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Abstract—In this paper we deduce the capacity of wireless ad-
hoc networks under the assumptions of physical model for coop-
erative multiple input multiple output (MIMO) communicati on.
We show that the capacity of a random wireless ad-hoc network
can be improved significantly by adopting MIMO techniques.
In particular, when the nodes are endowed with multi-packet
transmission and reception capabilities, the per session capacity
increases at least asn1−2/α

R(n)3−4/α, where α > 2 is the path
loss parameter andR(n) is the range of cooperation. The proof
for the above results utilizes an edge coloring of an appropriately
chosen random geometric graph. This approach, as a by product,
provides alternative deductions for some previously established
results under the physical model. Consequently, we providean
alternative deduction of the classical result for a point topoint
communication by Gupta and Kumar. Furthurmore, we also
deduce a bound that matches a recent result by Wang et. al.,
for capacity of ad-hoc networks under multipacket reception,
within a poly-log factor.

I. I NTRODUCTION

The past decade has seen major advances in multiuser
detection, multiple input multiple output (MIMO) commu-
nication and interference cancelation techniques. Currently,
there is an active research interest in modeling and evaluating
the impact of these paradigms on the performance of large
scale networks. The classical result by Gupta and Kumar [1]
essentially states that communication protocols based on point
to point communication cannot render networks that perform
efficiently with increase in size. It is widely anticipated that
advanced cooperative communication can overturn this rather
negative conclusion.

Recent efforts to realize (static) scalable ad-hoc networks
have met with a mixed degree of success. For example,
network coding (NC) [2], which is essentially a generalization
of routing, has proved to be incapable of improving the
throughput order for multipair unicast transmissions [3].Nev-
ertheless, other contemporary efforts, which model relatively
classical physical layer co-operative techniques, have met
with a greater degree of success. In particular, [4] and [5]
have exhbited the feasibility of achieving constant per-session
capacity. We provided a more detailed taxonomy of related
works in Section II.

Section III presents the first contribution of this paper.
We model arandom networkwith n nodes, homogeneous
transmission power, and unicast traffic fork source-destination
(S-D) pairs. We introduce a new physical model in which

nodes have the ability to decode correctly multiple packets
transmitted concurrently from different nodes, and transmit
concurrently multiple packets to different nodes. We refer
to this as multi-packet transmission and reception (MPTR)
physical model. In this section we review some of our recently
established results on random geometric graphs

Section IV presents our second contribution, where we
define acombinatorial interference modelbased on random
geometric graphs. We establish some generic results for the
combinatorial models. These results prove useful for the
subsequent analysis in the paper, but are also interesting in
their own right.

Section V presents our third contribution. We show that for
each of: (a) the classical physical model by Gupta and Kumar
[1], (b) the multipacket reception physical model by Wang et.
al. [6](c) and the MPTR physical model proposed in Section
III, there exists a corresponding combinatorial model that
performs necessarily worse than the physical model. We utilize
this relationship along with properties of random geometric
graphs proven in [7], as well as Section IV, to deduce the
desired lower bounds. We discuss our results in Section VI.

II. RELATED WORK

There have been many contributions on the capacity study
of wireless ad hoc networks that span unicast, multicast and
broadcast traffic. Due to space limitations, however, we only
mention a few of them that focus on unicasting.

A number of papers have extended the results by Gupta and
Kumar [1], which showed a gap between the upper and lower
bounds on capacity under the physical model. Franceschettiet
al. [8] closed this gap using percolation theory.

Several techniques aimed at improving the capacity of
wireless ad hoc networks have been analyzed. Grossglauser
and Tse [9] demonstrated that a non-vanishing capacity can
be attained at the price of long delivery latencies by taking
advantage of long-term storage in mobile nodes.

Someworks demonstrated that changing physical layer as-
sumptions such as using multiple channels [10] or MIMO
cooperation [4] can change the capacity of wireless networks.

Ozgur et al. [11] proposed a hierarchical cooperation tech-
nique based on virtual MIMO to achieve linear capacity. They
showed that the optimal per-session capacity of an ad-hoc
network is bounded asO(n log n), and a constant per-session
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capacity of Θ(1) is achievable. Our work is significantly
different from this work, in terms of the the model and
assumptions used to derive the results. Ozgur et. al. consider
the information-theoretic model, and does not assume that
nodes are capable of multi-packet transmission (MPT). In
contrast, our work is based on the fact that nodes are endowed
with MPR and MPT capabilities.

Cooperation can be extended to the simultaneous trans-
mission and reception at the various nodes in the network,
which can result in significant capacity improvement [12]. As
we have stated, Garcia-Luna-Aceves et al. [5] showed that
using MPR at the receivers can increase the order capacity of
wireless networks subject to unicast traffic.

III. PRELIMINARIES

A. Network Model

For a continuous regionR, we use|R| to denote its area.
We denote the cardinality of a setS by |S|, and by‖x − y‖
the distance between nodesx andy. Whenever convenient, we
utilize the indicator function1{P}, which is equal to one ifP is
true and zero ifP is false.Pr(E) represents the probability of
eventE. We say that an eventE occurs with high probability
(w.h.p.) asn → ∞ if Pr(E) > (1 − (1/n)) . We employ the
standard order notationsO, Ω, andΘ.

We assume that the traffic in the network is generated by
unicast communication betweenk source-destination (S-D)
pairs. We associate a rate vectorλ = [λ1, · · · , λk] with these
k pairs. We assume the data rate for each S-D pair to be non-
zero. Hence, without loss of generality (w.l.g) the rate vector
can be written asλ = [fDi, · · · , fDk] where f ∈ R+ and
Di ∈ [1/2, 1] for 1 ≤ i ≤ k.We refer to the parameterf
as theconcurrent flow rateand toD = [D1, · · · , Dk] as the
demand vector.

Definition 3.1: Feasible Flow Rate:
Given k S-D pairs {(s(1), d(1)), . . . , (s(k), d(k))}, a rate
vector λ = [fDi, · · · , fDk] is feasible if there exists a
spatial and temporal scheme for scheduling transmissions such
that by operating the network in a multi-hop fashion, and
buffering at intermediate nodes when awaiting transmission,
every sources(i) can sendλi bits/sec on average to the chosen
destinationd(i). A flow ratef is feasible for a demand vector
D = [D1, · · · , Dk] iff λ = [fDi, · · · , fDk] is a feasible rate
vector.

Definition 3.2: Capacity of Random Networks:
The capacity per commodity of a network isΘ(f(n)) if under
a random placement ofn nodes,a random choice ofk S-D
pairs and for an arbitrary demand vector we have:

lim
n→∞

Pr(cf(n)is feasible flow rate) = 1 (1)

lim infn→∞Pr(c′f(n)is infeasible flow rate) < 1 (2)

for somec > 0 andc < c′ < +∞.

B. Channel Models

Definition 3.3: Physical Model with Single Packet Recep-
tion (SPR)

The physical model for plain routing (i.e., single packet recep-
tion), was introduced by Gupta and Kumar [1]. In this model a
successful communication occurs if signal to interferenceand
noise ratio (SINR) of the pair of transmitteri and receiverj
satisfies

SINRi→j =
Phij

BN0 +
∑n

k 6=i,k=1 Phkj
≥ β, (3)

whereP is the transmit power of a node,hij is the channel
attenuation factor between nodesi and j, and BN0 is the
total noise power. The channel attenuation factorshij andhkj

are completely determined by the path loss model. Hence,
hij = |Xi −Xj |−α in which α > 2 is the path-loss parameter
andXi represents the location of nodei.

Definition 3.4: Physical Model with Multi-packet Reception
(MPR) In a recent work Wang et. al. [6] extended the conven-
tional physical model to incorporate multi-packet reception
based on successive interference cancelation. In the MPR
model, we continue to assume that nodes operate in a half-
duplex mode and each transmitter can transmit at most one
packet. Under the MPR condition, if we allow nodes to be
decoded jointly or separately, then it can be proven [6] that
the node at the circumference of the decoding circle of radius
R(n) has the lowest SINR. Therefore, it is sufficient to assure
that node satisfies the physical model condition. Let’s assume
that receiverj receives packets from the farthest transmitteri
that satisfies the followingSINRconstraint

SINRi→j =
Phij

BN0 +
∑

k/∈A(j,R(n))
Pgkj

≥ β, (4)

whereA(j,R(n)) is a circle of radiusR(n) around nodej and
R(n) is a range of cooperation.

Definition 3.5: Physical Model with Multi-packet Transmis-
sion and Reception (MPTR):In this work, we further extend
the physical model to represent the ability to conduct multi-
packet transmission along with multi-packet reception. We
assume that MPT is achieved by deploying multiple antennas
at each node and MPR is again achieved on the basis of
successive decoding. So a transmitteri can simultaneously
send packets to any receiverj as long as theSINRconstraint
in (4) is satisfied.

C. Graph Theory Results

Definition 3.6: Random Geometric GraphGR:
Consider a directedgraphGR(VR, ER) formed by randomly
distributing n nodes uniformly in a unit square, s.t. if the
locations of these nodes are represented by{X1, · · · , Xn},
then edge-set is given byE = {(i, j) | ‖Xi − Xj‖ ≤ R(n)}.

Now consider a sub-graphHR ⊆ GR obtained by em-
ploying location based constraints on the edge-set. In order
to describe these constraints, divide the network area intol2

squarelets of side-lengtha = R(n)/3 as shown in Figure 1.
We obtainHR by removing all edges, except those connecting
two nodes in vertically or horizontally adjacent squarelets.

The following results have been previously previously es-
tablished.
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Fig. 1. Decomposition of network area intol2 squarelets

Lemma 3.7: [13] If R(n) ≥ Rc(n), where Rc(n) =
Θ(
√

log n/n) then w.h.p. the total number of nodes in any
squarelet areΘ(nR2(n)).

Lemma 3.8: [1] The graphGR and HR are connected
with high probability asn → ∞, iff. R(n) ≥ Rc(n) =
Θ(
√

log n/n).
Lemma 3.9: [7] If R(n) ≥ Rc(n), then w.h.p. the degree

of each node inGR andHR is Θ(nR2(n)).
Lemma 3.10: [7] The per-session interference free

throughput capacity on graphGR is greater than that onHR.
Moreover, if R(n) ≥ Rc(n) then the per-session interference
free throughput order on both these graphs is given by
Θ(n2R3(n)/k).

IV. COMBINATORIAL INTERFERENCEMODEL

We describe the interference of a network by the following
generic model.

Definition 4.1: Combinatorial Interference Model:
The interference model for the graph1 G(V, E) is determined
by a functionI : E → P (E), whereP (E) is the power set of
E, i.e., the set of all possible subsets ofE. For everye ∈ E,
I(e) represents aninterference setsuch that, a transmission on
edgee is successful if and only if (iff) there are no concurrent
transmissions on anŷe ∈ I(e). An interference model can be
restricted to a sub-graphH(VH , EH) by defining a function
IH : EH → P (EH) such thatIH(e) = I(e)

⋂

EH .
In the following section, we define specific combinatorial

interference models which can be used to indirectly provide
lower bounds on the physical model considered in this work.
Prior to that, we establish some additional terminology and
review few generic results for interference models.

Definition 4.2: Dual-Interference-Set:
Consider an edge setE and an interference setI(e) for an edge
e ∈ E, as defined in Definition 4.1. The dual interference-set
for e is defined byF (e) = {ê ∈ E | e ∈ I(ê)}, which is
the set of edges that experience a collision on account of a
transmission on edgee.

Definition 4.3: Dual Conflict Graph:
Given a graphG(V, E) and an interference functionI , we
define thedual conflict graphasGD(E, ED) , whereED =
{(e, ê) | ê ∈ I(e))}.

1Note thatGr denotes random geometric graph whileG represents general
graph.

Definition 4.4: Total Degree in Dual Conflict Graph:
The total degree of each node in a dual conflict graph is equal
to |M(e)| whereM(e) = I(e)

⋃

F (e).
Definition 4.5: Interference Clone:

Two edgese1, e2 are said to be interference-clones under
functionI if they satisfy the conditions thatM(e1) = M(e2).

Lemma 4.6: [7] Consider a graphG(V, E) and interference
I. Let κ = maxe∈E |M(e)| . If f is a feasible flow rate in
the absence of interference, then flow ratefl = f/(1 + κ) is
feasible in presence of interferenceI.

Lemma 4.7: Clone Piggy-backing Lemma:[7] Consider a
graphG(V, E) along with interference functionsIA and IB,
thenIA andIB are such that:

1) κ = maxe∈E |MA(e)|
2) ∀e ∈ E there exists a setMA,B̄(e) ⊆ MA(e) such that

every edge belongingMA,B̄(e) is an interference-clone
of e underIB . Further, letµ = mine∈E |MAB̄(e)|.

If f is a feasible flow rate inG without any interference,fIA
=

f/(1+κ) is a feasible flow rate inG under theIA interference
function andκ as its corresponding parameter, thenfIB

=
f(1+µ)/(1+κ) is feasible in presence of interference defined
by IB.

V. L OWER BOUND FORPHYSICAL MODEL

We deduce lower bounds for the physical model by showing
that there exists an appropriate combinatorial model that is
necessarily more restrictive. Thus, even though in the physical
model the transmission range can be made arbitrarily large
by choosing a suitable power level and scheduling, we shall
limit the hop-length or decoding range to a maximum value
R(n). Furthermore, we shall deduce a guard rangeD(n) as a
function of R(n), such that the receiver can decode a direct
transmission of an arbitrary hop-length less thanR(n) if a
receiver has no interfering transmitter within a rangeD(n).
The precise relationship betweenD(n) andR(n) depends on
the chosen physical modality: SPR, MPR or MPTR.

A. Single Packet Reception

In order to obtain lower bound on the physical model,
consider the following combinatorial model

Definition 5.1: Restricted Single Packet Reception Model
(RSPR)Consider the graphHR ⊆ GR with parameterR(n).
Let

IRSPR(e) = W (e) − e such that

W (e) =
{

ê ∈ ER | ‖Xê+ − Xη(e−)‖ ≤ D(n)
}

.

where η(e−) could be any node that belongs to the same
squarelet ase− andR(n) ≤ D(n).

Lemma 5.2:If R(n) ≥ Rc(n) andk ≥ Θ(n), then the per-
session throughput order under the RSPR model on graphHR

is at leastΘ(R(n)/(kD(n)2)).
Proof: Lemma 3.9 implies that any random geometric

graph with parameterD(n) has the property that the maximum
node degree is given byΘ(nD2(n)). Note this fact is equiva-
lent to saying that a circular region of radiusD(n) around any
node has a maximum ofΘ(nD2(n)) nodes. Now consider the
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graphHR with parameter R(n). In such a graph the maximum
node degree, again due to Lemma 3.9 is given byΘ(nR2(n)).
Therefore, there exist constantsc6 andc7 such that

γmax = maxe∈ER,H
|W (e)|

≤ (max. nodes in disk of radius D(n))

×(max. degree of a vertex inHr)

≤ c6nD2(n) × c7nR2(n) = O(n2R2(n)D2(n))(5)

Theorem 3.10 tell us that the interference free throughput order
in HR is at leastΘ(n2R3(n)/k). Thus, invoking Lemma 4.6,
we arrive at

fRSPR ≤ (max. flow rate with no interference)

×(1/(1 + γmax))

= c8(n
2R3(n)/k) × c9(1/(n2R2(n)D2(n)))

= c8c9(R(n)/(kD2(n))) (6)

Now, if we can show that for an appropriate choice ofD(n), a
feasible transmission under RSPR is necessarily feasible under
SPR, then the above lemma can be used to provide a lower
bound on the throughput order of the SPR physical model. In
order to choose an appropriateD(n), consider a transmission
from nodei to nodej. Now, consider concentric circles of
radius lD(n) around receiverj, with l ∈ [1, 1/D(n)]. These
concentric circles decompose the network into disjoint annular
rings of arealD2(n)− (l − 1)D2(n) = (2l− 1)D2(n). Since
in the RSPR model, each node silences a region ofΘ(D2(n)),
the maximum number of transmitters in each annular ring are
c10(2l − 1). Thus, we require that

β ≤ SINRi→j

=
PR−α(n)

BN0 +
∑1/D(n)

l=1 c10(2l − 1)l−αD−α(n)
(7)

Since, as1/D(n) approaches infinity, forα > 2 the sum-
mation

∑1/D(n)
l=1 c10(2l − 1)l−α approaches a constant, the

required condition is given byD(n)/R(n) ≥ (c11β/P )1/α

which implies

D(n) ≥ c12R(n)(β/P )1/α = Θ(R(n)) (8)

Therefore we have the following corollary
Lemma 5.3:If R(n) ≥ Rc(n), then per-session throughput

order under the SPR physical model is at leastΘ(1/(kR(n))).

B. Multiple Packet Reception

To deduce the bounds for the MPR physical model, lets
consider the following combinatorial model.

Definition 5.4: Restricted MPR (RMPR) Model:

IRMPR(e) = W (e) − U(e) ∀e ∈ ER,H where

U(e) =
{

ê ∈ ER,H | ê− = e−
}

(9)

Lemma 5.5:If R(n) ≥ Rc(n) and k ≥ Θ(n), then per-
session throughput order under the RMPR model on graph
HR is at leastΘ(nR3(n)/(kD2(n))).

Proof: According to Definitions 5.1 and 5.4,U(e) rep-
resents a set of edges which are interference clones under

IRMPR such that these clones interfere with each other and
e, under the interferenceIRSPR. Since each node ofHR has
degreeΘ(nR2(n)), we haveσRMPR = mine∈ER,H

|U(e)| =
Θ(nR2(n)). Thus, invoking the Clone Piggybacking Lemma
4.7, we have

fRMPR ≤ (max. flow rate with no interference)

×(1/(1 + γmax)) × σRMPR

= c8(n
2R3(n)/k) × (1/(c6c7n

2R2(n)D2(n)))

×c7(nR2(n)) = (c8/c6)(nR3(n)/(kD2(n))) (10)

As we did the previous sub-section, we need to identify an
appropriate value ofD(n) such that any feasible transmission
under theRMPR model is necessarily feasible under the
MPR physical model.

Let us consider a transmission from nodei to nodej and,
as in the last sub-section, let us decompose the network into
annular rings determined by concentric circles of radiuslD(n)
around nodej. In order to evaluate the requiredD(n), we need
to identify the total transmitters in each annular region. For the
RSPR model we have shown that thelth annular ring contains
c10(2l − 1) transmitters. Focus on one such transmitterk in
the lth ring and letm be the corresponding receiver. Now if
we change the model from RSPR to RMPR, the nodem can
receive packets from an additionalθ(nR(n)2) nodes. These
nodes could lie in the same ring, in the(l − 1)st ring or the
(l + 1)st ring. Thus the total number of transmitters in each
annular ring are at most

c7c10((2(l − 1) − 1) + (2l − 1) + (2(l + 1) − 1))nR2(n)

≤ c13nlR2(n). (11)

Thus, we require that

β ≤ SINRi→j

=
PR(n)−α

BN0 +
∑1/D(n)

l=1 c13nR2(n)l−α+1D(n)−α
(12)

Since
∑1/D(n)

l=1 c13l
−α+1 approaches a constant, we require

(D(n)α/nR(n)α+2) ≥ c14(β/P ). Hence,

D(n) ≥ cn1/αR(n)(α+2)/α(β/P )1/α

= Ω(n1/αR(n)(α+2)/α) (13)

Consequently we have the following corollary.
Lemma 5.6:If R(n) ≥ Rc(n) and k ≥ Θ(n), then per-

session throughput order under the MPR physical model is at
leastΘ((n1−2/αR(n)1−4/α)/k).

C. Multiple Packet Transmission and Reception

To deduce the lower bounds for the MPTR physical model,
we define the following combinatorial model.

Definition 5.7: Restricted MPTR (RMPTR) Model:

IRMPTR(e) = W (e) − V (e) ∀e ∈ ER,H where

V (e) =
⋃

ê:ê−same squarelet ase−

U(ê) (14)
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Lemma 5.8:If R(n) ≥ Rc(n) and k ≥ Θ(n), then per-
session throughput order under the RMPTR model on graph
HR is at leastΘ(n2R5(n)/(kD(n)2)).

Proof: SetV (e) represents a set of edges which are inter-
ference clones underIRMPTR such that these clones interfere
with each other ande, under the interferenceIRSPR. Therefore

σRMPTR = mine∈ER,H
|V (e)| ≥ [mine∈ER,H

|U(e)|]
×min. nodes per squarelet= Θ(n2R(n)4) (15)

Hence,

fRMPTR ≤ (max. flow rate with no interference)

×(1/(1 + γmax)) × σRMPTR

= c14 × (n2R3(n)/k) × (1/(n2R2(n)D2(n)))

×(n2R4(n)) = c14(n
2R5(n)/(kD2(n)))(16)

In the previous sub-section, we observed that every trans-
mission under the RMPR combinatorial model is necessar-
ily feasible under the MPR physical model ifD(n) =
Ω(n1/αR(n)(α+2)/α). This value ofD(n) is also sufficient
to ensure that every transmission under RMPTR combinatorial
model is feasible under the MPTR physical model. The reason
for this similarity in behavior can be understood by observing
that changing the model from RMPR to RMPTR does not
add any additional interference, even though the same node
can simultaneously transmit to multiple receivers, as longas
the total received power from interference is the same. Hence,

Lemma 5.9:If R(n) ≥ Rc(n) and k ≥ Θ(n), then per-
session throughput order under the MPTR physical model is
at leastΘ((n2−2/αR(n)3−4/α)/k).

VI. D ISCUSSION

Let us review our results for the special case ofk = Θ(n)
and R(n) = Θ(Rc(n)). For the SPR physical model the per
node capacity is given by

fSPR = Ω

(

1
√

nlog(n)

)

(17)

This lower bound exactly matches the bound obtained in the
original work by [1]. Meanwhile for the MPR physical model
the per node capacity satisfies

fMPR = Ω

(

log(n)(1/2)−(2/α)

√

(n)

)

(18)

Thus according to the deductions in this paper, the
MPR scheme guarantees a capacity gain by factor of
log(n)1−(2/α).Thus our bound is weaker than that reported
by Wang et. al. [6] by a factor oflog(n)1/α. Finally, note that
the per-node capacity under the MPTR model is given by

fMPTR = Ω

(

log(n)(3/2)−(2/α)

√
n

)

(19)

Thus multipacket transmission and reception improves upon
the result of using MPR only [6] by a factor of at least
log(n)1−(1/α).
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