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ABSTRACT

In discrete tomography (DT), the goal is to reconstruct
from multiple linear projections an unknown image, which
is known to have few distinct pixel level intensities. Such
images arise in tomography problems where very high con-
trast is expected, e.g., in angiography medical imaging. A
common assumption for DT is that the set of possible inten-
sity levels is known in advance. However, determining the
intensity levels is a difficult problem, coupled with measure-
ment calibration and the used reconstruction algorithm. We
introduce an unsupervised DT algorithm that jointly recon-
structs the image and estimates the unknown intensity levels.
Our algorithm alternates between (i) an l1 sparse recovery
step with a reweighed cost function that pushes the recon-
structed values close to the estimated intensities, and (ii) an
estimation step for the most likely intensity levels. We exper-
imentally demonstrate that the proposed algorithm success-
fully estimates the unknown levels and leads to high quality
reconstruction of angiographic images.

Index Terms— gray level estimation, sparse reconstruc-
tion, discrete tomography

1. INTRODUCTION

In computed tomography the goal is to reconstruct an inte-
rior image from a series of linear projections on the bound-
ary. In this paper we address the problem of reconstructing
an image which has only few different pixel intensity lev-
els. This scenario can happen in tomography problems where
the very high contrast is expected, e.g., in medical imaging
applications such as angiography. Moreover, forcing the re-
constructed pixels to belong tofew discrete levels also has a
De-noising effect and can be more generally useful. And it
is also desirable to reduce the number of projection angles
in order to limit the radiation exposure. Based on these two
ideas, we are interested in reconstructing an image with a
few pixel levels from a small set of projections, i.e., we are
considering a Discrete Tomography (DT) problem [1]. There
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has been substantial prior work on DT reconstruction algo-
rithms. Fishburn et al. [2] and Weber et al. [3] used linear
programming (LP) relaxation techniques to approximate DT
using convex optimization. Batenburg et al. proposed a dis-
crete algebraic reconstruction algorithm to iteratively update
the object boundary and reported some success in electron to-
mography datasets [4, 5]. Liao and Herman [6] considered
a statistical reconstruction method with more than two gray
levels based on Gibbs priors. For a comprehensive review, we
refer to Herman and Kuba [1] and references therein.

A common assumption for the above algorithms is that the
set of possible intensity levels is known in advance. However,
in practice determining the intensity levels is very challeng-
ing and coupled with other aspects of the problem, such as
measurement calibration and the specific reconstruction algo-
rithm chosen. For example, in angiography only two types
of regions need to be considered: blood vessels enhanced by
a radio-opaque contrast agent and the “background”, which
represents the rest of body [7]. The target image will be very
high-contrast, but the intensity levels of blood vessels are very
hard to determine a priori since they are related to the blood
flow and the chosen contrast agent [8].

To the best of our knowledge, only very few literatures
explicitly address the unknown intensity discrete tomography
problem. Batenburg et al.[9] proposed a semi-automatic al-
gorithm for intensity level estimation, which requires the user
to select manually regions that are expected to belong to the
same gray level. Lukić[10] combined the multi-well poten-
tial function into the object function to encourage the solu-
tion staying on gray level values, but it’s not an easy task to
design the potential function without trapping the the solution
in the local minimum. In contrast, in this paper we introduce a
completely unsupervised discrete tomography algorithm that
jointly reconstructs the image and estimates the unknown in-
tensity levels.

We build on our prior work [11], which addressed the bi-
nary DT problem for known intensity levels. In that work,
we introduced the step-function dictionary to efficiently rep-
resent a binary image and used the L1 reweighing of Candes
et al. [12], combined with bounding the values in [0, 1] to ob-
tain a reconstruction algorithm that encourages the solution
to come closer to the boundary points {0, 1}, thus leading to



a two-level image. In this paper we extend this algorithm by
(i) adding a level-estimation step within each iteration and (ii)
allowing the superposition of multiple levels.

For the ideal reconstructed discrete image, the histogram
of pixel intensity levels should only have a few peaks. Thus,
our proposed level-estimation step is essentially a clustering
algorithm on the histogram of reconstructed image. Subse-
quently, the estimated levels are used as an input in the next
reweighed l1 step. Our preliminary simulation results show
that the proposed algorithm successfully estimates the dis-
crete intensity levels and accurately reconstructs the images
from a small number of linear projections. Since we expect
noise in the measurements, we use l1-norm optimization with
a bounded l2 measurement error constraint, the well-known
LASSO [13, 14] method.

The remainder of the paper is organized as follows. In
Section 2 we formulate the unknown level discrete tomogra-
phy problem. Section 3 gives an overview and provides some
intuition about our proposed approach for intensity level esti-
mation. Simulated reconstruction results and discussions are
presented in Section 4. Section 5 concludes this paper and
points out some future directions.

2. PROBLEM FORMULATION

We assume a M + 1 level signal which only takes values in
{0, k1, . . . , kM}, where kλ is an unknown positive number.
Let f(α, β) be a 2D image and let the measurements be par-
allel projections along different angles. The relationship be-
tween the projection measurements and image f can be mod-
eled using the 2D discrete Radon transform [15]. Each pro-
jection is the sum of all pixels a given ray is passing through,
with trigonometric interpolation being used for the non-grid
points. If the image has p × q pixels, we can reshape the
2D image f into a 1D vector x with dimension n = p · q.
For each projection angle, equally pixel-length spaced mea-
surements are sampled. If we take γ sample points for each
projection angle, the measured data for one specific angle will
be a dimension γ vector p. Then we can write the projection
operator in matrix form:

Wθx = pθ, (1)

where Wθ is a γ × n line projection matrix with angle θ.
If we have d different viewing angles, we can represent the
projection matrices and measurements as:

Ax = y, (2)

with

A =

Wθ1
...

Wθd

 , y =

pθ1...
pθd

 (3)

A will be an m × n line projection matrix that maps x onto
measurement data y, where m = γ · d.

The reconstruction problem is, given the projection matrix
A and data y, with m << n, to find a discrete solution x,
xi ∈ {0, k1, . . . , kM}. This is an inverse problem with the
solution having M + 1 unknown intensity levels. We assume
the maximum value of kλ, λ = 1, . . . ,M is bounded by S,
0 ≤ kλ ≤ S.

3. ALGORITHM

We propose an iterative linear programming relaxation algo-
rithm to handle this problem. Based on our previous work
[11] on binary tomography, a step-function basis T was in-
troduced. We extend this concept to represent a M + 1 level
discrete image x as the linear combination of several two-
level signals with coefficients

[
u1,u2, . . .uM

]
x =

M∑
λ=1

kλ ·Tuλ, uλi ∈ {−1, 0, 1} (4)

It leads the reconstruction algorithm to be an reweighed l1
norm convex programming formulation that favors the sparse-
ness of uλ

[
u1, . . . ,uM

]
= arg min

uλ

M∑
λ=1

∥∥wλ. ∗ uλ
∥∥
1

(5)

subject to y = Ax (6)

x =

M∑
λ=1

k̃λ ·Tuλ (7)

−1 ≤ uλ ≤ 1, 0 ≤ xi ≤ D(i) (8)

There are two major questions in our algorithm: how to
get the intensity estimate k̃λ and the boundary of feasible re-
gion D(i)? The intensity estimate k̃λ is critical to the recon-
struction result. With the intensity estimate k̃λ, the reweighed
algorithm tends push the coefficient uλi into the boundary
uλi ∈ [−1, 1] which means uλi ∈ {−1, 0, 1}. This leads to
a solution x where every pixel has a discrete intensity level:
xi ∈ {0, k̃1, . . . , k̃M}. The size of feasible region also plays
an important role for the reweighed l1 minimization proce-
dure. For example, assume some pixels xi have the intensity
level kλ, and we select a larger feasible region for them, say,
D(i) > kλ. Because all the entries of the projection matrix A
are non-negative and reweighed l1 tends to push the solution
towards the range boundaries, we will have some xj = D(i)
and some xl ≤ kλ in order to satisfy Ax = y. The histogram
of the reconstructed image will spread out over the region.
On the other hand, if we set the feasible region too small,
D(i) < kλ, no solution can be found for Ax = y inside the
feasible region 0 ≤ xi ≤ D(i).

We initialize our algorithm by setting the intensity esti-
mate and feasible region with the upper bound, k̃λ = S, 0 ≤



xi ≤ S, and run the sparse reconstruction algorithm to get
an initial solution x0. Then we update the estimated intensity
level k̃λ. We define a threshold ε and form a histogram of the
intensities of all pixels with intensities greater ε, x0

i ≥ ε. By
using Gaussian Mixture Model (GMM) based clustering [16],
we partition this histogram them into M groups. We only use
pixel values greater than ε for clustering because 0 is a prior
known level, whose intensity does not need to be estimated.
Furthermore, the Gaussian distribution used in GMM is sym-
metrical and pixel intensities are non-negative, thus if we per-
formed GMM clustering on all pixel values we would never
obtain a cluster with mean 0. In summary, we use simple
thresholding to assign small pixel values to the cluster with
intensity 0, while using GMM to estimate the remaining in-
tensities from pixel data above the threshold. We update the
estimated intensity level k̃λ based on the mean cλ and vari-
ance σλ of each cluster:

k̃λ ← k̃λ − γ(
1

σλ
) · (kλ − cλ), (9)

The coefficient function γ( 1
σλ

) is defined as min{0.25, 1
σλ
}

to control the update speed. The new intensity estimate k̃λ is
chosen so that it moves closer to the mean cλ of cluster Gλ.

After updating the intensity estimate k̃λ, we need to define
the new feasible region for the reweighed l1 minimization. In
the previous step, the result for GMM clustering can deter-
mine to which cluster each pixel xi belongs. However, for
a pixel intensity which is located near the boundary between
two clusters, there is uncertainty about which cluster it actu-
ally belongs to. Thus, instead of using the GMM clustering
result, we propose a soft decision for the feasible region. We
define the ‘forward mapping’ of each cluster z = k̃λ · Tuλ
and declare pixel i belongs to group λ if zi ≥ ε. Note that it
is possible that one pixel belongs to several different clusters.

For the ideal case, every pixel only belongs to one cluster
and the intensity k̃λ gives the gray level of this cluster. The
feasible region for the pixel i in cluster Gλ will be 0 ≤ xi ≤
k̃λ. But in case that a pixel xj belongs to several different
clusters λ1, . . . , λp, we choose the boundary for xj as 0 ≤
xj ≤ max

λ1,...,λp
k̃λ. By choosing a larger feasible region, we

make sure that at least there will be a solution for the convex
programming.

When we have a perfect estimate of the intensity level,
k̃λ = kλ, in other words we have the exact feasible region 0 ≤
xi ≤ kλ, this problem is reduced to the binary tomography
problem we addressed in our previous work.

4. SIMULATION RESULTS

In the first simulation, we use a 64 × 64 simplified Shepp-
Logan phantom with three intensity levels as the testing
image. The intensity for the outer circle is 80, and for
the right and lobes is 16. For the measurements, {12, 18}

different projection angles are taken uniformly between
[0, 180] and zero mean Gaussian noise is added with vari-
ance σ = {0, 0.1, 0.2, 0.5, 1, 2, 5}. We set the upper bound
D = 100 and use CVX [17] as our convex programming
solver.

We show the histogram of the reconstructed image through
iterations in Figure 1. After we update the intensity level, the
distribution of histogram becomes more concentrated and
finally converges to a few peaks. From the results, we see
that most of the non-zero entries xi stay on the boundary
of feasible region as we expected. The mean square error
of the reconstructed image with different noise variance and
number of projections is shown in Figure 2. We compare the
results with the standard filter-back projection[18], and total
variation(TV) reconstruction[19]. It shows our method has
much better performance than the other two approaches and it
outperforms the TV method even with fewer measurements.
Compared to our previous work, even though not knowing
the intensity level as a prior information increases the dif-
ficulty of this problem, the overall results still show good
performance.

In the second experiment, we use a testing image with size
256 × 256. When we solve the large dimension convex pro-
gramming problem, the conventional second order method,
e.g., interior point method requires huge memory space to
store the Hessian matrix. Instead, we use the first order algo-
rithm, Projected Gradient[20] method to solve it with limited
memory requirement. The convex problem can be summa-
rized with two constraints

Min
∑
λ

‖Wλuλ‖1

Subject to C1:Data fitting : A(
∑
λ

k̃λ ·Duλ) = y

C2:Boundary : LB(i) ≤ T(u)i ≤ UB(i)

The Projected Gradient algorithm will project the solution and
gradient onto feasible sets. But finding the intersection of
C = C1 ∩ C2 is not an easy task. Instead, we alternately
solve these two problems(See figure 3)

Min
∑
λ ‖uλ‖1 + µ · φBd(u) (10)

Subject to u ∈ C1:Data fitting (11)

Min
∑
λ ‖uλ‖1 + ν · ‖Ax− b‖2 (12)

Subject to u ∈ C2:Boundary (13)

The result is shown in figure 4. After projected on data fitting
set, some pixels may become negative4. Next step it will be
projected onto the boundary set and move to our preferred
solution. The change of MSE with iterations is listed in 5.

5. CONCLUSION

We have presented a new automatic intensity level estimation
algorithm for discrete tomography, which focuses on recon-



(a) Testing phantom

(c) After 2 iterations

(b) After 1 iteration

(c) After 3 iterations

Fig. 1. Shepp-Logan phantom and histogram of the recon-
structed image

Fig. 2. MSE vs Noise level. Blue: Our method, Red: Total
variation, Green: FBP

struction of unknown discrete level images that have a sparse
representation under certain dictionary. Our algorithm iter-
ates between reweighed l1 minimization and GMM histogram
clustering steps to estimate the unknown intensity levels. The
proposed algorithm had very good performance in our pre-
liminary experimental evaluations. It outperforms the con-
ventional TV method even with fewer measurements. Future
work involves understanding the performance of the proposed
algorithm under different noise and image models, for exam-
ple using Poisson models for the noise statistics of the X-ray
detector. And we plan to develop an method on the top of our
current work to handle the unknown number of intensity level
case.

We are currently using CVX as our convex programming
solver which limits the image size by 100 × 100 on a typi-
cal PC. For large image, we use Projected Gradient method to

Fig. 3. Alternating projection on two convex sets

handle the problem. But it suffers from the slow convergence
speed. In future work we will explore the convergence behav-
ior of such first order algorithms to work on high resolution
images.
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Algorithm 1 Exact Algorithm Description
1: Choose the allowable error δ in observed data and stop

criterion ρ. Also select ∆, ε.
2: Define the maximal iteration number lmax and set the it-

eration number liter = 0. Initialize the boundary k̃λ
(0)

with upper bound S, each pixel belongs to every group
i ∈ Gλ and the weight wλ(0)

i = 1,∀i = 1, . . . , n. λ =
1, . . . ,M .

3: Solve the reweighed l1 norm linear programming

[
u1(liter) , . . . ,uM

(liter)
]

= arg min
uλ

M∑
λ=1

∥∥∥wλ(liter)

. ∗ uλ
∥∥∥
1

subject to ‖y −Ax‖2 ≤ δ

x =

M∑
λ=1

k̃λ ·Tuλ

−1 ≤ uλ ≤ 1, 0 ≤ xi ≤ D(i)

4: Update the weights: for each i = 1, . . . , n. λ = 1, . . . ,M

wλ(l+1)

i =
1

|uλ(l)

i |+ ∆

5: Run the Gaussian Mixture Model (GMM) clustering on
the support x to partition them into M clusters. With the
mean cλ and variance σλ, update the boundary for new
feasible region by

kλ ← kλ − γ(
1

σλ
)(kλ − cλ)

6: Update the boundary of each pixel by forward mapping
of each group zλ = k̃λ ·Tuλ

i ∈ Gλ if zλi ≥ ε
D(i) = max

i∈Gλ
{k̃λ}

7: Terminate the iteration if
∥∥x(l) − x(l−1)

∥∥
2
≤ ρ or liter

reaches the maximum number of iteration. Otherwise,
increase louter and go to step 3.


