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Abstract—We consider the problem of network coding sub-
graph construction in networks where there is uncertainty about
link loss rates. For a given set of scenarios specified by an un-
certainty set of link loss rates, we provide a robust optimization-
based formulation to construct a single subgraph that would work
relatively well across all scenarios. We show that this problem
is coNP-hard in general for both objectives: minimizing cost
of subgraph construction and maximizing throughput given a
cost constraint. To solve the problem tractably, we approximate
the problem by introducing path constraints, which results
in polynomial time-solvable solution in terms of the problem
size. The simulation results show that the robust optimization
solution is better and more stable than the deterministic solution
in terms of worst-case performance. From these results, we
compare the tractability of robust network design problems with
different uncertain network components and different problem
formulations.

[. INTRODUCTION

Network coding has recently been shown to improve per-
formance over both wired and wireless communication net-
works [1], [2]. In multicast communications, previous research
has shown that the network coding can achieve the maximum
throughput of a given network that is equal to the maximum
flow between the source and each destination. In addition
to network throughput benefits, network coding can provide
robustness to uncertain communication links and uncertain
network topologies [3]. Accordingly, throughput gain as well
as robustness are well-known advantages of network coding.

In this paper, we consider the problem of network coding
subgraph construction that is robust against uncertainty about
link loss rates. For a given set of scenarios specified by an
uncertainty set of link loss rates, the goal is to construct a
single subgraph that works relatively well across all scenarios.
To achieve the goal, an optimization problem with unknown
variables is considered. In such optimization problems con-
taining unknown variables, the most developed approaches are
worst-case analysis and stochastic optimization. But scenario-
based stochastic optimization cannot be used unless the uncer-
tainty is probabilistic. On the other hand, worst-case analysis
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sometimes results in more conservative solutions. In this paper,
we follow the robust optimization approach of optimizing the
worst-case performance introduced in [4].

Recently, robust optimization research has concentrated on
robust convex optimization (including linear optimization).
Also, the results on robust optimization have been applied to
a number of network optimization problems. Applegate et al.
suggested a robust routing which guarantees a nearly optimal
utilization of a network against uncertain traffic demands [5].
Mudchanatongsuk et al. showed that the network optimization
problem with demand uncertainty can be solved in polynomial
time if additional path constraints are imposed [6]. Ordofiez et
al. provided conditions for demand and cost uncertainty sets to
make the network optimization problem tractable [7]. In con-
trast to those polynomial time-solvable problems, Atamtiirk et
al. showed that a two-stage robust optimization for a multi-
commodity network flow and design problem with discrete
design variables under demand uncertainty is NP-hard [8].
Chekuri et al. proved coNP-hardness of the single-source
robust network design problem under demand uncertainty [9],
which we state precisely in Section III.

To the best of our knowledge, most of the robust op-
timization problems in the literature of networking have
considered the uncertainty about demand or link cost. In
contrast, we focus on the problem under the uncertainty about
link status—Iink loss rates (or interchangeably, link success
probabilities)—in this paper. The contribution of this paper is
as follows: we prove the coNP-hardness of the problem for ob-
jectives of minimizing cost and maximizing throughput; on the
other hand, we provide a polynomial-time solvable problem
formulation by introducing path constraints that approximate
the problem.

The structure of the paper is as follows: In Section II,
we describe our network model and problem formulation. In
Section III, we consider the tractability of the problem: we
prove the general problem is coNP-hard for min-cost objective
and max-throughput objective. In Section IV we show that the
problem with path constraints is polynomial time-solvable in
terms of problem size. In Section V, we provide simulation
results for simple network examples in which we compare
the robust optimization solution with other method. Finally,
Section VI concludes the paper and contains some remarks
with respect to future directions.
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II. NETWORK MODEL AND PROBLEM FORMULATION

We consider a directed graph G = (N, £) where N is the set
of nodes and & is the set of links (arcs). m = |A/] is the number
of nodes and n = |£] is the number of links. To simplify the
problem, we consider a network coding problem with a single
source node and a single sink node, where network coding
provides a robustness benefit.

For performance metrics, we have two different objective
functions: minimizing cost of subgraph construction and max-
imizing throughput for a given cost constraint. For the former
problem, we want to find a min-cost network coding subgraph
that satisfies a demand requirement for the sink node. For the
latter problem, we want to find a max-throughput network
coding subgraph that satisfies a cost constraint on the chosen
subgraph.

We denote by P;; the set of simple paths from node i to
node j (P := Uij Pi;). c and cap are a given path cost vector
and a given link capacity vector, respectively. bgt is a budget
for subgraph construction when the objective function is the
throughput of network, and D is the demand required for the
sink node when the objective function is the cost of subgraph
construction. We introduce a budget, bgt, and a demand, D, to
avoid trivial solutions such as flooding and zero flow in each
case, respectively.

We have the following uncertainty and decision variables:

o Uncertainty: w (vector of path success probabilities)
taking values in an uncertainty set W
« Optimization variables:

— k (network coding subgraph; k, is the maximum
feasible flow on path p € P) determined prior to
the realization of the path success probabilities.

— h (vector of actual path flows; &), is the flow along
the subgraph, k,, in the presence of path loss rates,
ie. hy, < ky,w,, Vp € P) determined after the
realization of the path success probabilities.

Thus, we have a two-stage optimization problem (called
the Adjustable Robust Counterpart (ARC) problem [7], [10]).
This formulation fully captures the robustness properties of
network coding. Since the actual flow is determined after the
realization of path success rates, network coding intrinsically
exploits the best routes for the actual flow within the capacity
constraints from the predetermined subgraph. In contrast, a
single-stage robust optimization (called the Robust Counter-
part (RC) problem [4]) would require fixing a flow h feasible
under any realization of the link qualities, resulting in a much
more conservative solution. Since ARC has a larger robust
feasible set, the solution for ARC is at least as good as the
one for RC. However, a two-stage optimization increases the
problem complexity significantly. It is known that the ARC
problem of a linear program with polyhedral uncertainty set
is NP-hard in general [11]. We describe the tractability of this
problem in more depth in the next section.

ITI. HARDNESS OF ROBUST SUBGRAPH SELECTION
A. Min-Cost Criterion
The robust minimum cost subgraph selection problem with
the demand requirement in terms of path flows is as follows:
min cpk
in Y cpky
peEP

s.t. Z kp < cap(l), Vi€ €
peEP:lED

forall w e W, Jh:
{ hy < kpyw,,Vp € P

ZPEP h’P 2 D
Note that any network flow problem can be formulated using
path and cycle flows and vice versa [12, Theorem 3.5]. Thus,
we can find the corresponding link formulation as follows.
If d is a scalar for the demand, then we can write a supply-
demand vector as d(es;—e; ), where e, e; are canonical vectors
for source and sink, respectively. Let N denote a node-arc
incidence matrix [12]. Note that any variables with tilde are
arc-flow variables and W is the uncertainty set for the link
success probabilities. Then, the corresponding link formulation

is as follows:
> Enk()
le€
st 0< k() <cap(l),Vl €&
for all W € W, 3h,d :
h(l) < k(Dw(l), Vi e &
N-h= d(es —e;)
d>D
We consider hardness of (1) and (2) under polyhedral uncer-
tainty sets for path success probabilities W and link success
probabilities TV, respectively. We show the complexity of this
problem by reduction from the single-source robust network
design problem under demand uncertainty, which is known
to be coNP-hard for undirected and directed graphs [9]. An
instance of the latter is defined by a given graph G = (N, &),
a link cost vector ¢, a single source node s € AN and a
convex polyhedral set D of demand matrices such that for
each D € D, the demanded flow D;; from node ¢ to node j is
zero for non-source nodes 7 # s. The objective is to find the
least cost vector of link capacity reservations u sufficient to
support a multi-commodity fractional routing for each demand
matrix in D, i.e.

min Z e(l)u(l)
1
s.t. for all D € D, 3f satisfying

{ Ypep, fo=Dijs Vi j €N

(M

min
k

2

3)

2ij 2apepiyaep Jo Sull), VIEE

where f is a vector specifying the flow f, on each path p. Note
that the routing may change for different demand matrices—
thus, it is not a path-constrained problem. We will show that
an instance of our problem (2) is equivalent to Fig. 1 (a).
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Fig. 1. Two equivalent network optimization problems with different
uncertainties: (a) Minimizing cost under demand uncertainty (b) Minimizing
cost under uncertainty of link success probabilities

Theorem 1. The robust minimum cost subgraph selection
problems (1) and (2) are coNP-hard for polyhedral uncertainty
sets W and W, respectively.

Proof: Note that for the robust network design problem
(3), if each demand matrix in D is scaled by a constant factor,
then the optimal link capacity reservation vector u is scaled by
the same factor. Thus without loss of generality, we consider
an instance H of problem (3) with graph G = (N, &), source
s and convex polyhedral set D of demand matrices such that
Zij D;; <1V D € D, illustrated in Fig. 1 (a).

From this we obtain an instance H’ of the robust minimum
cost subgraph selection problem (2), illustrated in Fig. 1 (b),
as follows. We add to network G an additional node ¢; s and
t are the source and sink nodes respectively. We introduce an
additional link [; of capacity 1, cost 0 and success probability
w;; from each node ¢ € N to t. The vector w of success
probabilities w;; lies in the uncertainty set

Wst = 1-— Zi,j D7J
wig = Dy Vi#s 4)
D € D

which is a convex polyhedral set. The links in £ have success
probability 1 and no capacity constraints. The demanded s —
flow is 1. This requires the solution to have k(l;) = 1 and,
for each D € D, there must exist a multicommodity flow
h of size D,; from s to each other node i € N satisfying
h(l) < k(). Thus, an optimal solution for the robust minimum
cost subgraph selection problem also solves the single-source
robust network design problem. Note that since no s — ¢
path contains more than one of the uncertain links, (4) also
corresponds to a polyhedral uncertainty set in terms of path
success probabilities: all paths through link I; (i # s, i € N)
have path success probability Dy;, and the path through the
link (s,¢) has path success probability 1 —3°, . D;;. Then by
using the same proof, the path formulation (1) is also coNP-
hard. This completes the proof. ]
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Fig. 2. One instance of robust maximum flow subgraph construction problem.
All graph parameters are same as in Fig. 1 (b), except for an additional link
(with no link uncertainty) between the source and the sink node.

B. Max-Throughput Criterion

The path formulation for the robust maximum throughput
subgraph selection problem with the cost constraint is as

follows:
max D hy
pEP

s.t. Z k, <cap(l), ¥l e &

peEP:lEP
k< bgt
for all w € W, Jh:
hy < kpwy,Yp € P (1)
Similarly to the min-cost problem, we can formulate the
corresponding link formulation as follows:

®)

max d
k

s.t.

< k() < cap(l),vl € €
> E()k(1l) < byt
l

for all w € W, 3h,d :
h(l) < k(D)w(l),Vl € €
N-h=d(e; —e)
The link formulation corresponding to (6) can be found

similarly. Now, we prove coNP-hardness of the max-flow
subgraph selection problem.

(6)

Theorem 2. The robust maximum flow subgraph selection
problems (5) and (6) are coNP-hard for polyhedral uncertainty
sets W and W, respectively.

Proof: We consider an instance H of problem (3) with
graph G = (N, &), source s and convex polyhedral set D
of demand matrices such that Zij D;; <1V D € D, and
construct the instance H' of problem (2) exactly as in the
proof of Theorem 1. Let C' be the optimal cost of H.
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From H’ we construct an instance of problem (6) as
follows. We add another link !’ from s to ¢ that has cost
¢ > nmax;eg c(l), success probability 1 and no capacity
constraint, and set bgt > C'. The optimal solution has k(") =
(bgt — C')/c’, and contains a solution for H. Similarly to the
min-cost problem, the max-flow problem (5) with polyhedral
uncertainty for path success probabilities can also be shown
to be coNP-hard. This completes the proof. ]

IV. PATH FORMULATION

Instead, if we introduce path constraints to the network
optimization problem, the problem becomes polynomial time-
solvable. In this section, we describe the approximate solution
for the max-throughput problem only. The approximate solu-
tion for the min-cost problem is exactly analogous.

We introduce a path constraint, h, = kyw,, to replace
(1) in (5): the actual flow is an affine function of the un-
certainty (called the Affinely Adjustable Robust Counterpart
(AARC) [10]). Thus, it becomes an approximate problem.
Now we can replace > p by with }° 5 kyw, and formu-
late max; — min,, problem as follows:

pEP

max min pezp kpw,,
s.t. Z ky, < cap(l), Yl € &
pEP:lED
cl k< bgt
weW

O

By using duality of the minimization problem, we can
combine the minimization problem with the maximization
problem. If W is a convex polyhedron set, then the combined
problem becomes a single linear program (LP). Let zpos and
kros denote the optimum objective value (Max-throughput)
and the optimum subgraph, respectively.

ZROS = km&}\x r
1A

st. > ky<cap(l), VI€E
peEP:lep

cl k< bgt (®)
A g—pl g >
k+H - A+H, - >0
kKA=0, r>0

Therefore, for a case with tractable problem size where we
have a polyhedral uncertainty set for path success probabilities,
we can solve this problem by using any efficient LP solving
algorithm such as Interior-Point method [13]. Although we
have a single LP formulation, however, the problem size,
particularly the number of paths, grows exponentially in the
size of the network in general. Therefore, for a large network,
LP formulation (8) can be intractable due to the enormous
problem size. In such a case, we speculate that we may use
the column generation approach [12], but we have not proved
its application.

(c) Network 3

(d) Network 4

Fig. 3. Example networks

V. EVALUATIONS FOR PATH FORMULATION

In this section, we evaluate the performance of the path
formulation in four simple network examples shown in Fig. 3.
We compare the two-stage robust optimization with the non-
robust optimization in terms of the worst-case performance.
For simplicity, we consider a box uncertainty set with a linear
equality constraint:

W=_{w:a, <w; <b, VieP, Hyy - W =g}
Each path has a nominal path success probability, w; =
(a; + b;)/2, with variations around the nominal value; in
addition, the equality constraint, H., - w = g.,, satisfied by
nominal values as well, is introduced to avoid a trivial solution.
Furthermore, the equality constraint normalizes the max-flow
over the uncertain scenarios.

A. Deterministic Case with Nominal Values

First, we consider the deterministic case with nominal val-
ues for uncertain path success probabilities, W. Let zpras and
kprar denote the optimum objective value (max-throughput)
and the optimum subgraph, k, respectively.

ZDTM — mkax Z kpﬁp
peEP
s.t. Z kp < cap(l), Vi€ & ©))
pEP:lep
' k<I

Note that this method corresponds to a single-stage non-
robust optimization strategy.

B. Maximum Flow with Given Subgraph

To make the problem (5) tractable, we have assumed that
the second stage variables, h, are affine functions of the
uncertainty, (i.e. h, = wphp), but in reality, the second stage
variables can indeed change arbitrarily. Therefore, we can eval-
uate the max-flow for a given subgraph with arbitrarily chosen
second stage variables. To evaluate the approximate solution,
we compare the worst-case performances (max-flow) for given
subgraphs. We can formulate an optimization problem for the
worst-case performance with a new capacity bound, u;(S, w),
the usage of link [ of a subgraph S as follows:

zwe(S) = VIVIél‘I}[l/ max Z hyp
pEP
st Y hy<w(S,w), VI€E

pEP:e€p

(10)
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TABLE 1
FREQUENCY WHEN ko5 PROVIDES BETTER WORST-CASE
PERFORMANCE THAN K p72s (TOTAL 200 RANDOM TRIALS)

Network || zwco(kros) > zwe(kprar) | Avr. Perf. Gain
1 95% 12.3%
2 97% 8.7%
3 97.5% 38.3%
4 98% 11.8%
where u;(S, w) can be found as follows:
A
u(kros, W) = X cpuc,kros,wp  from (8)
A
Ul(kDTJLh W) = Zpep;lep k?DTMpwp from (9)

However, when we reduce (10) into one single optimization
problem, the inequality constraint results in minimizing a
non-convex quadratic function, which is NP-hard in general.
Therefore, instead, we generate 5,000 random samples for
path success probabilities uniformly from a given uncertainty
set W and compare the minimum values among them. Using
this random simulation, we compare the robust optimization
solution and the deterministic solution in terms of the worst-
case performance in the network examples, shown in Fig. 3.

C. Results

From the simulation, we observe that the robust optimiza-
tion solution results in better performance than the non-robust
optimization in terms of worst-case performance over 90%
of times. The performance gain of the robust optimization
solution against the non-robust strategy is around 10% for all
examples. In addition, the robust optimization solution pro-
vides more stable outputs whereas the deterministic solution
sometimes results in poor performance.

Recall that the path constraint that is introduced to make
the problem tractable results in approximation of the original
problem. So, the worst-case max-flow for a robust optimization
solution without path constraints is always at least as good as
the solution with path constraints, i.e. zwc(kros) > zros
always holds.

The simulation results are summarized in Table I and Fig. 4.

VI. CONCLUSIONS AND FUTURE WORK

We have described the problem of network coding subgraph
construction in networks where there is uncertainty about
link success probabilities. We formulated the problem using
the best worst-case guaranteed robust optimization technique.
However, we proved that the problem is coNP-hard for the
min-cost objective and the max-throughput objective. Ac-
cordingly, we suggested a tractable approximate solution by
using path constraints. The tractability of network optimization
problems with different problem formulations and different
uncertainties is summarized in Table II.

We see many directions for further research. First, we can
perform complexity analysis for the approximate solution of
the two-stage optimization. Second, we can apply the results
to more general network problems, such as multicast and
multicommodity flows. Lastly, it is still an interesting problem

Network 1 Network 2
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o o o
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¢4 ?
fa g !
<] <}
=2 2 5
0 0
0 2 4 6 8 0 2 4 6 8 10
Worst-Case of ROS Worst-Case of ROS
Network 3 Network 4
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E E 25
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Worst-Case of ROS Worst-Case of ROS

Fig. 4. Worst-case of robust optimization solution (ROS) versus worst-case
of deterministic solution (DTM). For all network examples, more dots are
located in the lower triangle, meaning zy ¢ (kros) > zwo(kprar).

TABLE 11
COMPARISON OF PROBLEMS TRACTABILITY

Uncertainty || Routing (Fixed Paths) | Network Coding
Demands P [5], [6] coNP-hard [9]
Links P coNP-hard

to seek a new approximate algorithm to solve the problem in
polynomial time.
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