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Abstract

H A multiple-input single-output (MISO) wiretap channel nebds considered, that includes a multi-
antenna transmitter, a single-antenna legitimate receimel a single-antenna eavesdropper. For the
scenario in which spherical uncertainty for both the legétie and the eavesdropper channels is included,
the problem of finding the optimal input covariance that ma@xes the worst-case secrecy rate subject
to a power constraint, is considered, and an explicit exgiwasor the maximum worst-case secrecy rate

is provided.
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. INTRODUCTION

Wireless physical (PHY) layer based security approachesoigxhe physical characteristics of the
wireless channel to enhance the security of communicatistesis. The most basic physical layer model
that captures the problem of communication security wapgsed in [1]. Later, the Gaussian scalar
wiretap channel was studied inl [2]. Recently, the secrepacity of multi-antanna wiretap channels has
been studied in|3],[]4]. The above work assumes that pedbkahnel state information (CSI) on the
legitimate and the eavesdropper channels. When ellipisoigennel uncertainty is included, the worst-
case secrecy rate of multiple-input single-output (MIS@ymitive radio network was studied inl[5]. In
[5], the worst-case secrecy rate maximization problem isveded to a quasi-convex problem by using
the S-procedure to express the channel uncertainty cartsimaa linear matrix inequality (LMI) form.

In [6], a MISO channel in the presence of multiple eavesdesppeach equipped multiple antennas, was
considered. Perfect CSI as well as channel uncertainty wensidered in[[6]. As in[[5], the problem
was converted to a semidefinite programming (SDP) problenudiyg the S-procedure to express the
channel uncertainty constraint in LMI form.

In this paper, we consider the same MISO wiretap scenario §5], [6], except that we consider a
special case of the channel uncertainty considered inl@}]i.E., spherical uncertainly. For this case, we
derive an explicit expression of optimal input covariancattmaximizes worst-case secrecy rate subject
to a power constraint. In particular, the solution is obgdlwvia finding the eigenvalues of a know+by-6

matrix. The advantage of such an explicit solution lies in:

1) Independent of the number of antennas the problem leads6tby-6 matrix whose entries are
obtained by direct and simple calculation from the estimhatieannel values (see E@] (8) andl(28)).
The computation time for finding the eigenvalues of sddby-6 matrix is not affected by the size
of problem. In contrast, for the existing methods| ([5], [&)e computation time for the iteration
algorithm is affected significantly by the size of problem.

2) The structure of the optimal input covariance matrix iplEitly given (see Eq.[(12)).

3) A (simple) necessary and sufficient condition for a pesitworst-case secrecy rate is explicitly given
(see Theorernll).

Notationr Upper case and lower case bold symbols denote matrices enidrs, respectively. Super-
scriptsx, 7" andt denote respectively conjugate, transposition and cotguganspositionA > 0 means
that the matrixA is Hermitian positive semi-definitéa| denotes the absolute value @f while ||al|

denotes Euclidean norm of the vectareig(A) denotes the eigenvalues of the mataix

November 7, 2018 DRAFT



Il. SYSTEM MODEL AND PROBLEM STATEMENT

Consider a Gaussian MISO wiretap channel, which includesreinitter is equipped with; antennas,
and a legitimate receiver and an eavesdropper, each eguiggea single antenna. The received signals

at the legitimate receiver and the eavesdropper are régglgagiven by
YR = hkx +vR, and yp = hgx +vE Q)

wherex is thenr x 1 transmitted signal vector with zero mean and covarianceixn@ = E{xx'};
hp, hy are respectively channel vectors between the transmittesitimate receiver, and between the
transmitter and eavesdroppey;, vr are the noises at the legitimate receiver and the eaveseiropin
zero means and unit variances, respectively.

We consider the scenario in which spherical channel unogyta.e., [7,§18.2.4]
hr € Qr = {hg||hg — hg| < er}, 2)
hp € Qp = {hp||hp — el < ep} 3)

wherehyr and hy are the estimated valuesp and ey are the estimated error bounds. LRtbe the

transmitted power budget. We investigate the maximum waase secrecy rate defined as [5]

R, = i R.(Q.hp, h 4
Q0. T(Q)<P hncOm hncQs (Q.h,hi) @)

whereR(Q,hg, hp) = 10g(1+h}'%QhR)—log(1+hEQhE). We aim to find the optimal input covariance

matrix Q*. A necessary condition to ensufg > 0is 0 ¢ Qp, i.e.,
gl > g (5)

We assume that the conditidnl (5) holds in this paper.

Sincelog(+) is an increasing function[](4) is equivalent to

1+hLQh
max min M. (6)
Q=0,T(Q)<P hrcln hees 1+ hi Qhy

Let 7 be its optimal objective value. Certainky; > 1 is equivalent toRs > 0.

IIl. EXPLICIT SOLUTION OF OPTIMAL INPUT COVARIANCE MATRIX

One can show that if* > 1 (R, > 0), then there exists a rank one matrix, to be denote@byThe
proof can be found in_J6]. With this, we assumg > 1 and find the rank on&*. If such rank oneQ*

achievesR; > 0, Q* is indeed the solution of the problem. Otherwigg, = 0.
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Sincet* > 1, it is easy to verify thaflr(Q*) = P. Then, we letQ = Puu' and rewrite [6) as

1+ P min [u'hp|?
hreQr

. 7
||Hﬁ§)=(1 14+ P max |uthg|? (7)
hpeQp

Let us denote

» » €R €E

hi h
r= JEiﬁy, and 29 = max(c, /1 —1r?). (8)
[ [[he]

Let z* be the solution of

1+b(z —c)?
12eE 9(2) = / 2,/ 2 21
PoSZS 1—|—a(rz— 1—r*vV1—=z2 —|—d)

The main result of this paper is given in the following theare

(9)

Theorem 1:

i) The sufficient and necessary condition s > 0 is that

VI= 20+ (- /B ) T= 3 >0

VI=12\/1-22 — (r—/b/a )z > cy/bja +d
VI—122+ (r—/bja)y/1-22 <0
\/1—r2+(\/b/_a—r)2 >cy/bfa+d

i) Assume thaf(10) of_(11) holds. In other words,> 1. The solution of[{7) is

(10)

or (11)

u

_ 2§ _ 2 o (hihe)h
. |1—2*? hg <1z z>(RE)R (12)

V1= el NV 122 " v/ hglR(he]
It can be seen fron(12) that* is a linear combination ohy and hz. The maximum worst-case

secrecy rate is
1+b(z* — ¢)?

1+ a(rzx — V1 —1r2y/1 — 2*2 +d)2.
Remarks:Let us gain some insight into the conditions fB; > 0. Obviously, [Z0) and[{11) are both

Ry =log

(13)

independent of. In other words, if neither of these two conditions holftg,> 0 cannot be achieved even
when infinite power is used. Roughly speaking, this may oddine estimation is not good enough, ¢

is relatively large), or the legitimate channel is worsenttize eavesdropper channel, ighg|| < |[hg].

Proof of Theorem [1
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For the optimalu, consider the two subproblems [0 (7):

min |u'hg|?, (14)
REQR

d Thg|?. 15

wd e, el 1)

Their optimal objective values can be obtained in closethf@iven by(ju'hr|—¢z)? and(juthp|+ex)?
respectively. Moreover, since” > 1, it holds thatju'hr| > eg. More details can be found in Appendix
[Al From this result,[{7) is equivalent to
1+ P(‘UTER’ — ER)2
max = .
laf2=1, [uthz|>ex 1+ P([ufhp|+cp)
We can reducd (16) to a problem of one variable. To this enid; & [u'hy|/||hz|. The domain of: is

(16)

€R
[hg|
which follows from Cauchy’s inequality and the constrdimthr| > ¢x. It can be seen that the condition

<z<1, a7

@) ensures a non-empty domain af Obviously, for fixedz (i.e., [u'hg| is fixed at|hg|z), [u'hg|

should be minimized. Keeping this in mind, let
Y(z) £min |[u'hg| (18)
st. Jlul> =1, and |u'hg| = ||hg]|2.

Then, we rewrite[(16) as

1+P(HBRH2—€R)2 €ER
ax 5 s.t. =
= 1+ P((2) +ex) gl

The functiony(z) is obtained in closed form using the following lemma.

<z<1. (29)

Lemma 1: Leta and b be (known) unit-norm vectors with = |bTa| < 1l,and0 < g < 1. The

problem
min u'bb’u (20)
u
st. ulaa’u =g, and |[ul®>=1

has an optimal objective value

(r\/_—\/m\/W)Q if g>1—12

(21)
0 if g <1—172
Moreover, ifg > 1 — 2, then the optimair is given by
1—gq V4 t 1—gq
* __ Ny -
u = < 1_742—|—T>(ab)a—|— T 5 b. (22)
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The proof is given in AppendikIB. The proof is similar to theeoof Lemma 2 in[[3].

We assume thdip andhy are linearly independent (otherwise, the problem is redwrel simpler).
Leta = hy/|hg|, b =hg/||hg|, r = |ﬁgﬁR|/(\|ﬁR\| Ihg|), ¢ = 2%. It follows from Lemme[ll that

IBsl(rz - VI—PPVI—2) 2> VI—12

0 otherwise

M@z{ (23)

Note that in [IP),(|hr|z — eg)? is an increasing function of. On the other handy(z’) = 0 for any
2 < /1 —1r%.Thus, it holds that* > v/1 — r2 (otherwise, there exists* < 2’ < v/1 — 2 such that’

achieves a larger objective value. But this contradictsoyitemality of z*). With this, we rewrite[(I9) as

(@). Here we replace the constraint> ¢ by 2 > ¢ for convenience. Furthermore, fron{22), we obtain

2.

From the objective in[{9), the sufficient and necessary dmmdifor R, > 0 is that there exists a

20 < z < 1 such thatvd (2 — ¢) > /a (rz — V1 —r2y/1— 22 + d), or equivalently
max [g1(z) = V1—7r2V1—22 — (r—/b/a )7]

20<z<1
> ey/bja + d. (24)

Consider the optimization problem in the left hand sidé_dj)(The derivativey; (z) = —zv1 — r2/v/1 — 22 —

(r — +/b/a ) is a strictly decreasing function af On the other handy;(z) — —occ asz — 1. Thus, if
g1(z0) <0, thenz is the solution; ifg} (z9) > 0, then the optimal is the unique point withyy < z < 1
and g} (z) = 0. From this fact, we obtairi (10) ok (L1). This completes theofr

A. Determiningz*

Note that the derivativeg’(z) — —occ asz — 1. Thusz* is eitherz, or one of the feasible points (if
any) with ¢’(z) = 0. We introduce the bijective transform

2

to rewrite [9) as

_ pox? + p1a® + pox? + pra + po] (26)

gttt + i+ T+

1—4/1— 22
h VI TR <<

s.t.
20

max [F(:L’)

wherepg = 1+bc?, p; = —4be, py = 4b+2bc® +2, g0 = 1 +a(vV/1 — 12 +d)?, ¢1 = 4ar(v/1 —r2 +d),
g2 = 2 — 2a + 6ar? + 2ad?, g3 = dar(—V/1 — 12 +d), g1 = 1 + a(—V/1 —r2 + d)2. The solutionz*
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should be(1 — /1 — 22)/z, or one of the feasible points (if any) with’(z) = 0. One can rewrite

F’(xz) = 0 as an equation of six degree
aox® + a12° + asa® + asz® + agx® + asz + ag =0 (27)

whereag = pi1go — poqi, a1 = 2p2qo — 2poq2, a2 = 3p1qo + P2q1 — P12 — 3Pog3, az = 4poqo + 2p1q1 —
2p1q3 — 4qapo, as = 3poq1 + P1g2 — P2q3 — 3qap1, as = 2poge — 2qap2, ag = pogs — qapi. All the six
roots of the equatiori_(27) equal the eigenvaliesf the following 6 x 6 matrix [10, Ch. 6]

_ & 42 03 Q4 __ G5 __ Qe
G — Qo ao ao Qo Qo ao . (28)
I5 051

Thus, the optimal: satisfies (if there exists several feasible candidatesfpthe best one is chosen)
1—+/1—22
ot e {Zizo eig(G)}. (29)
0
Oncez™* is obtained, we have
2
14

*

(30)

IV. NUMERICAL SIMULATIONS

In this section we provide some examples to illustrate tkalte\We focus on how to obtain the explicit
solution. For more numerical simulations on differentrestied channel values, e.¢g, eg) please refer
to [5] and [6].

First consider a MISO wiretap channel withy = 4 antennas. We sefeg,eg) = (1072,1072),
P =5dB and

—1.0301 + 0.3060i —0.3475 — 0.08161

_ —0.0162 + 0.5618i — 0.3662 — 0.1442i
hp= , hp=

0.7134 — 0.15044 0.2450 — 0.4282i

1.0488 4 0.10861 0.2369 + 0.23461

According to [8), we obtain that = 2.01390,b = 9.84720,c¢ = 0.0566687,d = 0.0125309,r =
0.540848, z) = 0.841120. Then, according to Theordmh 1), we calculgfe — r2 zg+(r—+/b/a ) /1 — 2% =
—0.1959 < 0, \/1 —r2+ (y/b/a —1r)? —(cy/b/a+d) = 1.8452 > 0. Thus, [11) holds and hendg, > 0.

Then, we have

eig(G)=[47.92, —1.46,0.0016 + 0.99i, 0.6741, —0.016] .

There is only one feasible = 0.6741 amongeig(G). Then, we obtainc* = 0.6741 and hence:* =

0.9270.
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Finally, according to[(12) and(113), we hawe = [0.4692 — 0.3024i, 0.1854 — 0.4521i, —0.3258 —
0.1020i, —0.5655 + 0.1153i]" and

Rs = 3.1162 (bits/s/Hz).

Fig.[d plots the secrecy rate for different power

Second, we give an example in whidhy, > 0 cannot be achieved. We sgir, cg) = (0.05,0.05),
andhp = [0.1216 + 0.01181,0.0106 — 0.03161, —0.0856 — 0.10631, 0.2241 — 0.0216i], hp = [0.3599 +
0.01741,0.1655 — 0.1923i, —0.2323 — 0.40651, 0.7313 — 0.2272i]. Neither of [10) and[(11) holds. Thus,

R, > 0 cannot be achieved even when infinite power is used.

V. CONCLUSION

We study the problem of finding the optimal input covariarttat tmaximizes the worst-case secrecy
rate of a MISO wiretap channel under channel uncertaintyjesti to a power constraint. We show that

the optimal input covariance can be obtained via finding fgerevalues of a know-by-6 matrix.

APPENDIX A

CLOSED FORM SoLuTIONS oF (I4) AnD (I5)

First, we solve [Ib). Leh = hg + egy. The constrainhz € Qr becomes|y| < 1. Thus, [Ib) is
equivalent to

max |u'hg + eguly|? (31)
lyll<1

First, juthg| 4 eg is an upper bound ofu'hg + epu’y| which can be easily verified from the triangle
inequality and Cauchy’s inequality. Moreover, this uppeuitd can be achieved: = (uthg/|[uthg|)u
(if uThg = 0, theny = u). Thus, the optimal objective value df{31) (a1'hg| + ex)?.

Second we solve [(T#). Leh = hy + egx. The constrainhy € Qr becomed|x|| < 1. Thus, [1#)
is equivalent to

min |u'hg + epu’x|?. (32)
[Ix[I<1

Since 7* > 1, it holds that the optimal objective value df {32) is greatiean zero. Note that the
objective value of[(32) is zero at the point = —(u'hr/ex)u. Thus,x; must be infeasible and hence
luThp| > eg. With this, we can show thati'hy| — e is a lower bound ofu’hp 4 ¢zufx| which can be
easily verified from the reverse triangle inequality and €sts inequality. Moreover, this lower bound
can be achievedt = —(ufhg/[ufhg|)u. Thus, the optimal objective value df {32) {aathg| — er)>.

This completes the proof.
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APPENDIX B

PrROOF OFLEMMA [1]

First, we show that the optimal objective value is zero if antly if ¢ < 1 —r2. Denote the null space
of b asE, with EJE, = I andE,E] = I — bbf. Thenbfu = 0 if and only if there exists a vectas
such thatu = E,z which, when inserted intm'aa’u = ¢ and ||u||?> = 1, results in that|z||> = 1 and
zTEZaaTEbz = ¢. Note that0 < zTEZaaTEbz < )\max(EZaaTEb) = aTEbEZa =afl(I-bbhHa=1-1r2
In other words||z||? = 1 andz'E}aa'Eyz = ¢ hold if and only if¢ < 1 2. The desired result follows.

Second, we consider the cage> 1 — 2. The optimalu is a linear combination o and b, which
follows from its optimality conditiorbb’u—;aa’u—pusu = 0 or equivalentlysu = (bfu)b—(u1afu)a
wherey; andue are multipliers (Obviouslyue # 0 sincer < 1). From this result, we lett = c;a+ c2b.
Sincee“u (for any realw) satisfies the constraints and attains the same objective @su, we can

restrictcy > 0. Insertingu = c1a + cob into the constraints and objective, results in

le1> 4+ 2 + clesa’b + cjeobla = 1, (33)
le1|? + 2 + i epa’b 4 crepbla = g, (34)
and ubbTu =1 — |¢;>(1 — 7?). (35)

From [35), we need to maximize;|?. From [33) and[(34), we gef(1 — r2?) = 1 — ¢ which leads to

ca = /(1 —q)/(1 —r2). By denotingc; = |c1]e! whered is the argument of;, we can rewrite[(33)
as

]c1]2 + ]cﬂczr(e_i(‘HQ) + ei(¢+6)) + (c% —-1)=0 (36)

whereg is the argument db'a. This is a quadratic equation of one variaflg. It is not difficult to show

that the optimab = 7 — ¢, and the optimalc| = cor + ,/g. Thus, the optimat; = (cor + ,/q)e!™%),

and hence
l—q V4 1—g¢
u:—< 1_T2+T>(aTb)a+ s b (37)
Here we have used the fact that{™ %) = —e~¢ = —afb/r. Further, from[[35), we obtain

u'bbfu =1 — (cor + /7)*(1 —?)
(i VISP (38)

This completes the proof.
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Fig. 1. Worst-case secrecy rate versus poweipf a MISO wiretap channel with transmit antennager, ex) = (1072,1072).
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