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Abstract

1 A multiple-input single-output (MISO) wiretap channel model is considered, that includes a multi-

antenna transmitter, a single-antenna legitimate receiver and a single-antenna eavesdropper. For the

scenario in which spherical uncertainty for both the legitimate and the eavesdropper channels is included,

the problem of finding the optimal input covariance that maximizes the worst-case secrecy rate subject

to a power constraint, is considered, and an explicit expression for the maximum worst-case secrecy rate

is provided.
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I. INTRODUCTION

Wireless physical (PHY) layer based security approaches exploit the physical characteristics of the

wireless channel to enhance the security of communication systems. The most basic physical layer model

that captures the problem of communication security was proposed in [1]. Later, the Gaussian scalar

wiretap channel was studied in [2]. Recently, the secrecy capacity of multi-antanna wiretap channels has

been studied in [3], [4]. The above work assumes that perfectchannel state information (CSI) on the

legitimate and the eavesdropper channels. When ellipsoidal channel uncertainty is included, the worst-

case secrecy rate of multiple-input single-output (MISO) cognitive radio network was studied in [5]. In

[5], the worst-case secrecy rate maximization problem is converted to a quasi-convex problem by using

the S-procedure to express the channel uncertainty constraint in a linear matrix inequality (LMI) form.

In [6], a MISO channel in the presence of multiple eavesdroppers, each equipped multiple antennas, was

considered. Perfect CSI as well as channel uncertainty wereconsidered in [6]. As in [5], the problem

was converted to a semidefinite programming (SDP) problem byusing the S-procedure to express the

channel uncertainty constraint in LMI form.

In this paper, we consider the same MISO wiretap scenario as in [5], [6], except that we consider a

special case of the channel uncertainty considered in [5], [6], i.e., spherical uncertainly. For this case, we

derive an explicit expression of optimal input covariance that maximizes worst-case secrecy rate subject

to a power constraint. In particular, the solution is obtained via finding the eigenvalues of a known6-by-6

matrix. The advantage of such an explicit solution lies in:

1) Independent of the number of antennas the problem leads toa 6-by-6 matrix whose entries are

obtained by direct and simple calculation from the estimated channel values (see Eq. (8) and (28)).

The computation time for finding the eigenvalues of such6-by-6 matrix is not affected by the size

of problem. In contrast, for the existing methods ([5], [6]), the computation time for the iteration

algorithm is affected significantly by the size of problem.

2) The structure of the optimal input covariance matrix is explicitly given (see Eq. (12)).

3) A (simple) necessary and sufficient condition for a positive worst-case secrecy rate is explicitly given

(see Theorem 1).

Notation- Upper case and lower case bold symbols denote matrices and vectors, respectively. Super-

scripts∗, T and† denote respectively conjugate, transposition and conjugate transposition.A � 0 means

that the matrixA is Hermitian positive semi-definite.|a| denotes the absolute value ofa, while ‖a‖
denotes Euclidean norm of the vectora. eig(A) denotes the eigenvalues of the matrixA.
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II. SYSTEM MODEL AND PROBLEM STATEMENT

Consider a Gaussian MISO wiretap channel, which includes a transmitter is equipped withnT antennas,

and a legitimate receiver and an eavesdropper, each equipped with a single antenna. The received signals

at the legitimate receiver and the eavesdropper are respectively given by

yR = h
†
Rx+ vR, and yE = h

†
Ex+ vE (1)

wherex is thenT × 1 transmitted signal vector with zero mean and covariance matrix Q = E{xx†};

hR, hE are respectively channel vectors between the transmitter and legitimate receiver, and between the

transmitter and eavesdropper;vR, vE are the noises at the legitimate receiver and the eavesdropper with

zero means and unit variances, respectively.

We consider the scenario in which spherical channel uncertainty, i.e., [7, §18.2.4]

hR ∈ ΩR = {hR

∣

∣ ‖hR − h̄R‖ ≤ ǫR}, (2)

hE ∈ ΩE = {hE

∣

∣ ‖hE − h̄E‖ ≤ ǫE} (3)

where h̄R and h̄E are the estimated values,ǫR and ǫE are the estimated error bounds. LetP be the

transmitted power budget. We investigate the maximum worst-case secrecy rate defined as [5]

Rs = max
Q�0,Tr(Q)≤P

min
hR∈ΩR,hE∈ΩE

Rs(Q,hR,hE) (4)

whereRs(Q,hR,hE) = log(1+h
†
RQhR)−log(1+h

†
EQhE). We aim to find the optimal input covariance

matrix Q⋆. A necessary condition to ensureRs > 0 is 0 /∈ ΩR, i.e.,

‖h̄R‖ > ǫR. (5)

We assume that the condition (5) holds in this paper.

Sincelog(·) is an increasing function, (4) is equivalent to

max
Q�0,Tr(Q)≤P

min
hR∈ΩR,hE∈ΩE

1 + h
†
RQhR

1 + h
†
EQhE

. (6)

Let τ⋆ be its optimal objective value. Certainly,τ⋆ > 1 is equivalent toRs > 0.

III. E XPLICIT SOLUTION OF OPTIMAL INPUT COVARIANCE MATRIX

One can show that ifτ⋆ > 1 (Rs > 0), then there exists a rank one matrix, to be denoted byQ⋆. The

proof can be found in [6]. With this, we assumeτ⋆ > 1 and find the rank oneQ⋆. If such rank oneQ⋆

achievesRs > 0, Q⋆ is indeed the solution of the problem. Otherwise,Rs = 0.
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Sinceτ⋆ > 1, it is easy to verify thatTr(Q⋆) = P . Then, we letQ = Puu† and rewrite (6) as

max
‖u‖2=1

1 + P min
hR∈ΩR

|u†hR|2

1 + P max
hE∈ΩE

|u†hE |2
. (7)

Let us denote

a = P‖h̄E‖2, b = P‖h̄R‖2, c =
ǫR

‖h̄R‖
, d =

ǫE
‖h̄E‖

,

r =
|h̄†

Eh̄R|
‖h̄R‖ ‖h̄E‖

, and z0 = max(c,
√

1− r2 ). (8)

Let z⋆ be the solution of

max
z0≤z≤1

[

g(z) =
1 + b(z − c)2

1 + a
(

rz −
√
1− r2

√
1− z2 + d

)2

]

. (9)

The main result of this paper is given in the following theorem.

Theorem 1:

i) The sufficient and necessary condition forRs > 0 is that






√
1− r2 z0 +

(

r −
√

b/a
)
√

1− z20 ≥ 0
√
1−r2

√

1−z20 −
(

r−
√

b/a
)

z0 > c
√

b/a+ d
(10)

or







√
1− r2 z0 +

(

r −
√

b/a
)
√

1− z20 < 0
√

1− r2 + (
√

b/a− r)2 > c
√

b/a+ d
. (11)

ii) Assume that (10) or (11) holds. In other words,τ⋆ > 1. The solution of (7) is

u⋆=

√

1− z⋆2

1− r2
h̄E

‖h̄E‖
−
(

√

1− z⋆2

1− r2
+
z⋆

r

) (h̄†
Rh̄E)h̄R

‖h̄R‖2‖h̄E‖
. (12)

It can be seen from (12) thatu⋆ is a linear combination of̄hR and h̄E . The maximum worst-case

secrecy rate is

Rs = log
1 + b(z⋆ − c)2

1 + a
(

rz⋆ −
√
1− r2

√
1− z⋆2 + d

)2 . (13)

Remarks:Let us gain some insight into the conditions forRs > 0. Obviously, (10) and (11) are both

independent ofP . In other words, if neither of these two conditions holds,Rs > 0 cannot be achieved even

when infinite power is used. Roughly speaking, this may occurif the estimation is not good enough (c, d

is relatively large), or the legitimate channel is worse than the eavesdropper channel, i.e.,‖h̄R‖ < ‖h̄E‖.

Proof of Theorem 1
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For the optimalu, consider the two subproblems in (7):

min
hR∈ΩR

|u†hR|2, (14)

and max
hE∈ΩE

|u†hE |2. (15)

Their optimal objective values can be obtained in closed form, given by(|u†h̄R|−ǫR)2 and(|u†h̄E|+ǫE)2

respectively. Moreover, sinceτ⋆ > 1, it holds that|u†h̄R| > ǫR. More details can be found in Appendix

A. From this result, (7) is equivalent to

max
‖u‖2=1, |u†h̄R|>ǫR

1 + P (|u†h̄R| − ǫR)
2

1 + P (|u†h̄E |+ ǫE)2
. (16)

We can reduce (16) to a problem of one variable. To this end, let z = |u†h̄R|/‖h̄R‖. The domain ofz is

ǫR
‖h̄R‖

< z ≤ 1, (17)

which follows from Cauchy’s inequality and the constraint|u†h̄R| > ǫR. It can be seen that the condition

(5) ensures a non-empty domain ofz. Obviously, for fixedz (i.e., |u†h̄R| is fixed at‖h̄R‖z), |u†h̄E |
should be minimized. Keeping this in mind, let

ψ(z) ,min
u

|u†h̄E | (18)

s.t. ‖u‖2 = 1, and |u†h̄R| = ‖h̄R‖z.

Then, we rewrite (16) as

max
z

1 + P (‖h̄R‖z − ǫR)
2

1 + P (ψ(z) + ǫE)2
s.t.

ǫR
‖h̄R‖

< z ≤ 1. (19)

The functionψ(z) is obtained in closed form using the following lemma.

Lemma 1: Let a and b be (known) unit-norm vectors withr = |b†a| < 1, and 0 ≤ q ≤ 1. The

problem

min
u

u†bb†u (20)

s.t. u†aa†u = q, and ‖u‖2 = 1

has an optimal objective value






(r
√
q −

√
1− r2

√
1− q )2 if q ≥ 1− r2

0 if q ≤ 1− r2
. (21)

Moreover, ifq ≥ 1− r2, then the optimalu is given by

u⋆ = −
(
√

1− q

1− r2
+

√
q

r

)

(a†b)a+

√

1− q

1− r2
b. (22)

November 7, 2018 DRAFT



5

The proof is given in Appendix B. The proof is similar to the one of Lemma 2 in [8].

We assume that̄hR and h̄E are linearly independent (otherwise, the problem is reduced and simpler).

Let a = h̄R/‖h̄R‖, b = h̄E/‖h̄E‖, r = |h̄†
Eh̄R|/(‖h̄R‖ ‖h̄E‖), q = z2. It follows from Lemma 1 that

ψ(z) =
{ ‖h̄E‖(rz −

√
1− r2

√
1− z2 ) z ≥

√
1− r2

0 otherwise
. (23)

Note that in (19),(|h̄R|z − ǫR)
2 is an increasing function ofz. On the other hand,ψ(z′) = 0 for any

z′ <
√
1− r2 . Thus, it holds thatz⋆ ≥

√
1− r2 (otherwise, there existsz⋆ < z′ <

√
1− r2 such thatz′

achieves a larger objective value. But this contradicts theoptimality of z⋆). With this, we rewrite (19) as

(9). Here we replace the constraintz > c by z ≥ c for convenience. Furthermore, from (22), we obtain

(12).

From the objective in (9), the sufficient and necessary condition for Rs > 0 is that there exists a

z0 ≤ z ≤ 1 such that
√
b (z − c) >

√
a
(

rz −
√
1− r2

√
1− z2 + d

)

, or equivalently

max
z0≤z≤1

[

g1(z) =
√

1− r2
√

1− z2 −
(

r −
√

b/a
)

z
]

> c
√

b/a+ d. (24)

Consider the optimization problem in the left hand side of (24). The derivativeg′1(z) = −z
√
1− r2/

√
1− z2 −

(

r −
√

b/a
)

is a strictly decreasing function ofz. On the other hand,g′1(z) → −∞ asz → 1. Thus, if

g′1(z0) ≤ 0, thenz0 is the solution; ifg′1(z0) > 0, then the optimalz is the unique point withz0 < z < 1

andg′1(z) = 0. From this fact, we obtain (10) or (11). This completes the proof.

A. Determiningz⋆

Note that the derivativeg′(z) → −∞ asz → 1. Thusz⋆ is eitherz0 or one of the feasible points (if

any) with g′(z) = 0. We introduce the bijective transform

z =
2x

1 + x2
, 0 ≤ x ≤ 1 (25)

to rewrite (9) as

max
x

[

F (x) =
p0x

4 + p1x
3 + p2x

2 + p1x+ p0
q0x4 + q1x3 + q2x2 + q3x+ q4

]

(26)

s.t.
1−

√

1− z20
z0

≤ x ≤ 1

wherep0 = 1+ bc2, p1 = −4bc, p2 = 4b+2bc2 +2, q0 = 1+ a(
√
1− r2+ d)2, q1 = 4ar(

√
1− r2 + d),

q2 = 2 − 2a + 6ar2 + 2ad2, q3 = 4ar(−
√
1− r2 + d), q4 = 1 + a(−

√
1− r2 + d)2. The solutionx⋆

November 7, 2018 DRAFT
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should be(1 −
√

1− z20 )/z0 or one of the feasible points (if any) withF ′(x) = 0. One can rewrite

F ′(x) = 0 as an equation of six degree

a0x
6 + a1x

5 + a2x
4 + a3x

3 + a4x
2 + a5x+ a6 = 0 (27)

wherea0 = p1q0 − p0q1, a1 = 2p2q0 − 2p0q2, a2 = 3p1q0 + p2q1 − p1q2 − 3p0q3, a3 = 4p0q0 + 2p1q1 −
2p1q3 − 4q4p0, a4 = 3p0q1 + p1q2 − p2q3 − 3q4p1, a5 = 2p0q2 − 2q4p2, a6 = p0q3 − q4p1. All the six

roots of the equation (27) equal the eigenvaluesλi of the following 6× 6 matrix [10, Ch. 6]

G =





−a1

a0

−a2

a0

−a3

a0

−a4

a0

−a5

a0

−a6

a0

I5 05×1



 . (28)

Thus, the optimalx satisfies (if there exists several feasible candidates forx⋆, the best one is chosen)

x⋆ ∈
{1−

√

1− z20
z0

, eig(G)
}

. (29)

Oncex⋆ is obtained, we have

z⋆ =
2x⋆

1 + x⋆2
. (30)

IV. N UMERICAL SIMULATIONS

In this section we provide some examples to illustrate the result. We focus on how to obtain the explicit

solution. For more numerical simulations on different estimated channel values, e.g.,(ǫR, ǫE) please refer

to [5] and [6].

First consider a MISO wiretap channel withnT = 4 antennas. We set(ǫR, ǫE) = (10−2, 10−2),

P = 5dB and

h̄R=















−1.0301+ 0.3060i

−0.0162+ 0.5618i

0.7134− 0.1504i

1.0488 + 0.1086i















, h̄E=















−0.3475− 0.0816i

0.3662− 0.1442i

0.2450− 0.4282i

0.2369 + 0.2346i















.

According to (8), we obtain thata = 2.01390, b = 9.84720, c = 0.0566687, d = 0.0125309, r =

0.540848, z0 = 0.841120. Then, according to Theorem 1 i), we calculate
√
1− r2 z0+

(

r−
√

b/a
)
√

1− z20 =

−0.1959 < 0,
√

1− r2 + (
√

b/a− r)2 −(c
√

b/a+d) = 1.8452 > 0. Thus, (11) holds and henceRs > 0.

Then, we have

eig(G)=
[

47.92,−1.46, 0.0016 ± 0.99i, 0.6741,−0.016
]

.

There is only one feasiblex = 0.6741 amongeig(G). Then, we obtainx⋆ = 0.6741 and hencez⋆ =

0.9270.

November 7, 2018 DRAFT
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Finally, according to (12) and (13), we haveu⋆ = [0.4692 − 0.3024i, 0.1854 − 0.4521i, −0.3258 −
0.1020i, −0.5655 + 0.1153i]T and

Rs = 3.1162 (bits/s/Hz).

Fig. 1 plots the secrecy rate for different powerP .

Second, we give an example in whichRs > 0 cannot be achieved. We set(ǫR, ǫE) = (0.05, 0.05),

and h̄R = [0.1216+0.0118i, 0.0106−0.0316i,−0.0856−0.1063i, 0.2241−0.0216i], h̄E = [0.3599+

0.0174i, 0.1655−0.1923i,−0.2323−0.4065i, 0.7313−0.2272i]. Neither of (10) and (11) holds. Thus,

Rs > 0 cannot be achieved even when infinite power is used.

V. CONCLUSION

We study the problem of finding the optimal input covariance that maximizes the worst-case secrecy

rate of a MISO wiretap channel under channel uncertainty, subject to a power constraint. We show that

the optimal input covariance can be obtained via finding the eigenvalues of a known6-by-6 matrix.

APPENDIX A

CLOSED FORM SOLUTIONS OF (14) AND (15)

First, we solve (15). LethE = h̄E + ǫEy. The constrainthE ∈ ΩE becomes‖y‖ ≤ 1. Thus, (15) is

equivalent to

max
‖y‖≤1

|u†h̄E + ǫEu
†y|2. (31)

First, |u†h̄E|+ ǫE is an upper bound of|u†h̄E + ǫEu
†y| which can be easily verified from the triangle

inequality and Cauchy’s inequality. Moreover, this upper bound can be achieved:y = (u†h̄E/|u†h̄E|)u
(if u†h̄E = 0, theny = u). Thus, the optimal objective value of (31) is(|u†h̄E |+ ǫE)

2.

Second, we solve (14). LethR = h̄R + ǫRx. The constrainthR ∈ ΩR becomes‖x‖ ≤ 1. Thus, (14)

is equivalent to

min
‖x‖≤1

|u†h̄R + ǫRu
†x|2. (32)

Since τ⋆ > 1, it holds that the optimal objective value of (32) is greaterthan zero. Note that the

objective value of (32) is zero at the pointx1 = −(u†h̄R/ǫR)u. Thus,x1 must be infeasible and hence

|u†h̄R| > ǫR. With this, we can show that|u†h̄R|−ǫR is a lower bound of|u†h̄R+ǫRu
†x| which can be

easily verified from the reverse triangle inequality and Cauchy’s inequality. Moreover, this lower bound

can be achieved:x = −(u†h̄R/|u†h̄R|)u. Thus, the optimal objective value of (32) is(|u†h̄R| − ǫR)
2.

This completes the proof.

November 7, 2018 DRAFT
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APPENDIX B

PROOF OFLEMMA 1

First, we show that the optimal objective value is zero if andonly if q ≤ 1− r2. Denote the null space

of b asEb with E
†
bEb = I andEbE

†
b = I − bb†. Thenb†u = 0 if and only if there exists a vectorz

such thatu = Ebz which, when inserted intou†aa†u = q and‖u‖2 = 1, results in that‖z‖2 = 1 and

z†E
†
baa

†Ebz = q. Note that0 ≤ z†E
†
baa

†Ebz ≤ λmax(E
†
baa

†Eb) = a†EbE
†
ba = a†(I−bb†)a = 1− r2.

In other words,‖z‖2 = 1 andz†E†
baa

†Ebz = q hold if and only ifq ≤ 1−r2. The desired result follows.

Second, we consider the caseq > 1 − r2. The optimalu is a linear combination ofa andb, which

follows from its optimality conditionbb†u−µ1aa†u−µ2u = 0 or equivalentlyµ2u = (b†u)b−(µ1a
†u)a

whereµ1 andµ2 are multipliers (Obviously,µ2 6= 0 sincer < 1). From this result, we letu = c1a+c2b.

Sinceeiωu (for any realω) satisfies the constraints and attains the same objective value asu, we can

restrict c2 ≥ 0. Insertingu = c1a+ c2b into the constraints and objective, results in

|c1|2 + c22 + c∗1c2a
†b+ c1c2b

†a = 1, (33)

|c1|2 + c22r
2 + c∗1c2a

†b+ c1c2b
†a = q, (34)

and u†bb†u = 1− |c1|2(1− r2). (35)

From (35), we need to maximize|c1|2. From (33) and (34), we getc22(1 − r2) = 1 − q which leads to

c2 =
√

(1− q)/(1− r2) . By denotingc1 = |c1|eiθ whereθ is the argument ofc1, we can rewrite (33)

as

|c1|2 + |c1|c2r(e−i(φ+θ) + ei(φ+θ)) + (c22 − 1) = 0 (36)

whereφ is the argument ofb†a. This is a quadratic equation of one variable|c1|. It is not difficult to show

that the optimalθ = π−φ, and the optimal|c1| = c2r+
√
q. Thus, the optimalc1 = (c2r+

√
q )ei(π−φ),

and hence

u = −
(
√

1− q

1− r2
+

√
q

r

)

(a†b)a+

√

1− q

1− r2
b. (37)

Here we have used the fact that,ei(π−φ) = −e−iφ = −a†b/r. Further, from (35), we obtain

u†bb†u = 1− (c2r +
√
q)2(1− r2)

= (r
√
q −

√

1− r2
√

1− q )2. (38)

This completes the proof.
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Fig. 1. Worst-case secrecy rate versus power,P , of a MISO wiretap channel with4 transmit antennas.(ǫR, ǫE) = (10−2, 10−2).
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