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Abstract—In [1]–[4], we considered the question of basis mis-
match in compressive sensing. Our motivation was to study the
effect of mismatch between themathematical basis (or frame)
in which a signal was assumed to be sparse and thephysical
basis in which the signal was actually sparse. We were motivated
by the problem of inverting a complex space-time radar image
for the field of complex scatterers that produced the image. In
this case there is no apriori known basis in which the image
is actually sparse, as radar scatterers do not usually agreeto
place their ranges and Dopplers on any apriori agreed sampling
grid. The consequence is that sparsity in the physical basisis not
maintained in the mathematical basis, and a sparse inversion
in the mathematical basis or frame does not match up with
an inversion for the field in the physical basis. In [1]–[3], this
effect was quantified with theorem statements about sensitivity to
basis mismatch and with numerical examples for inverting time
series records for their sparse set of damped complex exponential
modes. These inversions were compared unfavorably to inversions
using fancy linear prediction. In [4] and this paper, we continue
these investigations by comparing the performance of sparse
inversions of sparse images, using apriori selected framesthat are
mismatched to the physical basis, and by computing the Fisher
information matrix for compressions of images that are sparse
in a physical basis.

I. I NTRODUCTION

There are many ways that asparse inversion can arise in signal
processing. For example:

1) An over-determinedseparable linear model is replaced
by an under-determinedlinear model. In the separable
linear model, parameters such as complex scattering
coefficients compose a small number of modes that are
nonlinearly modulated by mode parameters such as fre-
quency, wavenumber, and delay. In the approximating lin-
ear model, scattering coefficients compose a large number
of modes whose frequencies, wavenumbers, and delays
are chosen apriori. In the over-determined separable linear
model, the problem is to estimate the mode parameters
and the scattering coefficients. In the under-determined
linear model, the mode parameters are assumed to be
determined already at an agreed grid spacing, so the only
problem is to estimate the complex scattering coefficients
for the few modes that are active and call the parameter
estimates the parameters belonging to these active modes.
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The question that arises is, what is the sensitivity to
mismatch between the unknown apriori basis in the over-
determined problem and the assumed apriori frame in the
under-determined problem? How does the performance of
the sparse inversion compare with the Cramer-Rao bound
(CRB)?

2) A recorded radar image can be compressed with random
filters and beamformers, to be subsequently inverted for
ranges, Dopplers, and DOAs of the scattering field. The
question that arises is, how well does the compressed
version of the space-time image preserve information
about the field of scatterers? How is Fisher information
preserved, or equivalently, how do CRBs for the com-
pressed image compare with CRBs for the original field?

In this paper, we address these questions with results from
our continuing investigations. Our results suggest that a com-
pressed set of recordings, processed according to the principles
of sparse inversion, will suffer performance losses with respect
to classical methods. Our continuing aim is to manage these
losses by exploiting apriori knowledge to tailor the compres-
sion to the problem.

II. FROM AN OVER-DETERMINED LINEAR SEPARABLE

MODEL TO AN UNDER-DETERMINED LINEAR MODEL

Begin with the separable linear model

y = x + n; x = A(φ)θ

where x,n,y are elements of the setCn. The parameters
θ ∈ Cq are parameters that linearly compose the signal
x, and the parametersφ = [φ1, . . . , φp]

T ∈ Cp, with
φi ∈ Φ for i = 1, . . . , p, are parameters that nonlinearly
modulate the modes of the model matrixA(φ). An inter-
esting special case is whenp = q and A(φ) ∈ Cn×q

is structured asA(φ) = [a(φ1),a(φ2), · · · ,a(φp)], where
a(φi) = [1, z(φi), z

2(φi), z
n−1(φi)]

T , with z(φi) ∈ C. This
models DOA modulation in a linear array or linear angle
modulation in a time series. There is a great number of
methods of modal analysis in the published literature for
estimating the parameters(θ, φ), and their performance is
well understood. There are general formulas for the Fisher
information matrix and the CRB on the error covariance matrix
(see, e.g., [5]), and in specific cases where the matrixA(φ)
is composed of damped complex exponential modes, there
are special formulas that have been numerically evaluated for
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concentration ellipses [6]. Generally, the Fisher information
matrix in the modely : CNn[A(φ)θ, σ2I] may be written
as [7]

Jy =
1

σ2
GHG

whereG is a matrix of sensitivities:

G = [Gφ,Gθ],

Gφ = [gφ[1],gφ[2], . . . ,gφ[p]],

Gθ = [gθ[1],gθ[2], . . . ,gθ[q]].

The sensitivity vectorsg are partial derivatives ofA(φ)θ with
respect to the elements ofφ andθ. Thus the Fisher information
matrix J = 1

σ2 G
HG is a Grammian of sensitivities. There

is a nice geometrical interpretation [7], showing that Fisher
information is poor when a one-dimensional subspace〈gφ[i]〉
lies near to the multidimensional subspace spanned by all other
sensitivity vectors. This explains the difficulty in resolving
closely-spaced modes.

Suppose the over-determined linear separable model is re-
placed by the under-determined linear model

y = x + n; x = Bc

where the nonlinearly-modulated mode matrixA(φ) =
[a1,a2, . . . ,ap], with ai = a(φi) for i = 1, 2, . . . , p, has
been replaced by the fixed frameB = [b1,b2, . . . ,bN ],
N > n > p, with thebi a gridding of the set{a(φ), φ ∈ Φ}.
Whether or not the measurementy is compressed, there is
the question of inverting each of these models for their mode
parametersφ. Generally, asparse inversion inverts for sparse
c in the modelx = Bc under a constraint on the fit ofBc to
y. For example, one may solve the followingℓ1 minimization
problem:

min ‖c‖1 s.t. ‖y − Bc‖2

2
≤ ǫ2.

Once sparsec is returned, the estimate forφ is extracted from
the support set of the identifiedc. As the gridding of the mode
space never produces an exact match between the modesai

and the gridded modesbi, there is a question of sensitivity
to mismatch. These questions have been answered analytically
and experimentally in [1]–[3], but no Monte Carlo simulation
of estimator errors has been undertaken to date. In [4] and
this paper, we present a small subset of our simulations for
estimators and estimator errors using sparse inversions based
on a second order cone program forℓ1 minimization and
sparse inversion based on orthogonal matching pursuit (OMP).

In Figs. 1(a)–(c), we present experimental mean-squared es-
timation errors for estimating the frequency of anf1 = 0.5
Hz, unit amplitude, complex exponential from a25 sample
measurement of this complex exponential, plus an interfering
f2 = 0.52 Hz, unit-amplitude, complex exponential, plus
complex proper Gaussian noise of varianceσ2. The 0.2 Hz
separation between the two tones is a separation of half the
Rayleigh limit of (1/25) Hz. For reference, the mean-squared
error (MSE) of errors uniformly distributed over this Rayleigh
limit is −34 dB. SNR(dB) is defined to be10 log

10
(1/σ2).

Mean-squared error is plotted as10 log
10

(MSE). The linear

dotted line is the CRB. The parameterL denotes the ratioN/n,
so it may be called anexpansion factor. At expansion factor
L, the number of modes in the frameB is nL, corresponding
to complex exponentials spaced at1/nL Hz. The resolution
of the frame may be said to be1/nL Hz. These modes are
placed so that there is always a half-cell mismatch between
the actual frequencies and the mode frequencies. The width
of the half-cell (1/2nL) is indicated in Figs. 1(a)–(c) for the
variousL values as asterisks on the right side of the plot.

Fig. 1(a) demonstrates that at a low expansion factor ofL = 2
theℓ1 inversions are noise-defeated below5 dB and resolution-
limited above5 dB, meaning they are limited by the resolution
of the frame. That is, below5 dB, mean-squared error is bias-
squared plus variance, while above5 dB, mean-squared error
is bias-squared due to coarse-grained resolution of the frame.
At L = 4, the inversions are noise-defeated below5 dB,
noise-limited from5 to 10 dB, and resolution-limited above
10 dB. As the expansion factor is increased, corresponding
to finer- and finer-grained resolution in frequency, the frame
loses its incoherence, meaning the dimension of the null space
increases so much that there are many sparse inversions that
meet a fitting constraint. As a consequence, we anticipate that
for larger values ofL the mean-squared error never reaches its
resolution limit, as variance overtakes bias-squared to produce
mean-squared errors that are larger than those of inversions
that used smaller expansion factors. This suggests that there
is a clear limit to how much bias-squared can be reduced with
frame expansion, before variance overtakes bias-squared to
produce degradedℓ1 inversions. Figs. 1(b) and (c) make these
points for OMP inversions. The interesting thing about these
results is that OMP inversions extend the threshold behavior
of the inversions, they track the CRB more closely in the
noise-limited region, and they reach their resolution limit for
larger values ofL before reaching their null-space limit at
high SNRs. For example, atL = 8 the null-space limit has
not yet been reached at SNR= 30 dB, whereas forL = 14,
the null-space limit is reached before the resolution limitcan
be reached.

In all of these experiments, the fitting error is matched to
the noise variance. With mismatch between fitting error and
noise variance the results are more pessimistic. The results
suggest that the replacement of an over-determined separable
linear model with an under-determined linear model, which
is then sparsely inverted, must be very carefully managed to
find an appropriate expansion factor and fitting parameter, if
performance loss with respect to classical methods is to be
managed.

Remark. The results reported in Fig. 1 are actually too opti-
mistic, as the mode amplitude are equal. For a weak mode in
the presence of a strong interfering mode, the results are much
worse.



3

0 5 7 10 15 20 30
−70

−65

−60

−55

−50

−45

−40

−35

−30

−25

−20

 CRB

l
1
 SOCP

SNR (dB)

M
S

E
 (

dB
)  L = 2

 L = 4

 L = 6

 L = 8

(a) ℓ1 inversions forL = 2, 4, 6, 8
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(b) OMP inversions forL = 2, 4, 6, 8
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(c) OMP inversions forL = 8, 12, 14

Fig. 1. Experimental mean-squared estimation errors for estimating the
frequency of anf1 = 0.5 Hz, unit amplitude, complex exponential from
a 25 sample measurement of this complex exponential, plus an interfering
f2 = 0.52 Hz, unit-amplitude, complex exponential, plus complex proper
Gaussian noise of varianceσ2 . Experimental mean-squared errors are shown
for ℓ1 and OMP inversions for different expansion factorsL. The asterisks
indicate the width of the half-cell (1/2nL) for the variousL values.

III. F ROM MEASUREMENT SPACE TO RANDOM BEAM

SPACE

Beam space processing replaces a set ofn spatial measure-
mentsy ∈ Cn with a set ofm ≤ n beam space measurements
z = Ty, T ∈ Cm×n, where the rows of the beamforming
matrix T are beam-steering vectors. Conventionally these
rows are designed to form spatial beams, and typically the
beam centers are spaced atm equally-spaced resolutions of
electrical angle between(−π, π]. So the question is, how does
the Fisher information matrix for the DOA parameters of a
sparse scattering or radiating field, computed from the original
measurementsy, compare with the Fisher information matrix
for these same parameters, computed from the beam space
measurementsz = Ty? And how do these results compare
for a conventional choice of the beamforming matrix and for
a random choice? We offer answers to both of these questions.

For any transformationT, the effect on the Fisher information
matrix in the modely : CNn[A(φ)θ, σ2I] is [7]

JTy =
1

σ2
GHPTH G

wherePTH = TH(TTH)−1T is a projection onto the range
space ofTH , andG is a matrix of sensitivities. It is the effect
of the transformationT on the sensitivity vectors,TG, and
on the noise covariance,TTH , that determines the impact of
the transformation on Fisher information.

Remark. If the parametersφ modulate a covariance matrix
R(φ) in the second-order modely : CNN [0,R(φ)], then
the effect of transformationT is to produce Fisher information

(JTy)
ij

= tr{(TRTH)−1T
∂R

∂φi

TH(TRTH)−1T
∂R

∂φj

TH}.

Figs. 2(a)–(d) demonstrate the results of random beamsteering
with a transformationT. The experiment is the following: two
plane waves propagate across the face of ann = 64 element
linear array or two linearly modulated complex exponentials
populate a time series. One of the plane waves arrives on
boresight and the other arrives at electrical angleφ, with φ
swept over(−3 2π

n
, 3 2π

n
] with a step size much finer than the

Rayleigh limit of 2π
n

radians. For each such angle, the CRB
for estimating the boresight angle is computed and plotted,
with and without beamsteering with compressive beamformer
T. In our experiments,T is chosen to be a random complex
Gaussian matrix, a Slepian matrix of approximate beamwidth
2π/m (see, e.g., [8] and [9]), or a monopulse beamsteering
consisting of a sum beam and a difference beam (see, e.g.,
[10]). The SNR is normalized to0 dB, as it is only the relative
values of the CRB that interest us.

Moving from Fig. 2(a) to Fig. 2(d), thecompression fac-
tor n/m is increased from1 to 8 for a random complex
Gaussian compressor. In Fig. 2(a), the compression factor
is n/m = 1. The random beamformers build a nonsingular
matrix, with probability one. So the CRB is the CRB of the
original measurements, without beamforming. In Fig. 2(d),
the compression factor isn/m = 8. The band of CRBs
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(a) No Compression (b) Compression by 2
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(c) Compression by 4 (d) Compression by 8

Fig. 2. Cramer-Rao lower bound for estimating the electrical angle of source at boresight, as the electrical angleφ of an interfering source varies from
−3

2π

n
to 3

2pi

n
. Each red curve in a subfigure corresponds to one realizationof a random complex Gaussian beamforming matrixT of sizem by n. A total

of 100 realizations is superimposed in each subfigure. (a) NoCompression (m = n = 64), (b) Compression by 2 (m = n/2 = 32), (c) Compression by 4
(m = n/4 = 16), and (d) Compression by 8 (m = n/8 = 8).
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(c) Compression by 4 (d) Compression by 8

Fig. 3. Cramer-Rao lower bound for estimating the electrical angle of source at boresight, as the electrical angleφ of an interfering source varies from
−3

2π
n

to 3
2pi

n
, from compressive measurements made by a Slepian beamformer of approximate beamwidth2π/m. (a) No Compression (m = n = 64), (b)

Compression by 2 (m = n/2 = 32), (c) Compression by 4 (m = n/4 = 16), and (d) Compression by 8 (m = n/8 = 8).
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shows CRBs for many random choices ofT. The variation
between good and bad random choices ofT is 6 dB, and
the best choice has a loss of9 dB with respect to the CRB
for the original measurements. This represents an increasein
variance in estimating the boresight angle by a factor of at
least9 radians-squared, or an increase in standard deviation
by a factor of at least

√
9 radians. These results quantify

the performance loss of compressed random beamforming,
providing a basis for selecting a compression factor that meets
performance specifications.

Figs. 3(a)–(d) illustrate the same results for Slepian beam-
forming and Figs. 4(a) and (b) illustrate the results for
monopulse beamsteering. Within the main beam defined by
the Rayleigh limit, the increase in CRB for the Slepian
beamformer is negligible, while the monopulse beamformer
outperforms the uncompressed array processing by filtering
out broad wavenumber noise. This shows that if the vicinity
of closely-spaced sources is known, this knowledge can be
exploited to tailor the compression to improve resolution.
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(a) Comparison near boresight
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(b) Comparison in a wider region

Fig. 4. Cramer-Rao lower bound for estimating the electrical angle of
source at boresight, as the electrical angleφ of an interfering source varies
from −3

2π
n

to 3
2π
n

, from compressive measurements made by a Monopulse
beamformer.

In all of these experiments, it is the so-called deterministic
Fisher informationJTy = 1

σ2 G
HPTH G that is computed

and inverted for the CRB on the variance of an estimator of
boresight angle.

IV. CONCLUSIONS

We have reviewed two problems in signal processing that
may be approximated and re-framed in such a way that
a sparse inversion of compressed measurements for modal
parameters can be considered. But in each case there are
consequences arising from model mismatch and from loss of
Fisher information. Our results illuminate these consequences
and suggest remedies based on apriori knowledge.
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