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Abstract—To increase the spectral efficiency of future wireless
networks, it is important to wisely integrate multiple services
at the physical layer. Here we study the efficient integration
of confidential services in bidirectional relay networks, where
a relay node establishes a bidirectional communication between
two other nodes using a decode-and-forward protocol. In the
broadcast phase the relay transmits an additional confidential
message to one node while keeping the other node completely
ignorant of it. We use the concept of strong information theoretic
security to ensure that the non-legitimate node cannot decode the
confidential message no matter what its computational resources
are. This results in the study of the bidirectional broadcast channel
with confidential messages for which we establish the strong
secrecy capacity region.

I. INTRODUCTION

Operators of wireless networks are confronted with an in-
herent problem: due to the open nature of the wireless channel
a transmitted signal is received by its intended users but
can also easily be eavesdropped by non-legitimate receivers.
To keep information secret, current systems usually apply
cryptographic techniques which are based on the assumption
of insufficient computational capabilities of non-legitimate
receivers. It is clear that with increasing computational power
these techniques become more and more insecure.

Information theoretic, or physical layer, security uses the
physical properties of the wireless channel in order to establish
a higher level of security. This security only depends on the
channel; so whatever transformation is applied to the signals
that are received by non-legitimate receivers, the original
message cannot be reproduced with high probability.

Information theoretic security was initiated by Wyner, who
introduced the wiretap channel [1], and later generalized by
Csiszár and Körner to the broadcast channel with confidential
messages [2]. Recently, there is growing interest in information
theoretic security, for example we refer to [3, 4]. There is
also work on multi-user settings such as the multiple access
channel with confidential messages [5], the MIMO Gaussian
broadcast channel with common and confidential messages [6,
7], the interference channel with confidential messages [8], or
the two-way wiretap channel [9, 10].

However, most of these works use the criterion of weak
secrecy which is heuristic in nature, in that no operational
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Fig. 1. Decode-and-forward bidirectional relaying. In the initial multiple
access (MAC) phase, nodes 1 and 2 transmit their messages m1 and m2 with
rates R2 and R1 to the relay node. In the succeeding bidirectional broadcast
(BBC) phase, the relay forwards the messages m1 and m2 with rates R2

and R1 and adds a confidential message mc for node 1 with rate Rc to the
communication which has to be kept secret from node 2.

meaning has been given to it yet. This means that even if this
criterion holds, one still does not know what a non-legitimate
receiver can or cannot do to decode the confidential message.
A criterion that can be given an operational meaning is the
criterion of strong secrecy introduced by Maurer and Wolf in
[11]: it was established in [12, 13] for the wiretap channel that
under the strong secrecy criterion, the average decoding error
at a non-legitimate receiver tends to one for any decoder it
may use. This criterion is stronger than the one used so far.

The observation of [12, 13] constitutes the main motivation
to consider strong secrecy in bidirectional relay networks
as depicted in Figure 1. Here a relay node establishes a
bidirectional communication between two other nodes using
a decode-and-forward protocol [14–17] and at the same time
transmits an additional confidential message to one node while
keeping the other non-legitimate node completely ignorant of
it. In the initial multiple access (MAC) phase both nodes
transmit their messages to the relay node which decodes them.
This is the classical MAC. In the succeeding broadcast phase
the relay re-encodes both individual messages and the addi-
tional confidential message in such a way that the receiving
nodes can conclude on their intended messages using their
own message from the previous phase as side information.
Due to the side information at the receivers this differs
from the classical broadcast scenario und is therefore known
as bidirectional broadcast channel (BBC) with confidential
messages. In the following we establish the corresponding
secrecy capacity region for the strong secrecy criterion. Strong
security has further been investigated in [12, 13, 18–20].1

1Notation: Discrete random variables are denoted by non-italic capital
letters and their realizations and ranges by lower case letters and script
letters, respectively; H(·) and I(·; ·) are the traditional entropy and mutual
information; P(·) denotes the set of all probability distributions; E[·] and
P{·} are the expectation and the probability.



II. BIDIRECTIONAL BROADCAST CHANNEL WITH
CONFIDENTIAL MESSAGES

Let X and Yi, i = 1, 2, be finite input and output sets.
Then for input and output sequences xn ∈ Xn and yni ∈ Yni ,
i = 1, 2, of length n, the discrete memoryless broadcast chan-
nel is given by W⊗n(yn1 , y

n
2 |xn) :=

∏n
k=1W (y1,k, y2,k|xk).

Since we do not allow any cooperation between the receiv-
ing nodes, it is sufficient to consider the marginal channels
W⊗ni (yni |xn) =

∏n
k=1Wi(yi,k|xk), i = 1, 2, only.

In this work we consider the standard model with a block
code of arbitrary but fixed length n. The set of individual mes-
sages of node i, i = 1, 2, is denoted by Mi := {1, ...,M (n)

i },
which is also known at the relay node. Further, the set
of confidential messages of the relay node is denoted by
Mc := {1, ...,M (n)

c }. We will frequently use the abbreviations
M :=M1 ×M2 and m := (m1,m2).

In the bidirectional broadcast (BBC) phase we assume that
the relay has successfully decoded both individual messages
m1 ∈M1 and m2 ∈M2 that nodes 1 and 2 have sent in the
previous multiple access (MAC) phase. Besides both individ-
ual messages the relay additionally integrates and transmits a
confidential message mc ∈ Mc intended for node 1, which
has to be kept secret from the non-legitimate node 2.

Definition 1: An (n,M
(n)
c ,M

(n)
1 ,M

(n)
2 )-code for the BBC

with confidential messages consists of one (stochastic) encoder
at the relay node

f :Mc ×M1 ×M2 → Xn

and decoders at nodes 1 and 2

g1 : Yn1 ×M1 →Mc ×M2 ∪ {0}
g2 : Yn2 ×M2 →M1 ∪ {0}

where the element 0 in the definition of the decoders plays the
role of an erasure symbol and is included for convenience.

When the relay has sent the messages mc and m =
(m1,m2), and nodes 1 and 2 have received yn1 and yn2 , the
decoder at node 1 is in error if g1(yn1 ,m1) 6= (mc,m2).
Accordingly, the decoder at node 2 is in error if g2(yn2 ,m2) 6=
m1. Then, the average probability of error at node i, i = 1, 2
is given by

µ
(n)
i :=

1

|Mc||M1||M2|
∑
mc,m

λi(mc,m)

with λ1(mc,m) = P{g1(yn1 ,m1) 6= (mc,m2)|mc,m sent}
and λ2(mc,m) = P{g2(yn2 ,m2) 6= m1|mc,m sent}.

To ensure that the confidential message is kept secret from
the non-legitimate node 2, we require I(Mc; Y

n
2 |M2) ≤ ε for

some (small) ε > 0 with Mc and M2 the random variables
uniformly distributed over the sets Mc and M2 and Yn2 =
(Y2,1,Y2,2, ...,Y2,n) the corresponding output at node 2. This
criterion is known as strong secrecy [11].

Remark 1: It is shown in [12, 13] for the wiretap channel
that the strong secrecy criterion has the following operational
meaning: no matter how the non-legitimate node 2 tries to
decode the confidential message, the average probability of

error tends to one. More precisely, assume that for any given
code of Definition 1 the non-legitimate node has a decoder

g′2 : Yn2 ×M2 →Mc.

Then
P{g′2(Yn2 ,M2) 6= Mc} ≥ 1− ε′(ε)

with limε→0 ε
′(ε)→ 0.

Definition 2: A rate triple (Rc, R1, R2) ∈ R3
+ is said to

be achievable for the BBC with confidential messages if
for any δ > 0 there is an n(δ) ∈ N and a sequence of
(n,M

(n)
c ,M

(n)
1 ,M

(n)
2 )-codes such that for all n ≥ n(δ) we

have 1
n logM

(n)
c ≥ Rc − δ, 1

n logM
(n)
2 ≥ R1 − δ, and

1
n logM

(n)
1 ≥ R2 − δ, and

I(Mc; Y
n
2 |M2) ≤ ε(n) (1)

while µ(n)
1 , µ

(n)
2 , ε(n) → 0 as n→∞. The set of all achievable

rate triples is the strong secrecy capacity region of the BBC
with confidential messages and is denoted by CSBBC.

Theorem 1: The strong secrecy capacity region CSBBC of the
BBC with confidential messages is the set of all rate triples
(Rc, R1, R2) ∈ R3

+ that satisfy

Rc ≤ I(V;Y1|U)− I(V;Y2|U) (2a)
Ri ≤ I(U;Yi), i = 1, 2 (2b)

for random variables U−V −X− (Y1,Y2).
Proof: In [21] we established the weak secrecy capac-

ity region of the BBC with confidential messages where
the condition (1) is replaced by the weaker condition
1
nI(Mc; Y

n
2 |M2) ≤ ε(n). Thus, it is clear that the strong

secrecy capacity region CSBBC is contained in the weak secrecy
capacity region CWBBC, i.e., CSBBC ⊆ CWBBC. Since interestingly,
CWBBC is given by exactly the same rate triples (2), the weak
secrecy capacity region CWBBC establishes immediately the con-
verse for CSBBC. Therefore, it remains to show the achievability
of (2) for the strong secrecy criterion.

III. KEY IDEA FOR STRONG SECRECY

In this work we use Devetak’s approach [19] to establish
strong secrecy in bidirectional relay networks. Therefore we
start with a basic observation concerning the relationship of
total variation distance2 and mutual information.

Lemma 1: Let A, B, and C be finite sets and A, B, and C
be corresponding random variables. If

‖PA|C=c ⊗ PB|C=c − PAB|C=c‖ ≤ ε ≤
1

2
∀ c ∈ C

then
I(A;B|C) ≤ −ε log ε

|A||B|
with PA ⊗ PB(a, b) = PA(a)PB(b).

2The total variation distance of measures µ, ν on A is defined as

‖µ− ν‖ :=
∑
a∈A
|µ(a)− ν(a)|.



Proof: The proof is quite similar to [22, Lemma 1.2.7]
and omitted for brevity.

Thus, for I(Mc; Y
n
2 |M2) to be small, it suffices to find for

every ε > 0 a code that satisfies for all m2 ∈M2

‖PYn2 |M2=m2
⊗ PMc|M2=m2

− PYn2 Mc|M2=m2
‖ ≤ ε.

Writing PYn2 |mc,m1,m2
:= PYn2 |Mc=mc,M1=m1,M2=m2

for
brevity, we have

PYn2 |M2=m2
=

1

|Mc||M1|
∑
mc,m1

PYn2 |mc,m1,m2

and it suffices to find for every (mc,m) ∈Mc×M a measure
θm on Yn2 such that

‖PYn2 |mc,m − θm‖ ≤ ε. (3)

IV. CODEBOOK DESIGN FOR STRONG SECRECY

In this section we prove the achievability of Theorem 1.
Therefore, we construct a codebook that enables reliable
communication of the individual messages m = (m1,m2) and
the confidential message mc to their respective receivers and
further ensures the confidentiality of mc. We show by random
coding arguments that the codewords constructed in this way
will have both these properties with high probability.

In order to prove (3), we use the following lemma which is
due to Hoeffding [23].

Lemma 2: Let b > 0 and let Z1, . . . ,ZL be i.i.d. random
variables with values in [0, b]. Let µ = E[Z1] be the expecta-
tion of Z1. Then

P

{
1

L

L∑
l=1

Zl /∈ [(1± ε)µ]

}
≤ 2 exp

(
−L · ε2µ

2b ln 2

)
.

We will exploit this concentration of sums of i.i.d. random
variables around their expectation for the marginal channel
W2. Before, we need to define the random coding scheme.
Let U be a finite alphabet and let PU ∈ P(U) be a probability
distribution on U . Further let PX|U : U → P(X ) be a
stochastic matrix with inputs from U and outputs in X . Let
U be a random variable distributed according to PU and let
X be a random variable whose distribution conditional on U
is PX|U. In order to extend these distributions to sequences of
length n, we recall the concept of δ-typical sequences.

Let δ > 0. Then T nU,δ denotes the set of those se-
quences un ∈ Un for which |N(u|un) − nPU(u)| ≤ nδ
for every u ∈ U , where N(u|un) is the number of indices
1, . . . , n for which ui = u. Further, for every un ∈ U ,
the set T nX|U,δ(u

n) contains those xn ∈ Xn which satisfy
|N(x, u|xn, un)−PX|UN(u|un)| ≤ nδ for all (u, x) ∈ U×X ,
where N(x, u|xn, un) is the number of indices 1, . . . , n for
which (xi, ui) = (x, u).

We can now define a probability measure P ′Un ∈ P(Un)
such that

P ′Un(u
n) :=

P⊗nU (un)

P⊗nU (T nU,δ)

if un ∈ T nU,δ and P ′Un(u
n) = 0 else, where P⊗nU (un) =∏n

k=1 PU(uk). Also we extend PX|U to a stochastic matrix
P ′Xn|Un with in- and outputs of length n by

P ′Xn|Un(x
n|un) :=

P⊗nX|U(x
n|un)

P⊗nX|U(TX|U,δ(un))

if xn ∈ T nX|U,δ(u
n) and P ′Xn|Un(x

n|un) = 0 else, where
P⊗nX|U(x

n|un) :=
∏n
k=1 PX|U(xk|uk).

These definitions allow us to define the random
coding scheme with block length n as follows. Let
L(n),M

(n)
c ,M

(n)
1 ,M

(n)
2 be integers which we will fix later

and let L := {1, . . . , L(n)}. Then let {Unm : m ∈ M} be
i.i.d. random variables with values in Un and distribution P ′Un .
For each m, we define random variables {Xnlmcm : (l,mc) ∈
L×Mc} taking values in Xn, which are i.i.d. conditional on
Unm and whose distribution equals P ′Xn|Un .

We come now to the application of Lemma 2. Note that
W2 can also be regarded as a stochastic matrix with inputs
from U × X where the U-inputs do not make any difference.
For this interpretation of W2 one can define T nY2|XU,δ(x

n, un)
analogous to T nX|U,δ(u

n). For every (l,mc,m) and yn2 ∈ Yn2 ,
we now consider the random variable

W̃n
2 (y

n
2 |Xnlmcm,Um) (4)
:=W⊗n2 (yn2 |Xnlmcm)1T n

Y2|XU,δ
(Xnlmcm,Um)(y

n
2 ),

where for any set A ⊂ Yn2 , we let 1A(yn2 ) = 1 if yn2 ∈ A and
1A(y

n
2 ) = 0 else. Conditional on Unm, these random variables

are i.i.d. Moreover, as the input pair (Xnlmcm,U
n
m) is jointly

δ-typical with respect to PXU, the joint distribution of X and
U, and the outputs of W̃n

2 are δ-typical conditional on the
inputs, it is well-known that (4) is upper-bounded by

W̃n
2 (y

n
2 |Xnlmcm,Um) ≤ 2−n(H(Y2|X,U)−δ1),

(see e.g. [22]), where Y2 is a random variable on Y2 whose
distribution conditional on X and U is W2. Let θ′m(yn2 ) =

E[W̃n
2 (y

n
2 |Xnlmcm,U

n
m)|Unm] be the expectation of (4) condi-

tional on Unm, and set for any ε > 0

Fm :=
{
yn2 ∈ T nY2|U,2|X |δ(U

n
m) :

θ′m(yn2 ) ≥ ε|T nY2|U,2|X |δ(U
n
m)|−1

}
.

Finally, we set θm(yn2 ) := θ′m(yn2 )1Fm(y
n
2 ). Then we define

Am(yn2 ) to be the event that

1

L(n)

L(n)∑
l=1

W̃n
2 (y

n
2 |Xnlmcm,U

n
m) ∈ [(1± ε)θm(yn2 )]. (5)

Now let yn2 ∈ Fm. For the probability of the complement
Am(yn2 )

c, we have

P {Am(yn2 )
c} =

∑
un∈Un

P{Unm = un}P {Am(yn2 )
c|Unm = un}

≤ 2 exp

(
−L(n) · ε

22n(H(Y2|X,U)−δ1)θm(yn2 )

2 ln 2

)
≤ 2 exp

(
−L(n) · ε

32−n(I(Y2;X|U)+δ2)

2 ln 2

)
, (6)



where the equality is the law of total probability, the first
inequality is due to Lemma 2, and second inequality follows
from the well-known fact (see e.g. [22]) that

|T nY2|U,2|X |δ(U
n
m)| ≤ 2n(H(Y2|U)+δ̃2)

which applies here because Unm is δ-typical. Note that if ε =
2−nβ for some β ≤ δ/4, this bound tends to zero doubly-
exponentially for

L(n) ≥ 2n(I(Y2;X|U)+2δ2). (7)

This provides the basis for the proof of (3).
The bounds on M (n)

c ,M
(n)
1 ,M

(n)
2 come from the constraint

(7) together with the communication constraints from the
following result. It treats achievable rates for the bidirectional
broadcast channel with messages m1 and m2 as above and
another individual message intended for node 1. Similarly
as the confidential message in Theorem 1 this messages
originates from the relay node, but it does not have to be
kept secret from node 2.

Theorem 2: An achievable rate region for the BBC with an
additional message from the relay to node 1 is given by set
of all rate triples (R′1, R1, R2) ∈ R3

+ that satisfy

R′1 ≤ I(X;Y1|U);

Ri ≤ I(U;Yi), i = 1, 2

for random variables U−X− (Y1,Y2).
Proof: The proof is straightforward and can be done using

a standard random coding arguments.
Now we put the confidentiality and the communication

aspects together. Without loss of generality, we may assume
that I(Y2; X|U) < I(Y1; X|U). Then we can choose δ small
enough such that (7) is satisfied and that at the same time

1

n
logL(n) ≤ I(Y2; X|U) + 3δ2 ≤ I(Y1; X|U).

For a rate triple (R′1, R1, R2) contained in the achievable
set from Theorem 2, choose numbers M

′(n)
1 ,M

(n)
1 ,M

(n)
2

satisfying M
′(n)
1 ≥ L(n) and

Ri − δ ≤
1

n
logM

(n)
i ≤ Ri −

δ

2
, i = 1, 2

and further

R′1 − δ ≤
1

n
logM

′(n)
1 ≤ R′1 −

δ

2
.

Then we can writeM′1 = L×Mc. With these numbers given,
we perform the above construction of the random variables
Unm1m2

,Xnlmcm1m2
. Obviously, this construction yields rates

that satisfy the corresponding conditions given in (2), i.e.,
Rc ≤ I(X;Y1|U)− I(X;Y2|U) and Ri ≤ I(U;Yi), i = 1, 2.

The bound (6) ensures that (5) is satisfied for every
mc,m1,m2 and every yn2 ∈ Fm1m2 with probability close to
1. From the random coding proof of Theorem 2, we know that
the random codewords we have chosen are the codewords of a
deterministic code achieving average errors µ(n)

1 , µ
(n)
2 ≤ 2−nζ

for some ζ > 0 with probability close to 1. Thus there must

be a realization of Unm1m2
,Xnlmcm1m2

which also has these
properties. We denote this realization by unm1m2

, xnlmcm1m2
.

Now we construct the code with stochastic encoder which
will do what we want. We take the sets Mc,M1,M2 as
message sets. The message triple (mc,m1,m2) is mapped to
the codeword xnlmcm1m2

with probability 1/L. This defines a
stochastic encoder. The decoder at node 1 stays the same, i.e.,
it decodes the complete quadruple (l,mc,m1,m2). Decoder 2
also stays the same. As we already know that the code is good
for reliably transmitting all the messages to their respective
destinations, it remains to prove (3).

Using the triangle inequality and again writing m =
(m1,m2), we obtain for every (mc,m) ∈Mc ×M

‖PYn2 |mc,m − θm‖

≤ ‖PYn2 |mc,m −
1

L(n)

L(n)∑
l=1

W̃n
2 (·|xlmcm)‖

+ ‖ 1

L(n)

L(n)∑
l=1

W̃n
2 (·|xlmcm)(1− 1Fm)‖

+ ‖ 1

L(n)

L(n)∑
l=1

W̃n
2 (·|xlmcm)1Fm − θm‖.

We denote the three parts of the above sum by I, II, III in
that order. As the codewords satisfy (5), we have III ≤ ε.

Term I equals

1

L(n)

L(n)∑
l=1

W⊗n2 (Yn2 \ T nY2|XU,δ(x
n
lmcm, u

n
m)|xnlmcm)

≤ 2−ncδ
2

for some constant c > 0, where we again interpret W2 as a
channel from U×X to Y2 and use the fact that the probability
that the output of a channel is not δ-typical conditional on the
inputs is exponentially small.

Finally, II can be written as

1− 1

L(n)

L(n)∑
l=1

W̃n
2 (Fm|xnlmcm),

which by the validity of (5) is at most 1 − (1 − ε)θ′m(Fm).
Now note that if yn2 is δ-typical conditional on (xnlmcm, u

n
m),

then it is 2|X |δ-typical conditional on unm, so θ′m(yn2 ) 6= 0
only for yn2 ∈ T nY2|U,2|X |δ(u

n
m). With the definition of Fm,

this implies

θ′m(Fm) ≥ θ′m(Yn2 )− ε
= E[W⊗n2 (T nY2|XU,δ(X

n
11m,U

n
m)|X11m)|Um]− ε,

and this can also be bounded from below by 1 − 2−ncδ
2 − ε

by the same argument as in the estimation of I . In total, this
gives an upper bound of

2ε+ 2−ncδ

on II .



Altogether, we can bound the total variation distance be-
tween PYn2 |mc,m1,m2

and θm1m2
by 3ε+ 2 · 2−ncδ2 , so (3) is

proved. Note that this distance is exponentially small, as we
chose ε to have the form 2−nβ . Thus the mutual information
between Mc and the corresponding output Yn2 given M2 can
be made exponentially small as well.

This proves the achievability of rate regions as in (2), but
only for random variables U − X − (Y1,Y2). However, note
that the relay can prefix an artificial channel PX|V with a
finite alphabet V to W . Then the above construction can be
performed for the channel

(PX|VW )(y1, y2|v) :=
∑
x∈X

W (y1, y2|x)PX|V(x|v).

The effect of the prefix channel can be integrated in the
random encoder. Varying PX|V yields the achievable rate
region claimed in Theorem 1.

V. PHYSICAL LAYER SERVICE INTEGRATION

Theorem 1 shows that confidential services with strong
secrecy can efficiently be integrated in bidirectional relay
networks at the physical layer. But besides such confidential
services, operators of current wireless systems usually offer
also multicast services where a common message has to be
transmitted to a whole group of receivers. The Multimedia
Broadcast Multicast Service (MBMS), as specified by the
3GPP organization, is only one example.

In [24, 25] common and confidential messages are integrated
in bidirectional relay networks for the weak secrecy criterion.
With the results and techniques obtained in the previous
sections it is straightforward to efficiently integrate such an
additional common message in bidirectional relay networks
at the physical layer where strong secrecy is required for the
confidential communication.

Corollary 1: The strong secrecy capacity region of the BBC
with common and confidential messages is the set of all rate
tuples (Rc, R0, R1, R2) ∈ R4

+ that satisfy

Rc ≤ I(V;Y1|U)− I(V;Y2|U)

R0 +Ri ≤ I(U;Yi), i = 1, 2

for random variables U−V −X− (Y1,Y2).

VI. CONCLUSION

In this work we studied the efficient integration of confi-
dential services in bidirectional relay networks at the physical
layer with strong secrecy. This required the analysis of the
BBC with confidential messages for which we derived the
strong secrecy capacity region. Interestingly, it is shown that
the strong secrecy capacity region coincides with the corre-
sponding weak secrecy capacity region. Thus, a requirement of
strong security for confidential services in bidirectional relay
networks does not lead to a loss in the transmission rates
compared to weaker security requirements.
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