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Abstract—We consider the classical AWGN channel where the
channel input is constrained to an amplitude constraint that
stochastically varies at each channel use, independent of the mes-
sage. This is an abstraction of an energy harvesting transmitter
where the code symbol energy at each channel use is determined
by an exogenous energy arrival process and there is no battery for
energy storage. At each channel use, an independent realization
of the amplitude constraint process is observed by the transmitter
causally. This scenario is a state-dependent channel with perfect
causal state information at the transmitter. We derive the capacity
of this channel using Shannon’s coding scheme with causal state
information. We prove that the code symbols must be selected
from a finite set in the capacity achieving scheme, as in the
case of Smith. We numerically study the binary on-off energy
arrivals where the amplitude constraint is either zero or a non-
zero constant.

I. INTRODUCTION

We consider a communication scenario where transmission

energy is not available at the transmitter before the commu-

nication starts; instead, it arrives from an exogenous energy

source during the course of communication as an indepen-

dent and identically distributed (i.i.d.) process. Moreover, the

transmitter does not have a battery to store the arriving energy.

Hence, the code symbol energy in a channel use is constrained

to the energy arrived in that channel use. We assume that the

arrived energy can be observed by the transmitter causally,

right before the code symbol is decided. Therefore, the code

sequence is a function of the observed energy arrival and we

find the capacity of this time-varying amplitude constrained

system with causal state information at the transmitter.

We consider the classical scalar AWGN channel model with

the input-output relationship

Yi = Xi + Ni, i = 1, . . . , n (1)

where Xi is the channel input, Ni is the i.i.d. Gaussian noise

with zero-mean and unit-variance and Yi is the channel output

at the ith channel use. E1, . . . , En is the i.i.d. energy arrival

sequence where Ei ∈ E and |E| is finite. The system model is

shown in Fig. 1. At each channel use, the transmitter observes

Ei and generates a channel input Xi that satisfies X2
i ≤ Ei,

i.e., the code symbol is amplitude constrained to (the square
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Fig. 1. The AWGN channel with time-varying amplitude constraints.

root of) the observed energy. Therefore, the major effect of

energy arrivals is the time variation in the amplitude constraint

that the code symbol should obey at each channel use. As

the transmitter can observe the energy arrival causally, the

resulting system is a state-dependent channel with causal state

information at the transmitter and no state information at the

receiver. The state of the channel is the amount of energy

available at each channel use. At each state, the channel

conditioned on the realized state is an AWGN channel with

an input amplitude constraint equal to the square root of the

arrived energy.

The channel capacity of the static amplitude constrained

AWGN channel was first studied by Smith in [1]. In [1],

Smith proved that the capacity achieving input distribution

has a finite support set and presented an algorithm for the

calculation of that distribution. This line of research has

later been extended in [2]–[5] for various channels includ-

ing quadrature-amplitude constrained AWGN channel and

Rayleigh and Ricean fading channels. In [6], the finiteness

of the support set of the capacity achieving distribution for

conditionally Gaussian channels with bounded inputs, which

encompasses a large class of practical channels, is proved. In

particular, optical channels and fading MIMO channels with

and without state information at the receiver are encompassed

in the finiteness result of [6]. Moreover, [7] reports finiteness

of the capacity achieving distribution for the quantized output

AWGN channel. Also in [8], capacity achieving input distri-

bution for a duty cycle constrained system is shown to have

countably infinite mass points with finite number of points

in each bounded interval. In [9], new sufficient conditions



for the noise distribution are provided for the optimality of

discrete channel inputs in an amplitude constrained additive

noise channel.

The capacity and optimal coding for a state-dependent

channel with causal state information at the transmitter and

no state information at the receiver was characterized by

Shannon in [10]. In [10], Shannon proved that the capacity

of the state-dependent channel with causal state information

available at the transmitter only is equal to the capacity of an

equivalent channel which has an input alphabet extended by

the cardinality of the state alphabet. In the capacity achieving

coding scheme, the codewords are matrices rather than vectors,

whose number of columns is the block length and the number

of rows is the cardinality of the state alphabet. At each channel

use, the code symbol that corresponds to the observed state

is put to the channel. In the sequel, we refer to this coding

scheme as the Shannon strategy.

The problem that we wish to address in this paper has two

main characteristics:

1) amplitude constraints due to available energy, and

2) a state-dependent channel due to different energy arrivals

where the state is naturally known to the transmitter but

not to the receiver.

In this paper, we find the capacity achieving scheme for the

AWGN channel with time-varying amplitude constraints by

applying and extending the results of Smith [1] and Shannon

[10]. We obtain the capacity by applying the Shannon strategy

to the time-varying amplitude constrained channel and opti-

mizing the input distribution of the resulting extended alphabet

channel. In particular, we extend the alphabet of the channel

in accordance with the amplitude constraints and construct

an equivalent channel which has the number of inputs equal

to the cardinality of the alphabet of energy arrivals. Each

input variable is constrained in amplitude by the square root

of the corresponding amount of energy. We show that in the

capacity achieving distribution each input has a finite support

set, extending the result of Smith [1].

Next, we numerically study the considered setting with a

specific binary energy arrival process, which we refer to as

on-off energy arrivals: at each channel use, either E amount of

energy arrives or no energy arrives. We compare the capacity

with several upper bounds such as the capacity of the AWGN

channel with state information available at both sides and

the capacity of the AWGN channel with an unlimited energy

buffer (i.e, an infinite sized battery) [11], [12]. The numerical

results show that the capacity with an infinite sized battery is

considerably higher than the capacity with no battery (i.e., the

setting of this paper), indicating the usefulness of collecting

energy. In [13], we extend the framework considered here from

i.i.d. to general stationary and ergodic energy arrival processes,

and to additive noise channels with the general family of noise

distributions considered in [9].

II. TIME-VARYING AMPLITUDE CONSTRAINTS

Before we address the time-varying amplitude constraints,

we start with providing the necessary preliminary background

on the AWGN channel with a static amplitude constraint.

A. Static Amplitude Constrained AWGN Channel

Discreteness of the capacity achieving input distribution for

a static amplitude constrained AWGN channel was first shown

by Smith in [1] and later the result was generalized for a wide

class of noise distributions in [9]. The channel capacity under

the amplitude constraint A is [1]

CSm(A) = max
F∈F

IF (X;Y ) (2)

where F is the space of input probability distribution functions

whose support sets are constrained to [−A,A]. The subscript

Sm refers to Smith. The proof of finiteness of the distribution

is by contradiction and it requires systematic application of

several steps [1], [9]: The first step is to prove that the space

of distribution functions is compact and the objective function

is concave in the weak topology. Next step is to obtain an

optimality condition in terms of the support set. Smith, then,

shows that the mutual information density function is analytic

in a subset of C that includes R. Finally, he shows that

the optimality condition, after using identity theorem from

complex analysis, leads to a contradiction.

B. Time-Varying Amplitude Constrained AWGN Channel

We now consider the time-varying amplitude constrained

channel shown in Fig. 1. Let A be the amplitude constraint

random variable with the alphabet A = {a1, . . . , aM}.

{Ak}∞k=1 ∈ A is the i.i.d. amplitude constraint process with

probability that Ak = ai is equal to pi for all k. The

realizations of the amplitude constraints {A1, . . . , An} are

observed by the transmitter causally and the code symbol must

comply with the observed amplitude constraint at each channel

use:

|Xk| ≤ Ak, k = 1, . . . , n (3)

The receiver has no information about the variations of

the amplitude constraint at the transmitter. This is a state-

dependent channel with causal state information available at

the transmitter only [10]. The code sequence is determined as

a function of the observed amplitude constraint sequence and

the channel capacity is

CSh = max
pT (t)

I(T ;Y ) (4)

where T = [T1, . . . , TM ] is an extended channel input related

with the output as

pY |T (y|t) =

M
∑

i=1

pipN (y − ti) (5)

where pN (.) is the Gaussian density. In (4), the subscript Sh

refers to Shannon.

C. Other Scenarios with Side Information

We can cast the arriving energy as a state variable attached

to the channel. Knowledge of the state affects the achievable

rates. If neither the transmitter nor the receiver has perfect



knowledge of {Ak}, coding should be performed according to

the minimum of the possible amplitude constraints otherwise

some code symbol will violate amplitude constraint at some

channel use. Hence, the best achievable rate in this case is

Cno−si = CSm(min
i

ai) (6)

where CSm(mini ai) is Smith’s capacity under the amplitude

constraint mini ai.

On the other extreme, if perfect information of amplitude

constraints is available at both the transmitter and the receiver,

a multiplexed coding strategy achieves the maximum possible

rate. Consider |A| parallel codes each generated with code

rates Ri subject to the amplitude constraint ai. Since the

receiver can track the changes in the amplitude constraint

perfectly and due to the inherent stationarity of the amplitude

constraint process, multiplexing codes results in the following

achievable rate:
∑

i piRi = EA[R(A)]. Maximizing over each

amplitude constraint, we obtain the capacity in this case as

Csi@both =

|A|
∑

i=1

piCSm(ai) (7)

where CSm(ai) is Smith’s capacity under the amplitude con-

straint ai.

III. CAPACITY WITH CAUSAL INFORMATION AT THE

TRANSMITTER

For simplicity, we will assume that the amplitude constraint

process takes two different values, a1 and a2 with probabilities

p1 and p2 = 1 − p1. However, the analysis is valid for any

finite value of |A|.
Before dealing with the capacity achieving input distri-

bution, we describe the capacity achieving scheme [10].

Codewords are matrices of n columns (block length) and

of two rows (number of states). The columns are generated

as n i.i.d. realizations of T = (T1, T2) with the optimal

cdf F ∗. Then, 2nR such code matrices are generated as the

codebook and they are announced to the receiver. During

the message transmission, as the causal information of the

amplitude constraint is observed, the transmitter puts the code

symbol at the corresponding row to the channel. Decoding

is performed using joint typicality, and as n → ∞, the

probability of error tends to zero if R < C.

We will now find the optimal cdf F ∗. We define the

random variable T over T = [−a1, a1] × [−a2, a2] as

T = [T1, T2] where T1 and T2 have support sets [−a1, a1]
and [−a2, a2] with joint cumulative distribution function F .

The space of joint probability distribution functions over

[−a1, a1] × [−a2, a2] is:

Ω ,

{

F :

∫ a1

−a1

∫ a2

−a2

dF (t1, t2) = 1

}

(8)

The capacity of the AWGN channel with time-varying ampli-

tude constraint and causal information at the transmitter is:

C = max
F∈Ω

IF (T ;Y ) (9)

with

IF (T ;Y ) =

∫ a1

−a1

∫ a2

−a2

∫ ∞

−∞
f(y|t1, t2) log

(

f(y|t1, t2)
f(y;F )

)

dydF

(10)

where

f(y|t1, t2) = p1pN (y − t1) + p2pN (y − t2) (11)

f(y;F ) =

∫ a1

−a1

∫ a2

−a2

f(y|t1, t2)dF (t1, t2) (12)

Plugging in the AWGN expressions for the original channel,

we will solve the following optimization problem:

max
F∈Ω

∫ a2

−a2

∫ a1

−a1

∫ ∞

−∞
log





∑2
i=1

pi√
2π

e−
(y−ti)

2

2

f(y;F )





(

2
∑

i=1

pi√
2π

e−
(y−ti)

2

2

)

dydF (t1, t2) (13)

We will establish that the capacity achieving input distri-

bution has a support set of finite cardinality. We will apply

the steps of [1], [9] for the proof, which are summarized in

Section II-A. The main difference between the static ampli-

tude constrained and the time-varying amplitude constrained

problems resides in the fact that the channel between T and

Y is not an additive channel. Hence f(y;F ) is not obtained

through a convolution integral and h(Y |T = (t1, t2)) is not a

constant, it takes different values at different (t1, t2). However,

we will show that it is possible to obtain similar arguments for

the line t1 = t2 and this will lead us to the claimed extension.

This way, we also extend the class of problems for which this

technique is applicable.

We note that IF (T ;Y ) is a concave functional of F ∈ Ω.

Moreover, Ω is a convex and compact space in the weak topol-

ogy. Finally, IF (T ;Y ) is strictly concave and weakly differ-

entiable in Ω with the mutual information density i(t1, t2;F )
such that the derivative at G ∈ Ω is

d

dF
IG(T ;Y ) =

∫ a2

−a2

∫ a1

−a1

i(t1, t2;F )dG(t1, t2) − IF (T ;Y )

(14)

In particular, the mutual information density is

i(t1, t2;F ) =

∫ ∞

−∞
log

(

f(y|t1, t2)
f(y;F )

)

f(y|t1, t2)dy (15)

Moreover, i(t1, t2;F ) in (15) is continuous and has analytic

extension over the two-dimensional complex numbers C
2.

These claims are parallel to those in [1], [6], [9]. The proofs

of these and all upcoming claims can be found in [13]. The

convexity and compactness of Ω as well as the concavity and

weak differentiability of IF (T ;Y ) guarantee the uniqueness

of the solution of the optimization problem in (13). Next, we

have the following Lagrangian theorem:

Theorem 1 Let F ∗ ∈ Ω and let SF∗ indicate the support set



of F ∗. Then, F ∗ is optimal if and only if

i(t1, t2;F
∗) ≤ C, ∀(t1, t2) ∈ [−a1, a1] × [−a2, a2] (16)

i(t1, t2;F
∗) = C, ∀(t1, t2) ∈ SF∗ (17)

where C = IF∗(T ;Y ).

We now prove that SF∗ is finite by contradiction. Assume

SF∗ includes infinitely many elements in R
2. By using a

sequence of steps analogous to those in [1], [6], [9], we obtain

the following result:

i(z1, z2) = C, (z1, z2) ∈ C
2 (18)

where C = IF∗(T ;Y ) is the optimal value for the problem

in (13), i.e., the capacity. In particular, i(t1, t2) = C for all

(t1, t2) ∈ R
2. For t1 = t2 = t, we obtain ∀t ∈ R

∫ ∞

−∞

1

2
e−

(y−t)2

2 log (p(y;F )) dy = −C − 1

2
log(2πe) (19)

(19) causes a contradiction as in [1], [6], [9]. Therefore, we

have the following theorem.

Theorem 2 SF∗ is a finite set.

A. Algorithm to Find SF∗

We use a procedure similar to that in [1], [6] to find

the finite support set of the capacity achieving distribution.

We first fix the cardinality of SF . The problem becomes a

2(|SF |)−1 variable convex optimization problem with convex

constraints. After solving this optimization problem, we get the

distribution F that optimizes the objective function subject to

the fixed cardinality. If F satisfies the necessary and sufficient

conditions in Theorem 1, then F ∗ = F . Otherwise, we

increase the cardinality |SF | by one and repeat the procedure.

We start with assuming that |SF | = 2. The optimal distribution

subject to this cardinality constraint has two mass points at the

edges (t1, t2) = (a1, a2) and (t1, t2) = (−a1,−a2). If this

input distribution does not satisfy the necessary and sufficient

conditions in Theorem 1, we solve the problem subject to

|SF | = 3. We repeat the procedure until we reach a distribution

that satisfies the conditions in Theorem 1.

IV. ON-OFF ENERGY ARRIVALS

In this section, we consider on-off energy arrivals: At each

channel use either E units of energy arrives or zero energy

arrives. In this case, A = {a1, a2} where a1 = 0 and a2 =√
E > 0. We denote the probability that E units of energy is

harvested with pon. We have

Csi@both = ponCSm(
√

E) (20)

Note that C ≤ Csi@both and Cno−si = 0.

SF∗ ⊂ R
2 is such that for all (t1, t2) ∈ SF∗ , t1 = 0

since the amplitude constraint for T1 is a1 = 0. Hence, the

optimization problem is over the one dimensional cdf FT2
(t2)

only. The space of cdfs FT2
is such that

∫

√
E

−
√

E

dFT2
(t2) = 1 (21)

For pN (y) = 1√
2π

e−
y2

2 , we have the capacity

C = max
FT2

∈FT2

IFT2
(T2;Y ) (22)

with

IFT2
(T2;Y ) =

∫

√
E

−
√

E

∫ ∞

−∞
f(y|t2) log

(

f(y|t2)
f(y;FT2

)

)

dydFT2

(23)

where

f(y|t2) = (1 − pon)pN (y) + ponpN (y − t2) (24)

Note that similar to the static amplitude constrained AWGN

channel [1], if
√

E is small, the support set of F ∗
T2

is

symmetric binary with two mass points located at ±
√

E. For

pon = 1, the problem reduces to Smith’s amplitude constrained

AWGN capacity problem. In this case, using the algorithm in

Section III-A, we find that if
√

E ≤ 1.66, then symmetric

binary distribution for T2 is optimal and if
√

E > 1.66,

optimal distribution of T2 has more than two mass points. For

pon 6= 1, the channel between T and Y is different from an

AWGN channel; hence, the optimizing distribution is different.

To capture this effect, we define a function of pon as follows

U(pon) = max{x ∈ R : g(t2, x) ≤ g(x, x), ∀t2 ∈ [−x, x]}
where g(t2, x) is the mutual information density i(x, t2;F )
evaluated at the binary symmetric distribution with two

equiprobable mass points located at t2 = −x and t2 = x.

Here, f(y|t2) is given by (24). In view of the conditions in

Theorem 1, U(pon) is the highest amplitude constraint under

which the binary symmetric distribution is optimum when the

energy arrival probability is pon.

The function U(pon) is monotonically decreasing with pon

as shown in Fig. 2. As pon is decreased, the number of

channel uses the nature allows the transmitter to send a non-

zero data symbol decreases and this leads to smaller capacity.

We observe in Fig. 2 that as pon is increased, binary input

distribution becomes optimal for a smaller range of amplitude

constraints, leading U(pon) to be monotonically decreasing.

In Figs. 3 and 4, we compare the channel capacity under the

on-off energy arrival when the state information is available

at the transmitter causally with the capacity when the state

(energy arrival) information is available at both sides. We also

plot the channel capacity when the battery size is unlimited,

i.e., Emax = ∞, as in [11], [12]. The capacity in this case is
1
2 log (1 + ponE). In Fig. 3, we observe the differences in the

capacities for different values of pon when
√

E = 1.5. The

capacity achieving input distribution is binary for all pon in this

case since
√

E = 1.5 < 1.66. In Fig. 4, we plot the capacities

for different E for a fixed pon. Note that the capacity achieving

input distribution changes as E is increased. We show the
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Fig. 2. U(pon) function for the AWGN channel with unit noise power.
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Fig. 3. Capacity versus pon for E = 2.25, i.e.,
√

E = 1.5.

ranges over which the capacity achieving input distribution

is binary, ternary and quaternary in Fig. 4. In particular,

the capacity achieving distribution for (20) is the capacity

achieving distribution with a constant amplitude constraint√
E. We observe that the transition from binary to ternary

for Csi@both occurs at E = (1.66)2 while it occurs for the

capacity C with causal state information at the transmitter

at E = (U(pon)|pon=0.5)
2 = (1.74)2. We also observe that

as E gets large, the capacity with an unlimited battery is

significantly larger than the capacities with no battery, with

or without the state information at the receiver.

V. CONCLUSION

In this paper, we considered the capacity of the AWGN

channel with time-varying amplitude constraints. This scenario

represents an energy harvesting communication system which

uses harvested energy for data transmission and which has

no battery to store the energy for future use. The energy

arrivals impose amplitude constraints on the code symbol at

each time. We found the capacity of this system. We showed
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Fig. 4. Capacity versus E when pon=0.5.

that the capacity achieving coding is performed by choosing

code symbols from a finite set among the allowable continuum

of points at each energy state. Next, we studied the on-off

energy arrivals where the amplitude constraint is either zero or

a non-zero value. We provided numerical illustrations for the

capacity of the on-off energy arrivals. The numerical results

indicate the capacity gain provided by an unlimited battery.
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