each pair of nodes that
(a) EP are awake at a particular sleep cycle time instant. The cempu
8 tational complexity of the two algorithms is also compaeabl
2N\ —after 1st cycle EP requires no more tha@d(c+1) +d(d+ 1))% +d*M
536 | after2nd cycle additions andi2 )/ multiplications per sleep cycle time instant
T 34 L after 3rd cycle . (N=1) . .
= ~ and the solution of aN—2 dimensional linear system at
g 32 O each sensor node in the network during the final iteratioft. Di
tz)-go \\i:\ fusion LMS requiresiQW +2d(d—1)M multiplications
§zs = andd(d —1) (w + 2M ) additions per sleep cycle time
S 26; : 0 instant iteration with no additional computation necegsatr
Sleep Cycle the final iteration.
(b) LMS

VI. CONCLUSION

Fig. 2. Average squared estimation error of only those chlagimins observed  EP converges to the exact a posteriori distribution pravide
directly or indirectly by the nodes after 1st, 2nd and 3ragleycles that there has no loop occurred during the message passing.
Since the probability of encountering loops on the factapgr
for finite number of iteration— 0 as the number of nodes
Due to the random sleep strategy, and to the local naturejQfihe network— oo [3], for finite number of iterations’
both algorithms, aftet iterations the observations made at &p cajculates the exact a posteriori distribution givers¢ého
particular network node can propagate to the nodes only updfservations no more thdt edges away in the sleep cycle
21 edges away from that node in the factor graph. Thus, afigfctor) graph. The mean of the a posteriori distributiovesi

[ iterations each node will have observed information (&ithg§g the estimate of the channel coefficients at the end of the
directly or indirectly) about only a subset of the networkB  4nqom sleep cycles, which is the best estimate in the mean

and this subset differs for each node. It is obvious that g ared error sense. We have extended these theoretisis res
nodes cannot make good estimates of the unobserved changglgplished in [3] by simulations showing that EP achieves
unless the correlations between the channels incident ®n giter performance with faster convergence than the dffus
same node is very (physically unrealistically) large, amast | \1s aigorithm in the distributed channel estimation. The
|n_clud|ng the estlma'uon_errqrs of those channels Unomrvcomputational complexity of the two methods for this proble
gives large average estimation errors. For these reas@s, Wre also compared.

plot the average estimation errors of only those channeisgai
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