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Abstract— The underwater acoustic channel is characterized
by a path loss that depends not only on the transmission
distance, but also on the signal frequency. Signals transmitted
from one user to another over a distance l are subject to a power
loss of l−αa(f)−l. Although a terrestrial radio channel can be
modeled similarly, the underwater acoustic channel has different
characteristics. The spreading factor α, related to the geometry of
propagation, has values in the range 1 ≤ α ≤ 2. The absorption
coefficient a(f) is a rapidly increasing function of frequency: it
is three orders of magnitude greater at 100 kHz than at a few
Hz. Existing results for capacity of wireless networks correspond
to scenarios for which a(f) = 1, or a constant greater than
one, and α ≥ 2. These results cannot be applied to underwater
acoustic networks in which the attenuation varies over the
system bandwidth. We use a water-filling argument to assess the
minimum transmission power and optimum transmission band
as functions of the link distance and desired data rate, and study
the capacity scaling laws under this model.

I. INTRODUCTION

The seminal work by [1] studied wireless networks, mod-
eled as a set of n nodes that exchange information, with the
aim of determining what amount of information the source
nodes can send to the destination as the number n grows.
The original results obtained for nodes deployed in a disk
of unit area motivated the study of capacity scaling laws in
different scenarios, ranging from achievability results in ran-
dom deployments using percolation theory [4] or cooperation
between nodes [3], to the impact of node mobility over the
capacity of the network, e.g. [2]. Reference [5] provides a
good overview of the different assumptions and scaling laws
for radio wireless networks.

The underwater acoustic channel is characterized by a path
loss that depends not only on the transmission distance, but
also on the signal frequency [7]. Signals transmitted over a
distance l are subject to a power loss of l−αa(f)−l. Although
a terrestrial radio channel can be modeled similarly, the
underwater acoustic channel has different characteristics. The
spreading factor α, related to the geometry of propagation,
has values in the range 1 ≤ α ≤ 2, where α = 1 corresponds
to cylindrical spreading. Also, the absorption coefficient a(f)
is a rapidly increasing function of frequency, e.g. it is three
orders of magnitude greater at 100 kHz than at a few Hz [7].
Finally, the power spectral density of the noise underwater is
highly dependent on frequency.

Existing capacity scaling laws for wireless radio networks
correspond to scenarios for which a(f) = 1, or a constant

greater than one, and α ≥ 2, e.g. [1], [4]. These results cannot
be directly applied to underwater acoustic networks in which
the attenuation varies over the system bandwidth and α ≤
2. We study the scaling laws under a model that considers
a water-filling argument to assess the minimum transmission
power and optimum transmission band as functions of the link
distance and desired data rate [8]. In particular, we study the
case of arbitrarily deployed networks in a disk of unit area,
and follow a similar procedure as in [1] to derive an upper
bound on capacity. In this sense, we provide an extension of
the work in [1] under a more complicated power loss model.

We show that the amount of information that can be ex-
changed by each source-destination pair in underwater acous-
tic networks goes to zero as the number of nodes n goes to
infinity. This occurs at least at a rate n−1/αe−W0(O(n−1/α)),
where W0 represents the branch zero of the Lambert func-
tion. We illustrate that this throughput per source-destination
pair has two different regions. For small n, the throughput
decreases very slowly as n increases. For large n, it decreases
almost as n−1/α. Thus for large enough n, the throughput
decreases more rapidly in underwater networks than in typical
radio channels, because of the difference in the path loss
exponent α.

The paper is organized as follows. In Section II, we present
the underwater channel model. In Section III, we analyze
the scaling laws for the case of a network transmitting in
an arbitrarily chosen narrow band. In Section IV, we study
scaling laws for the low-power/narrow-band case, with optimal
bandwidth allocation using a waterfilling argument. In section
V, we consider the case in which the nodes can transmit at
high power over a wide transmission band. Conclusions are
summarized in Section VI.

II. UNDERWATER CHANNEL MODEL

An underwater acoustic channel is characterized by an
attenuation that depends on the distance l and the signal
frequency f as

A(l, f) =
(

l

lref

)α
a(f)l (1)

where lref is a reference distance (typically 1 m).
A common empirical model used for the absorption a(f)

is Thorp’s formula [7] which captures the dependence on the
frequency. This absorption a(f) is an increasing function of
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Fig. 1. Relationship between transmission distance and center frequency in
a narrow band system.

f . The spreading factor describes the geometry of propagation
and is typically 1 ≤ α ≤ 2, e.g. α = 1 and α = 2 correspond
to cylindrical and spherical spreading, respectively. The noise
in an acoustic channel can be modeled through four basic
sources: turbulence, thermal noise, shipping, and waves. It has
a power spectral density (psd) which depends on the frequency,
the shipping activity s, and the wind speed w in m/s [7].

The complete model for a colored Gaussian underwater link
was presented in [8] where power was allocated through wa-
terfilling. In the absence of multipath and channel fading, the
relationship among capacity, transmission power, and optimal
transmission band of a point-to-point link is given by [8]

C =
∫
B(l,C)

log2

(
K(l,C)

A(l,f)N(f)

)
df (2)

where N(f) is the psd of the noise, B(l, C) is the optimum
band of operation and K(l, C) is a constant. The transmission
power associated with a particular choice of (l, C) is given by

P (l, C) =
∫
B(l,C)

S(l, C, f)df (3)

where the psd of the signal is S(l, C, f) = K(l, C) −
A(l, f)N(f), f ∈ B(l, C).

A distinguishing feature of the underwater acoustic channel
is the dependence of the optimal transmission band on the link
distance [8]. Fig. 1 illustrates the optimal center frequency
fc(l) as a function of distance. The optimal center frequency
is defined as the frequency at which A(l, f)N(f) is minimal.
This implies that if the transmission power for a link is
low, the transmission bandwidth will be low and around the
optimal frequency. Thus, the optimal transmission band in the
spectrum changes dramatically with the link distance. Fig. 1
also illustrates that a node transmitting over a short range
will optimally be assigned a transmission band at high center
frequency, as in case (a), while a node transmitting over a
longer distance will be assigned a different transmission band
at lower center frequency, as in case (b).

For the case in which power available for transmission is
low, the bandwidth of the transmission band will also be small.

When the bandwidth is low enough |B(l, C)| = ∆f , such that
the product A(l, f)N(f) does not change much over that band,
one can make a Taylor series approximation around the center
frequency fc(l). This allows us to determine the power P for
which the transmission band is narrow due to our waterfilling
argument. The Taylor series approximation has the form

A(l, f)N(f) ≈ A(l, fc)N(fc) + Υ
(f − fc)2

2
(4)

∀f in the band, where Υ = ∂2

∂f2 (A(l, f)N(f)) |f=fc . Substi-
tuting the expression (4) into expression (3), and using the fact
that K(l, C) = A(l, fmax)N(fmax) = A(l, fmin)N(fmin),
where fmax and fmin are the maximum and minimum fre-
quencies of the transmission band, we obtain

P (l, C) ≈ A(l, fmax)N(fmax)∆f

−
∫ fmax
fmin

(
A(l, fc)N(fc) + Υ (f−fc)2

2

)
df (5)

where ∆f = fmax − fmin. Considering fmax − fc ≈ ∆f
2

and fc − fmin ≈ ∆f
2 given our quadratic Taylor series

approximation of A(l, f)N(f), the above expression reduces
to

P =
Υ
12

∆f3 (6)

III. FIXED NARROW-BAND MODEL

Let us study the physical model [1] to obtain an upper bound
to transport capacity for transmissions in a arbitrarily chosen
narrow band in an underwater channel. The narrow band
assumption allows us to consider the attenuation as a constant
over that band. We assume that the nodes are arbitrarily
deployed in a disk of unit area as in [1], that each node has
an intended destination node, and that the requirement for
successful reception at node j of a transmission from node
i is

Pi(f)
A(|Xi−Xj(i)|,f)

N(f) +
∑
k∈τ,k 6=i

Pk(f)
A(|Xk−Xj(i)|,f)

≥ β (7)

where Xi is the position of node i, Xj(i) is the position of
node j to which i is transmitting, and τ is the set of all nodes
transmitting simultaneously in the same transmission sub-band
and time slot. We assume that all sub-bands are in the narrow
band [1], so that the attenuation is only dependent on the
central frequency of the narrow band. The parameter f is kept
to keep in mind the frequency dependence, and to allow us to
use these results in the following sections where we analyze
more complex settings. We consider that λ is the throughput
of each node, the network transports λnT bits over T seconds,
and that the average distance between source and destination
of a bit is L̄. Finally, we define the transport capacity as λnL̄
bits-meters per second [1].

Let us define W = 4f log2(1 + β) to be the transmission
rate, where 4f is the bandwidth of the narrow band chosen



for transmission. Since |Xk−Xj(i)| ≤ 2√
π

, and a(f) ≥ 1,∀f ,
then the path loss is

A(|Xk −Xj(i)|, f) ≤
(

2√
πlref

)α
a(f)2/

√
π ≡ γ . (8)

Using a similar procedure as in [1], we have that

A(|Xi −Xj(i)|, f) ≤ β + 1
β

γPi(f)∑
k∈τ Pk(f)

. (9)

Let us sum over all transmitters i ∈ τ and use the definition
of the path loss in expression (1):

∑
i∈τ
|Xi −Xj(i)|

αa(f)|Xi−Xj(i)| ≤ γα
β + 1
β

(10)

where γα = lαrefγ =
(

2√
π

)α
a(f)2/

√
π . Summing over all

sub-bands and time slots and dividing both sides by H , we
obtain

1
H

λnT∑
b=1

h(b)∑
h=1

rA(h, b) ≤ γα
β + 1
β

WT

H
(11)

where h(b) represents the h-th hop of a bit b, and H is
defined as the number of hops performed in T seconds, which
can be bounded by H ≤ WTn

2 [1]. Finally, rA(h, b) =
l(h, b)αa(f)l(h,b), where l(h, b) represents the distance be-
tween receiver and transmitter for the h-th hop of bit b. Since
the function rA(l) = lαa(f)l is increasing and convex for
l ≥ 0, α ≥ 1 and a(f) ≥ 1, then ln a(f)

H

λnT∑
b=1

h(b)∑
h=1

l(h, b)

α exp

 ln a(f)
H

λnT∑
b=1

h(b)∑
h=1

l(h, b)


≤ (ln a(f))αγα

β + 1
β

WT

H
. (12)

Let us define ψ = (ln a(f))αγα
β+1
β

WT
H , and note that ψ ≥ 0.

The left hand side of the above inequality is a Lambert
function of the form Wα expW , which is an increasing
function when W ≥ 0. Then,

ln a(f)
H

λnT∑
b=1

h(b)∑
h=1

l(h, b) ≤ ψ1/α exp

(
−W0

(
ψ1/α

α

))
(13)

where W0(·) is the branch zero of the Lambert function, using
the nomenclature in [6]. This fact implies that

λnL̄ ≤ H

T ln a(f)
ψ1/α exp

(
−W0

(
ψ1/α

α

))
. (14)

Substituting for ψ in (14), we obtain

λnL̄ ≤ H
α−1
α

T
α−1
α

(
γα
β + 1
β

W

)1/α

exp

(
−W0

(
ψ1/α

α

))
. (15)

Since H
α−1
α is an increasing function for α > 1, and constant

for α = 1, then H
α−1
α ≤

(
WTn

2

)α−1
α . Considering that

W0(·) is an increasing function, we have that

W0

(
ψ1/α

α

)
≥W0

2 ln a(f)a(f)
2

α
√
π

α
√
π

(
β + 1
β

)1/α 21/α

n1/α

 .

Using these inequalities into expression (15), we obtain the
scaling law:

λnL̄ ≤ ΦWn
α−1
α exp

(
−W0

(
Φ

2 ln a(f)
α

(
1
n

)1/α
))

(16)

where

Φ =
21/α

√
π

(
β + 1
β

)1/α(
a(f)

2√
π

)1/α

.

Since the zero-branch of the Lambert function satis-
fies W0(x) ≥ 0,∀x ≥ 0, then the exponential term
exp

(
−W0

(
O
(
n−1/α

)))
has values between 0 and 1. Note

that as n→∞, the exponential term in the scaling law goes
to 1. This implies that the exponential term is important to
determine the scaling for n small, while for large enough n

the upper bound is O(n
α−1
α ).

If we consider a(f) = 1, i.e. the same path loss model as
in [1], and recall that W0(0) = 0, then

λnL̄ ≤ 1√
π

(
2β + 2
β

)1/α

Wn
α−1
α (17)

which is the original result of [1]. We have thus proved that
the result in [1] is valid for α ≥ 1.

Fig. 2 illustrates the upper bound on λL̄ for different values
of a(f) ranging from 1 to 10,000, which are characteristic
of an underwater environment at different frequencies. For
example, a(f) = 1,000 corresponds to a frequency of around
100 KHz. We have used α = 1 and the parameters specified
in the figure. We also plot dashed lines proportional to n−1/α.
As expected, as n is large enough the exponential term of the
upper bound becomes negligible making the bound scale as
O(n−1/α). However, for small values of n the bound starts at
a common point for the different a(f) values, and decays very
slowly. Fig. 2 also illustrates that the value of a(f) determines
the transition between these two operating regions: the larger
a(f), the greater n has to be before transitioning. Of course, if
we use a transmission band with high a(f) each node will have
to be able to transmit at higher power to reach its destination.
In the underwater channel, it also means that a higher center
frequency is required because a(f) is an increasing function.

Finally, Fig. 2 shows that λL̄ remains almost constant for
n ≤ 100 nodes, a(f) > 100 and a disk area of 1 km2, which
corresponds to densities of up to 100 nodes per km2. Note
that the expected density of nodes in an underwater network
is usually much lower given the applications for which they
are deployed, e.g. environmental measurements. Thus, λL̄ is
almost constant for practical purposes.
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Fig. 2. Upper Bound on λL̄ for an arbitrarily chosen narrow band and
different values of a(f). Parameters used are W = 1 bps, α = 1, β = 2,
area = 1 km2.

IV. LOW POWER - NARROW BAND CASE

As mentioned in the introduction, one of the characteristics
of the underwater acoustic channel is that the optimal transmis-
sion band using the waterfilling principle depends strongly on
the distance of a link. In particular, if the transmission power
of a node is very low, then nodes will optimally transmit in dif-
ferent bands corresponding to different transmission distances.
Thus, interference will come only from nodes transmitting
in the same band. We have derived an expression for the
power under these assumptions in Section II. In order to assign
disjoint transmission bands, we divide the total transmission
band of the system into non-overlapping bands of bandwidth
∆f . We use fc(l) as the mapping between the transmission
distance and the corresponding transmission band for a low-
power/narrow-band scenario. Thus, if a node transmits to
another node at a distance l, we assign the transmission band
that contains the frequency fc(l) as in Fig. 1.

The capacity analysis is similar as before if a(f) is replaced
by a(fm) for each of the bands, where fm is the central
frequency of transmission band m. Let us assume that each
node is capable of transmitting at 4W bps in each band,
where 4W = 4f log2(1 + β), and 4f is the bandwidth of
each non-overlapping band.

A. Multi-Node Hopping

Note that the definition of H changes slightly when we
allow multi-node hopping. In this case, H ≤ T |Γ|4Wn

2 =
TWn

2 , where Γ is the set of sub-bands used by the network,
and W = |Γ|4W .

For each of the different bands, the analysis is as before up
to equation (10). At this point, let us define γα(fm) as γα
for band m. Let us sum over all sub-bands and time slots to
obtain ∑

s∈S

∑
m∈Γ

∑
i∈τ
|Xi −Xj(i)|

αa(fm)|Xi−Xj(i)|

≤ β + 1
β
4WT

∑
m∈Γ

γα(fm) (18)

where S is the set of time slots. We can use the fact that
a(fm) ≥ amin, where amin = minm∈Γ a(fm). In the uncer-
water scenario, amin = a(fmin) because a(f) is an increasing
function. Defining rA(h, b, fmin) = l(h, b)αa(fmin)l(h,b),
and following similar steps that lead to Eq. (11) we get

1
H

λnT∑
b=1

h(b)∑
h=1

rA(h, b, fmin) ≤ β + 1
β

4WT

H

∑
m∈Γ

γα(fm) .

Defining ψ = (ln a(fmin))α β+1
β
4WT
H

∑
m∈Γ γα(fm), we

can use a similar procedure as in the previous section, to show
that the scaling law now becomes

λnL̄ ≤ ΦWn
α−1
α exp

(
−W0

(
Φ

2 ln a(fmin)
α

(
1
n

)1/α
))

where

Φ =
21/α

√
π

(
β + 1
β

)1/α
(

1
|Γ|

∑
m∈Γ

a(fm)
2√
π

)1/α

.

The scaling law is similar in structure to the one obtained in
Section III. However, the constant Φ depends on the average
of a function of the absorption coefficients at fm,∀m ∈ Γ
instead of a particular value. Again, if a(f) = 1,∀f the result
reduces to that of [1].

B. Direct Transmissions

If we constrain our system to perform direct transmissions
only, using the fact that there is an assignment of frequency
bands in terms of the distance, we can consider that h(b) =
1,∀b, i.e. only one hop. Given the distance-band separation,
the problem can be thought of as solving for several networks
that lie on top of each other, in different layers with no cross-
layer interference. Membership to the layers is based on the
distance of the connection. In other words, each transmission
band m will have nm transmitters, where n =

∑
m∈Γ nm

constitutes the total number of nodes in the network since
each transmitter has only one intended destination.

This causes a different capacity scaling for each of the
transmission bands, i.e. the scaling for each transmission band
will have the form of expression (16) with 4W instead of W
and nm instead of n to obtain the scaling for band m.



V. HIGH POWER - WIDE BAND CASE

In this scenario, nodes have enough power to transmit in a
wide transmission band B, which implies that the absorption
cannot be considered to be a constant over the band. The band
B is again chosen using a waterfilling argument. We consider
that the SINR requirement can depend on the frequency. That
is

Pi(f)
A(|Xi−Xj(i)|,f)

N(f) +
∑
k∈τ,k 6=i

Pk(f)
A(|Xk−Xj(i)|,f)

≥ β(f) . (19)

We define W as the transmission data rate over the entire
band, computed as

W =
∫
f∈B

log2(1 + β(f))df . (20)

If we assign a transmission rate to every sub-band df of dW =
log2(1 + β(f))df , the analysis for each frequency is similar
as in Section IV by letting 4f → 0, renaming 4f as df and
replacing the sums by integrals. Then, we have that

1
H

λnT∑
b=1

h(b)∑
h=1

WrA(h, b, fmin) ≤ T

H

∫
W

β(f) + 1
β(f)

γα(f)dW

=
T

H

∫
B

β(f) + 1
β(f)

γα(f) log2(1 + β(f))df (21)

where fmin = arg minf a(f) and H can be shown to have the
bound H ≤ TWn

2 using the definition of W in expression (20).
Following the procedure of Section IV, we show that the
scaling law for the high power - wide band case has the form

λnL̄ ≤ ΘWn
α−1
α exp

(
−W0

(
Θ

2 ln a(fmin)
α

(
1
n

)1/α
))

where

Θ =
21/α

√
π

 1
W

∫
B

(β(f) + 1) a(f)
2√
π log2(1 + β(f))

β(f)
df

1/α

VI. CONCLUSION

This work presents upper bounds on the transport capacity
of underwater acoustic networks with nodes deployed arbi-
trarily in a unit area disk. We study three cases of interest:
an arbitrarily chosen narrow transmission band; the case of
power limited nodes which transmit in disjoint narrow bands;
and the case of nodes with high power capabilities that use
of a wide transmission band. The choice of transmission band
in the last two cases depends on the transmission distance
and the physical characteristics of the channel, and is made in
accordance with the waterfilling principle.

We have shown that the amount of information that can be
exchanged by each source-destination pair in an underwater
acoustic network goes to zero as the number of nodes n goes
to infinity, at least at rate n−1/αe−W0(O(n−1/α)). This rule
is valid for the different scenarios in general, requiring only

changes in the scaling constants. The throughput per source-
destination pair has two different regions. For small n, the
throughput decreases very slowly as n increases. For large
n, it decreases as n−1/α. Considering that 1 ≤ α ≤ 2 in
an underwater channel, the available throughput for large n
decays more rapidly than in typical radio wireless networks.
However, typical node densities in underwater correspond to
the small n regime. In a narrow band example with values of
a(f) characteristic of an underwater channel, we showed that
the upper bound on the throughput remains almost constant
for densities of less than 100 nodes per km2. Most under-
water networks have node densities in this range due to the
applications for which they are deployed.

Finally, we have pointed out some important characteristics
of the underwater acoustic channel useful in future studies.
For example, we could allow cooperation between nodes à la
Ozgur et al [3] taking advantage of the distance-band separa-
tion. That is, instead of performing time division between long
and short transmissions, we could simply transmit in different
bands that do not interfere with one another. This is important
because acoustic transmissions have long propagation delays
due to the speed of sound underwater (∼1500 m/s), which
reduces the usefulness of a time-division scheme.

ACKNOWLEDGMENT

This work was supported in part by the National Science
Foundation under grants No. 0520075, 0831728 and CNS-
0627021, by ONR MURI Grant No. N00014-07-1-0738, and
subcontract # 060786 issued by BAE Systems National Secu-
rity Solutions, Inc. and supported by the Defense Advanced
Research Projects Agency (DARPA) and the Space and Naval
Warfare System Center (SPAWARSYSCEN), San Diego under
Contract No. N66001-06-C-2020 (CBMANET).

REFERENCES

[1] Gupta, P. Kumar, P.R., “The Capacity of Wireless Networks”, IEEE Trans.
Inf. Theory, vol 46, no 2, pp. 388-404, Mar. 2000

[2] Grossglauser, M., Tse, D. N. C., “Mobility Increases the Capacity of Ad
Hoc Wireless Networks”, IEEE Trans. Inf. Theory, vol. 10, no. 4, pp.
477-486, Aug. 2002

[3] Ozgur,A., Leveque, O., Tse, D. N. C., “Hierarchical Cooperation Achieves
Optimal Capacity Scaling in Ad Hoc Networks”, IEEE Trans. Inf. Theory,
vol. 53, no. 10, pp. 3549-3672, Oct. 2007

[4] Franceschetti, M., Dousse, O., Tse, D. N. C., Thiran, P., “Closing the
Gap in the Capacity of Wireless Networks Via Percolation Theory”, IEEE
Trans. Inf. Theory, vol. 53, no. 3, pp. 1009-1018, Mar. 2007

[5] Vu, M., Devroye, N., Tarokh, V., “An Overview of Scaling Laws in Ad
Hoc and Cognitive Radio Networks”, Wireless Pers. Comm., vol 45, no
3, May 2008

[6] Chapeau-Blondeau, F., and Monir, A., “Numerical Evaluation of the
Lambert W Function and Application to Generation of Generalized
Gaussian Noise With Exponent 1/2”, IEEE Trans. on Signal Proc., Vol.
50, No. 9, Sept. 2002

[7] M. Stojanovic, “On the Relationship Between Capacity and Distance in
an Underwater Acoustic Communication Channel,” ACM SIGMOBILE
MC2R, pp.34-43, vol.11, Issue 4, Oct. 2007

[8] Lucani, D. E., Médard, M., Stojanovic, M., “On the Relationship between
Transmission Power and Capacity of an Underwater Acoustic Commu-
nication Channel”, Proc. IEEE Oceans, 2008.


	Introduction
	Underwater Channel Model
	Fixed Narrow-band model
	Low power - Narrow Band Case
	Multi-Node Hopping
	Direct Transmissions

	High Power - Wide Band Case
	Conclusion
	References

