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Abstract—In this paper we deduce the capacity of wireless ad- nodes have the ability to decode correctly multiple packets
hoc networks under the assumptions of physical model for cg®  transmitted concurrently from different nodes, and tramism
erative multiple input multiple output (MIMO) communicati on. concurrently multiple packets to different nodes. We refer

We show that the capacity of a random wireless ad-hoc network . . . .
can be improved significantly by adopting MIMO techniques. to this as multi-packet transmission and reception (MPTR)

In particular, when the nodes are endowed with multi-packet Physical model. In this section we review some of our regentl
transmission and reception capabilities, the per sessionapacity —established results on random geometric graphs
increases at least as:'~*/* R(n)*~*/*, where a > 2 is the path Section IV presents our second contribution, where we
loss parameter andR(n) is the range of cooperation. The proof yefine acombinatorial interference modédased on random
for the above results utilizes an edge coloring of an appropately . . -
chosen random geometric graph. This approach, as a by prodic geom_etnc graphs. We establish some generic results for the
provides alternative deductions for some previously estdished COmbinatorial models. These results prove useful for the
results under the physical model. Consequently, we providan subsequent analysis in the paper, but are also interesting i
alternative deduction of the classical result for a point topoint  their own right.
gommunlcatlon by Gupta and Kumar. Furthurmore, we also  gection \ presents our third contribution. We show that for
educe a bound that matches a recent result by Wang et. al., . .
for capacity of ad-hoc networks under multipacket reception, ~€ach Of: (&) the classical physical model by Gupta and Kumar
within a poly-log factor. [1], (b) the multipacket reception physical model by Wang et
al. [6](c) and the MPTR physical model proposed in Section
lll, there exists a corresponding combinatorial model that
. INTRODUCTION performs necessarily worse than the physical model. Wizetil
The past decade has seen major advances in multiuges relationship along with properties of random geongetri
detection, multiple input multiple output (MIMO) commu-graphs proven in [7], as well as Section IV, to deduce the
nication and interference cancelation techniques. Ctlyrendesired lower bounds. We discuss our results in Section VI.
there is an active research interest in modeling and evatpat
the impact of these paradigms on the performance of large
scale networks. The classical result by Gupta and Kumar [1]
essentially states that communication protocols basedorn p  There have been many contributions on the capacity study
to point communication cannot render networks that perforf wireless ad hoc networks that span unicast, multicast and
efficiently with increase in size. It is widely anticipateldat broadcast traffic. Due to space limitations, however, wey onl
advanced cooperative communication can overturn thierattinention a few of them that focus on unicasting.
negative conclusion. A number of papers have extended the results by Gupta and
Recent efforts to realize (static) scalable ad-hoc netsorkumar [1], which showed a gap between the upper and lower
have met with a mixed degree of success. For exampligunds on capacity under the physical model. Francesdtetti
network coding (NC) [2], which is essentially a generalizat al. [8] closed this gap using percolation theory.
of routing, has proved to be incapable of improving the Several techniques aimed at improving the capacity of
throughput order for multipair unicast transmissions [8gv- wireless ad hoc networks have been analyzed. Grossglauser
ertheless, other contemporary efforts, which model regdyi and Tse [9] demonstrated that a non-vanishing capacity can
classical physical layer co-operative techniques, haveé nie attained at the price of long delivery latencies by taking
with a greater degree of success. In particular, [4] and [BHvantage of long-term storage in mobile nodes.
have exhbited the feasibility of achieving constant pessim Someworks demonstrated that changing physical layer as-
capacity. We provided a more detailed taxonomy of relatedimptions such as using multiple channels [10] or MIMO
works in Section 1. cooperation [4] can change the capacity of wireless netsvork
Section Ill presents the first contribution of this paper. Ozgur et al. [11] proposed a hierarchical cooperation tech-
We model arandom networkwith n nodes, homogeneousnique based on virtual MIMO to achieve linear capacity. They
transmission power, and unicast traffic fosource-destination showed that the optimal per-session capacity of an ad-hoc
(S-D) pairs. We introduce a new physical model in whichetwork is bounded a®(nlogn), and a constant per-session

Il. RELATED WORK



capacity of ©(1) is achievable. Our work is significantly The physical model for plain routing (i.e., single packetag-
different from this work, in terms of the the model andion), was introduced by Gupta and Kumar [1]. In this model a
assumptions used to derive the results. Ozgur et. al. censiduccessful communication occurs if signal to interferesod
the information-theoretic model, and does not assume thatise ratio SINR of the pair of transmittet and receiverj
nodes are capable of multi-packet transmission (MPT). gatisfies
contrast, our work is based_(_)r_1 the fact that nodes are endowed Phy;
with MPR and MPT capabilities. SINR_; = BNoT ST P 2 B, ©))
Cooperation can be extended to the simultaneous trans- 0 ki k=11 1ki

mission and reception at the various nodes in the netwoihere P is the transmit power of a node,; is the channel
which can result in significant capacity improvement [12§ Aattenuation factor between nodésand j, and BN, is the

we have stated, Garcia-Luna-Aceves et al. [5] showed thgtal noise power. The channel attenuation factgysandhy,;
using MPR at the receivers can increase the order capacitys@é completely determined by the path loss model. Hence,

wireless networks subject to unicast traffic. hij = | X; — X;|~® in which a > 2 is the path-loss parameter
and X; represents the location of node
I1l. PRELIMINARIES Definition 3.4: Physical Model with Multi-packet Reception

(MPR)In a recent work Wang et. al. [6] extended the conven-
A. Network Model tional physical model to incorporate multi-packet recepti

For a continuous regio®?, we use|R| to denote its area. based on successive interference cancelation. In the MPR
We denote the cardinality of a sétby |S|, and by|z —y|| model, we continue to assume that nodes operate in a half-
the distance between nodesndy. Whenever convenient, we duplex mode and each transmitter can transmit at most one
utilize the indicator function ; py, which is equal to one iP is  packet. Under the MPR condition, if we allow nodes to be
true and zero ifP is false.Pr(E) represents the probability of decoded jointly or separately, then it can be proven [6] that
eventE. We say that an everdf occurs with high probability the node at the circumference of the decoding circle of adiu
(w.h.p.) asn — oo if Pr(E) > (1—(1/n)) . We employ the R(n) has the lowest SINR. Therefore, it is sufficient to assure
standard order notation@, 2, and ©. that node satisfies the physical model condition. Let's m&su

We assume that the traffic in the network is generated lityat receiver; receives packets from the farthest transmitter
unicast communication betweén source-destination (S-D) that satisfies the followin@INR constraint

pairs. We associate a rate vecfoe= [\, -- -, ;] with these Ph
k pairs. We assume the data rate for each S-D pair to be non- SINR_.; = i > 3, (4)
zero. Hence, without loss of generality (w.l.g) the rateteec BNo + ZkgAU,R(n)) Pygr;

can be written as\ = [fD,,---, fDy] where f € R, and
D; € [1/2,1] for 1 < ¢ < k.We refer to the parametef

as theconcurrent flow rateand toD = [Dy,--- , Dy] as the finition 3.5: Physical Model with Multi K .
demand vector Definition 3.5: Physical Model with Multi-packet Transmis-

Definition 3.1: Feasible Elow Rate: sion and Reception (MPTR)n this work, we further extend

Given k S-D pairs {(s(1),d(1)) (s(k),d(k))}, a rate the physical model to represent the ability to conduct multi
vector A — [fD;,--- fljk] is ’f'e'a'\s’ible i7f there, exists g Packet transmission along with multi-packet reception. We
spatial and tempoz;al séheme for scheduling transmissiacts gassume that MPT is achieved by deploying multiple antennas

that by operating the network in a multi-hop fashion, angl €ach node and MPR is again achieved on the basis of

buffering at intermediate nodes when awaiting transmixssiosucces‘c"ve decoding. SO. "’,1 transmittecan S|multaneou_sly
end packets to any receivgms long as th&INRconstraint

every source(i) can send\; bits/sec on average to the chosefi ) o

destinatiord(i). A flow rate f is feasible for a demand vector'™ (4) Is satisfied.

D = [Dy,---,Dy] iff X\=[fD;,---,fDy] is a feasible rate

vector. C. Graph Theory Results
Definition 3.2: Capacity of Random Networks:

The capacity per commodity of a network@¥ f(n)) if under

a random placement at nodes,a random choice &f S-D

pairs and for an arbitrary demand vector we have:

where A(; r(n)) is a circle of radiusik(n) around nodej and
R(n) is a range of cooperation.

Definition 3.6: Random Geometric Grapihg:
Consider adirectedgraphGr(Vr, Er) formed by randomly
distributing n nodes uniformly in a unit square, s.t. if the
locations of these nodes are represented{&y,--- , X, },
lim Pr(cf(n)is feasible flow rate = 1 (1) then edge-setis given b = {(¢,) | [|X; — Xj|| < R(n)}.
" Now consider a sub-grap{; C Gp obtained by em-
ploying location based constraints on the edge-set. Inrorde
for somec > 0 andc¢ < ¢ < +o0. to describe these constraints, divide the network arealimto
squarelets of side-lengthh = R(n)/3 as shown in Figure 1.
We obtainH g by removing all edges, except those connecting
B. Channel Models two nodes in vertically or horizontally adjacent squarelet
Definition 3.3: Physical Model with Single Packet Recep- The following results have been previously previously es-
tion (SPR) tablished.

liminf, . Pr(c f(n)is infeasible flow rate < 1 (2)



/ o o Definition 4.4: Total Degree in Dual Conflict Graph:
o °® The total degree of each node in a dual conflict graph is equal
; @ " . to |[M(e)| where M (e) = I(e) | F(e).
sauareriet Definition 4.5: Interference Clone:
e ® R:’n;?, :. Two edgese;, ey are said to be interference-clones under
function I if they satisfy the conditions that/(e;) = M (esz).
1| e e ° e o ° Lemma 4.6: [7] Consider a grapli*(V, E) and interference
b I. Let k = max.cp |M(e)| . If f is a feasible flow rate in
1 i ! the absence of interference, then flow rgte= f/(1+ ) is

feasible in presence of interferenée

Lemma 4.7: Clone Piggy-backing Lemn{@] Consider a
graphG(V, E) along with interference functiong, and I,
thenI, andIp are such that:

Fig. 1. Decomposition of network area inié squarelets

Lemma 3.7: [13] If R(n) > R.(n), where R.(n) =

©(y/logn/n) then w.h.p. the total number of nodes in any 1) = maxcep |MA,(8)|
squarelet ar® (nR2(n)). 2) Ve € E there exists a seb y 5y C Ma(e) such that

every edge belonging/, 3, is an interference-clone

Lemma 3.8: [1] The graphGr and Hr are connected
[4] grapntr R of e underIp . Further, lety = mineeg |[M45(e)).

with high probability asn — oo, iff. R(n) > R.(n) =

O(y/logn/n). If fis afeasible flow rate i without any interferencef;, =
Lemma 3.9: [7] If R(n) > Re(n), then w.h.p. the degree f/(1+k) is a feasible flow rate i under thel 4 interference
of each node irG andHR_is O(nR%(n)). function andx as its corresponding parameter, thén =

Lemma 3.10: [7] The per-session interference freef (1+1)/(1+r) is feasible in presence of interference defined

throughput capacity on grapfii is greater than that o/ ;. by /.
Moreover, if R(n) > R.(n) then the per-session interference
free throughput order on both these graphs is given by V. LOWERBOUND FORPHYSICAL MODEL

O(n*R*(n)/k). We deduce lower bounds for the physical model by showing

that there exists an appropriate combinatorial model that i

necessarily more restrictive. Thus, even though in the ighi/s

model the transmission range can be made arbitrarily large
We describe the interference of a network by the followingy choosing a suitable power level and scheduling, we shall

generic model. limit the hop-length or decoding range to a maximum value
Definition 4.1: Combinatorial Interference Model: R(n). Furthermore, we shall deduce a guard rafyfe.) as a

The interference model for the grapti(V, E) is determined function of R(n), such that the receiver can decode a direct

by a functionl : E — P(E), whereP(E) is the power set of transmission of an arbitrary hop-length less tha(v) if a

E, i.e., the set of all possible subsetsef For everye € E, receiver has no interfering transmitter within a ranbén).

I(e) represents aimterference sesuch that, a transmission onThe precise relationship betweén(n) and R(n) depends on

edgee is successful if and only if (iff) there are no concurrenthe chosen physical modality: SPR, MPR or MPTR.

transmissions on an§ € I(e). An interference model can be

restricted to a sub-grapH (Vr, E7) by defining a function A single Packet Reception

Iy : Eyg — P(EH) such thatIH(e) = I(e) ﬂEH

. In the following sectic_)n, we define specif_ic (.:ombinatori?onsider the following combinatorial model

interference models which can be used to indirectly provi € Definition 5.1: Restricted Single Packet Reception Model

lower bounds on the physical model considered in this wor : c :
Prior to that, we establish some additional terminology ar{(itSPR)Con&der the graplil; C G With parameterr(n).

review few generic results for interference models.
Definition 4.2: Dual-Interference-Set: Irspr(e) = W(e) — e such that
Consider an gdge §Etanq an interference sé(e) for an edge W(e) = {e € Er ||| Xe+ — Xpery| <D(n)}.
e € E, as defined in Definition 4.1. The dual interference-set
for e is defined byF(e) = {¢ € E | e € I(é)}, which is Wheren(e™) could be any node that belongs to the same
the set of edges that experience a collision on account of@uarelet ag~ and R(n) < D(n).

IV. COMBINATORIAL INTERFERENCEMODEL

In order to obtain lower bound on the physical model,

transmission on edge Lemma 5.2:If R(n) > R.(n) andk > O(n), then the per-
Definition 4.3: Dual Conflict Graph: session throughput order under the RSPR model on gkgph
Given a graphG(V, E) and an interference functioh , we iS at leasto(R(n)/(kD(n)?)). _
define thedual conflict graphas G (E, Ep) , where Ep = Proof: Lemma 3.9 implies that any random geometric
{(e;é) | é € I(e))}. graph with parameteD(n) has the property that the maximum

node degree is given b®(n.D?(n)). Note this fact is equiva-

INote thatG,. denotes random geometric graph whilerepresents general lent to saying that a circular region of radiMn) around any
graph. node has a maximum & (n.D?(n)) nodes. Now consider the



graphHpg with parameter R(n). In such a graph the maximunkypr such that these clones interfere with each other and
node degree, again due to Lemma 3.9 is give®loy?(n)). e, under the interferencézspr Since each node off; has

Therefore, there exist constanig andc; such that degree®(nRk?(n)), we haveorapr = minece, , |U(€)| =
©(nR2%(n)). Thus, invoking the Clone Piggybacking Lemma
Ymaz = MaTecpy | W)l 4.(7, We( h)a)lve

< (max. nodes in disk of radius D(n))
x (max. degree of a vertex if/,.)
cenD?*(n) x cz;nR?*(n) = O(n>R*(n)D*(n){5) - x(1/(1+ %’;‘”l) x U};MPR
Theorem 3.10 tell us that the interference free throughpigio = ca(n" R (n)/k) x (1/(eocrn” R (n) D" (n)))
. 2 _ 3 2
in Hy is at leas®©®(n>R?(n)/k). Thus, invoking Lemma 4.6, xer(nR(n)) = (es/ce)(nR(n)/(kD*(n)))  (10)
we arrive at ]

As we did the previous sub-section, we need to identify an
appropriate value oD(n) such that any feasible transmission

Ffrvpr < (max. flow rate with no interference)

IN

frspr < (max. flow rate with no interference)

X(1/(1 + Ymaz)) under the RM PR model is necessarily feasible under the
= (n®R3(n)/k) x co(1/(n*R%*(n)D?*(n))) MPR physical model.
= cgeo(R(n)/(kD?(n))) (6) Let us consider a transmission from nod&® node; and,

as in the last sub-section, let us decompose the network into

] ) ] B annular rings determined by concentric circles of radiién)
Now, if we can show that for an appropriate choice/?fn), &  around node. In order to evaluate the requirde(n), we need
feasible transmission under RSPR is necessarily feasitileru 14 jjentify the total transmitters in each annular regicor. fe

SPR, then the above lemma can be used to provide a IOWgSpR model we have shown that e annular ring contains
bound on the throughput order of the SPR physical model. In o; _ 1) transmitters. Focus on one such transmittein
order to choose an appropriai&n), consider a transmission i jth ring and letm be the corresponding receiver. Now if
from nodei to node;j. Now, consider concentric circles of,,q change the model from RSPR to RMPR, the nedean
radius(D(n) around receiveyj, with [ € [1,1/D(n)]. These recejve packets from an additionélnR(n)?) nodes. These
concentric circles decompose the network into disjointld@n o 4es could lie in the same ring, in tiie— 1)** ring or the
rings of areal D*(n) — (I —1)D*(n) = (2 — 1)D*(n). Since (I + 1) ring. Thus the total number of transmitters in each
in the RSPR model, each node silences a regid®(@*(n)), annular ring are at most

the maximum number of transmitters in each annular ring are

c10(21 — 1). Thus, we require that creio((2(0—1) = 1)+ (21 = 1)+ (2(1 + 1) — 1))nR?(n)

B < SINR_; < c1znlR?(n). (11)

PR™%(n) Thus, we require that
= T7D0n) (7)
BNy + lel c10(2l = 1)I=2D=%(n) B < SINR_;
Since, asl/D(n) approaches infinity, fow > 2 the sum- B PR(n)~@ (12
mation lei?(m c10(20 — 1)I~* approaches a constant, the - BN, + Zl/D(n) C1371R2(n)l*0‘+1D(n)*a\ )
required condition is given byD(n)/R(n) > (c113/P)Y/* =1
which implies Since leif(") c13l~2T1 approaches a constant, we require
« a+2 > .
D(n) > ClgR(n)(ﬁ/P)l/a _ G(R(n)) 8) (D(n) /nR(n) ) =z Cl4(ﬁ/P) Hence,
D(n) > cn'/*R(n)@*2/(g/p)t/

Therefore we have the following corollary e (at2)/o
Lemma 5.3:If R(n) > R.(n), then per-session throughput = Qn/"R(n) ) (13)

order under the SPR physical model is at lgaét/(kR(n))). Consequently we have the following corollary.

Lemma 5.6:If R(n) > R.(n) andk > ©(n), then per-
B. Multiple Packet Reception session throughput order under the MPR physical model is at
To deduce the bounds for the MPR physical model, leteastO((n!=2/“R(n)1=*/*)/k).
consider the following combinatorial model.

Definition 5.4: Restricted MPR (RMPR) Model: C. Multiple Packet Transmission and Reception
Irmpr(e) = W(e) — U(e) Ve € Er g Where To deduce the lower bounds for the MPTR physical model,
Ule) = {é €Epy|é = e—} (9 we define the following combinatorial model.

Definition 5.7: Restricted MPTR (RMPTR) Model:
Lemma 5.5:1f R(n) > R.(n) andk > ©(n), then per-
session throughput order under the RMPR model on graph Irvetr(e) = W(e) — V(e) Ve € Er g Where
Hp is at leastO(nR3(n)/(kD?(n))). Vie) = U U(e) (14)
Proof: According to Definitions 5.1 and 5.4/ (e) rep- &:6-same squarelet as-
resents a set of edges which are interference clones under



Lemma 5.8:I1f R(n) > R.(n) andk > ©(n), then per- VIl. ACKNOWLEDGMENTS
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ference clones undeiryptr Such that these clones interfer%
with each other and, under the interferenckspr Therefore

ORMPTR = MiNecEg x|V (€)| > [mincer, ,|U(e)|]
xmin. nodes per squarelet ©(n>R(n)*) (15)

Hence,

[1]

(2]

(max. flow rate with no interference)
X(1/(1 4+ Ymaz)) X ORMPTR

c1a x (n*R*(n)/k) x (1/(n*R*(n)D*(n)))
x(n®R'(n)) = c1a(n*R°(n)/(kD?(n)))(16)

frRMPTR

(3]

In the previous sub-section, we observed that every tran&¥
mission under the RMPR combinatorial model is necessar-
ily feasible under the MPR physical model iD(n) = [
Q(n'/*R(n)e+2/e), This value of D(n) is also sufficient
to ensure that every transmission under RMPTR combinétorigs)
model is feasible under the MPTR physical model. The reason
for this similarity in behavior can be understood by obsegvi
that changing the model from RMPR to RMPTR does not7]
add any additional interference, even though the same node
can simultaneously transmit to multiple receivers, as lasg
the total received power from interference is the same. Hencis)

Lemma 5.9:If R(n) > R.(n) andk > ©(n), then per-
session throughput order under the MPTR physical model is
at leasto((n>=2/*R(n)>~*)/k). [9]

VI.

Let us review our results for the special casekof ©(n)
and R(n) = ©(R.(n)). For the SPR physical model the pei11]
node capacity is given by

1
fspr =8 <W

This lower bound exactly matches the bound obtained in tHél
original work by [1]. Meanwhile for the MPR physical model
the per node capacity satisfies

DiscussIiON [10]

[12]
(17)

I (1/2)=(2/)
Impr = <L> (18)
(n)
Thus according to the deductions in this paper, the

MPR scheme guarantees a capacity gain by factor of

log(n)'~(/®) Thus our bound is weaker than that reported

by Wang et. al. [6] by a factor dibg(n)'/“. Finally, note that

the per-node capacity under the MPTR model is given by
log(n)(3/2)7(2/a)

)
Thus multipacket transmission and reception improves upon

the result of using MPR only [6] by a factor of at least
log(n)t—(/e),

fuprr =82 ( (19)
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