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Abstract

In this contribution, the evaluation of the diversity of tMdiMO MMSE receiver is addressed for
finite rates in both flat fading channels and frequency sekedading channels with cyclic prefix. It
has been observed recently that in contrast with the othél®teceivers, the MMSE receiver has a
diversity depending on the aimed finite rate, and that fdiicgiahtly low rates the MMSE receiver reaches
the full diversity - that is, the diversity of the ML receivélrhis behavior has so far only been partially
explained. The purpose of this paper is to provide completefp for flat fading MIMO channels, and

to improve the partial existing results in frequency selecMIMO channels with cyclic prefix.

Index Terms

Diversity, Flat fading MIMO channels, Frequency selectM@MO channels, Outage probability,
MMSE receiver

. INTRODUCTION

The diversity-multiplexing trade-off (DMT) introduced bjt] studies the diversity function of the
multiplexing gain in the high SNR regime.|[2] showed that MBISE linear receivers, widely used for
their simplicity, exhibit a largely suboptimal DMT in flat daag MIMO channels. Nonetheless, for a

finite data rate (i.e. when the rate does not increase wittsithieal to noise ratio), the MMSE receivers
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Fig. 1. Considered MIMO system

take several diversity values, depending on the aimed aateoticed earlier in_[3], and also inl [4].][5]
for frequency-selective MIMO channels. In particular tfahieve full diversity for sufficiently low data
rates, hence their great interest. This behavior was pgréaplained in [2], [6] for flat fading MIMO
channels and ir_[7] for frequency-selective MIMO channbideed the proof of the upper bound on the
diversity order for the flat fading case given In [6] containgap, and the approach of [6] based on the
Specht bound seems to be unsuccessfull. As for MIMO frequeetective channels with cyclic prefix,
[7] only derives the diversity in the particular case of a fm@mof channel taps equal to the transmission
data block length, and claims that this value provides areufyound in more realistic cases, whose
expression is however not explicitly given. In this paper previde a rigorous proof of the diversity
for MMSE receivers in flat fading MIMO channels for finite dat#tes. We also derive the diversity in
MIMO frequency selective channels with cyclic prefix for fanidata rates if the transmission data block
length is large enough. Simulations corroborate our ddrdigersity in the frequency selective channels

case.

[I. PROBLEM STATEMENT

We consider a MIMO system witld/ transmitting, N > M receiving antennas, with coding and
ideal interleaving at the transmitter, and with a MMSE linegualizer at the receiver, followed by a
de-interleaver and a decoder (see Elg. 1). We evaluate ifollogving sections the achieved diversity by
studying the outage probability, that is the probabilitgttthe capacity does not support the target data
rate, at high SNR regimes. We dengi¢he SNR,/ the capacity andr the target data rate. We use the

notation= for exponential equality [1], i.e.

f(p) = p < lim = d, (1)

and the notations< and > for exponential inequalities, which are similarly defindtle notelog the

logarithm to base.
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[1l. FLAT FADING MIMO CHANNELS

In this section we consider a flat fading MIMO channel. Thepatof the MIMO channel is given by

_ P
= \/%Hx + n, 2)

wheren ~ CN(0,1y) is the additive white Gaussian noise anthe channel input vectoH the N x M
channel matrix with i.i.d. entries- CN(0, 1).

M R

M
< 37 < log

Theorem 1. For a rate R such thatlog - with m € {1,..., M}, the outage

m—1
probability verifies
P(I < R) = p~m(N=MHm), ©)
that is, a diversity ofn(N — M + m).
Note that for a rateR < Mlog 7 (i.e. m = M) full diversity M N is attained, while for a rate

R > M log M the diversity corresponds to the one derived by DMT approdtiis result was stated
by [6]. Nevertheless the proof of the outage lower bound ihd@its that the event note®, is not
independent from the eigenvaluesf’H, hence questioning the validity of the given proof. We thus
provide an alternative proof based on an approach suggbgtéide analysis of( [2] in the case where

R = rlog p with r > 0.

Proof: The capacityl of the MIMO MMSE considered system is given by

M
I=> log(l+p)),
j=1
whereg; is the SINR for thejth stream:

1
B; = ~1.

(+ ﬁH*H]_l)jj

We lower bound in the first placB(/ < R) and prove in the second place that the bound is tight by

upper boundind@(I < R) with the same bound.

A. Lower bound of the outage probability

We here assume that/M > log(M/m). In order to lower bound(I < R) we need to upper bound

the capacityl. Using Jensen’s inequality on functian— log x yields

M
I < Mlog Z (1+5)) (4)

gj([(hr PHH> 1Lj>_1]. 5)
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We noteH*H = U*AU the SVD of H*H with A = diag(A1,..., ), A1 < Aa... < Ay We recall
that the (\;)x=1,..a are independent from the entries of matfix and thatU is a Haar distributed
unitary random matrix, i.e. the probability distributioh © is invariant by left (or right) multiplication

by deterministic matrices. Using this SVD we can write

M

MZ<[(I+ yHH) ILJ) MZ(Z 'U’”'ik>_- )

1) Case m = 1: In order to better understand the outage probability beimawe first consider the
casem = 1. In this caseR/M > log M. We review the approach ofl[2, Ill], which consists in upper

bounding [(6) by(1 + £\) & Zj]‘il ﬁ asy M 1|EZ‘A1 > 1‘}:2&. Using this bound in[{5) gives

ISMlog[<1+ pAl) Z’Umz}

Therefore

M
() 3 <) v <m
In order to lower bound(I < R), [2] introduced the set
1L
A = {M;W <M—|—€}
for e > 0. Then,

P(I<R)>P((I <R)NAp)
M
(05 3 S <) 4]

R/M
ZP|:<1—|—£>\1< 2 >QA1:|

v

M M+e

P(A) P |1+ L 2R
=P(A)- [+M1<M+J

where the last equality comes from the independence beteigenvectors and eigenvalues of Gaussian
matrix H*H. It is shown in [2, Appendix A] thaP(A,) # 0. Besides, as we supposet/™ > M, we

oR/M 9R/M

can takes such that§-— > 1, ensuring thaﬁP[ (1 + ﬁAl) < M+€] # 0. Hence there exists > 0

such that
P(I < R) 2P<)\1<%>,
which is asymptotically equivalent to-(V—*+1) in the sense of{1) (see, e.d.] [8, Th. I1.3]).
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2) General case 1 < m < M: By the same token as fon = 1 we now consider the general case —
we recall that we assumed thiaiz(1//m) < R/M. We first lower bound, 1'3’;]& which appears in
@) by them first terms of the sum and then use Jensen’s inequality apphe: — z~!, yielding

Uy, % !Uk
Zl—i— ;J))\k z:: J

(xﬂmwf |
> ket | Ukjl? (1 + %)‘k)

| \/

v

Using this inequality in[{(6), we obtain that

([ o) ) e et

Zl:l ‘Ulj‘ )
N (1. P
= (1+ A an(), ()
k=1
whered,(U) = M Z] 1%. Equation [(¥), together with k5), yields the following insion:

L R/M
<k§_1j5k(U) (1+ M/\k> <2 ) c (I<R).
Similarly to the casen = 1, we introduce the sed,,, defined by
M
A = {5R(U) <—>+te k= 1,...,m}
m

for € > 0. We now use this set to lower boufi{/ < R).

m P oR/M
P(A,,) - P [; (1 + MA’“> < %] .

The independence between eigenvectors and eigenvaluesaudsian matrixH*H justifies the last

equality. As we assumed thatg(M/m) < R/M, that ism < fr., we can choose such that
m < MZ/R/M That ensures that [22”:1 (1+ LX) < MQ/ZQI } #£ 0. We show in AppendiX_A that
this probability is asymptotically equivalent jo (N =¥+m) in the sense of{1), leading to
. P(An)
P(I < R) > R (N—Mtm) (8)

p
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We still need to prove thaf(A,,) # 0. Any Haar distributed random unitary matrix can be
parameterized by\/? independent angular random variabl@s;,...,ay2) = o whose probability
distributions are almost surely positive (seée [9],/[10] &mpendix[T). We noteb,,, the functions such
thatU = ®,,,(c). Consider a deterministic unitary mati%, such tha(U,.);;|* = ﬁ Vi, 7, and denote
by o, a corresponding/? dimensional vector. It is straightforward to check thab ®,, () = M/m?2.
Functionsa — (0 o ®,,)(cx) are continuous at pointx, for 1 < k < m and therefore there exists
n > 0 such that the balB (., n) is included in the se{c, (650 ®n)(a) <L +¢, k=1,...,m}.
We have therefor®(A,,) # 0 as

P(A,,) = p(a)dor

A(&k ) <I>m)(a)<%+€, k:l,...,m}

> / p(a)da > 0
B(a.,n)

Coming back to[(B), we eventually have

1

P(I < R) > W,

that is the diversity of the MMSE receiver is upper boundedhibyN — M + m).

B. Upper bound of the outage probability

We now conclude by studying the upper bound of the outagegitity, showing thatn (N — M +m)
is also a lower bound for the diversity. Note that this loweubd has been derived inl[2],][6] using
however rather informal arguments; we provide a more rigenaroof here for the sake of completeness.
We now assume thak/M < log(M/(m — 1)), i.e.m —1 < M2~%/M_Using Jensen inequality on

functiony — log(1/y), the capacityl can be lower bounded:

M
_ P rr)
I= Zlog <[(I+MH H) ] )
7=1 73
> _Mlog [ LTx (IJrﬁH*H)_1
- M M ’
which leads to an upper bound for the outage probability:
-1
P(I < R) <P [Tr [(I + ﬁH*H) ] > MZ‘R/M] . 9)
M
We need to derive the probability in the right-hand side of wbove inequality. NotingB, =
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{)\1 S )\2 S )\M7 Z;ngl (1 + ﬁ)\k)_l > M2_R/JV[}1

o[o](reform) ]

:/ p()\l,...,)\M)d/\l...d/\M. (10)
Bo

We now introduceu,,, = sup(, x,)es,1PAm} and prove by contradiction that,, < +oo. If
W, = +oo, there exists a sequencﬁag"),)é"),...,)\EZ))%N such that)\,(f) — +oo for any k > m.
Besides,

M2EM < i(l + ﬁA,ﬁ"’)_l <(m-1)+ i (1+ ﬁA,ﬁ"’)_l
k=1 M k=m M

In particular M2-8/M < (m — 1) + M (14 £AU) 7", which, taking the limit whem — oo,

leads tom —1 > M2~ %/M g contradiction with the assumption— 1 < M2~%/M_ Hence u,, < 4.

We introduce the seB; = {\ < Ay... < Ay, 0 < N < “;)”, kE = 1,...,m}, which verifies

By C Bi. Using [9) and[(10), this implies that
]P)(I<R) S/ p()\l,...,)\M)d)\l...d)\M,
B,

which is shown to be asymptotically smaller thar(N—Y+m) in the sense of{1) in AppendixIB. The
diversity is thus lower bounded by.(N — M + m), ending the proof. [ |

IV. FREQUENCY SELECTIVEMIMO CHANNELS WITH CYCLIC PREFIX

We consider a frequency selective MIMO channel withindependent taps. We consider a block
transmission cyclic prefix scheme, with a block length/of The output of the MIMO channel at time

t is given by

=\ WL Z Hix;— +mny = ﬁ [H(z)]x: +ny

wherex; is the channel input vector at timen, ~ CN(0,Iy) the additive white Gaussian noisd; is
the N x M channel matrix associated t§ channel tap, foi € {0,...,L — 1}, andH(z) denotes the

transfer function of the discrete-time equivalent chartedfined by

We make the common assumption that the entrieBlpare i.i.d andCN(0, 1) distributed. We can now

state the second diversity theorem of the paper.
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Theorem 2: Assume that the non restrictive conditidn > M?2(L — 1) holds, ensuring thabg &£ <

—log (=t LZDAE(m_1)) for anym = 1,..., M. Then, for a rateR verifying

log < £ < _log (mﬂgl n <L‘1><”§;(m‘1”) , (11)
m € {1,..., M}, the outage probability verifies
P(I < R) = p~MEN-M+m), (12)
that is a diversity ofn(LN — M + m).

The diversity of the MMSE receiver is thus(LN — M + m), corresponding to a flat fading MIMO
channel withM transmit antennas andN receive antennas. For a large block lengihthe upper bound
for rate R is close to the bound of the previous flat fading ch@e%. Concerning data rates verifying
—log (2t + L2(M — (m — 1)) < £ <log 2L, them(LN — M + m) diversity is only an upper
bound; nevertheless the diversity is also lower boundedby- 1)(LN — M + (m — 1)).

Proof: Similarly to previous section the capacity of the MIMO MMSEkstem is written] =
Zj]‘il log(1+ f;), where; is the SINR for thejth stream ofx,. It is standard material that in MIMO
frequency selective channel with cyclic prefix the SINR of MMIMSE receiver is given by
_ 1

£ (S (57

whereS(v) = Iy + £ H(e*™)*H(e*™).

Bj

—1, (13)

Jj

A. Lower bound for the outage probability

We assume thak/M > log(M/m).
One can show that functioA — (A~!);;, defined over the set of positive-definite matrices, is crnve

Using Jensen’s inequality then yields

The last equality follows from the fact thdt 5 | ¢?7 = (=) = .. Using this inequality in the SINR

expression[(13) gives
L—1 -1 -1
o (e o] )
1=0 Ji
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We now come back to the capacityof the system; similarly to{4), using Jensen’s inequaligids

M
1
I < Mlog MZ(lJrﬂj)

B 1 M P L-1 -1 —1
< Mlog MZ(([IN—FMZH?H;} )) ]
L 7=1 =0 27
We can now use the results of section IlI-A by simply replacivi x M matrix H in (8) by LN x M

matrix H = [H] ,HY,...,HY |]”. They lead to the following lower bound for the outage catyator
a rateR verifying R/M > log(M/m):

B. Upper bound for the outage probability

We assume thafl < —log (271  ENMtmol)y Cihat js2-R/M < meL Lol (A — () — 1)),

We first derive a lower bound for the capacity

Zlog<KZ< ()]~ )jj)
2—M10g< MZTr( (52)] 1))

The latter inequality follows once again from Jensen’s iradiy on functionz — log x.

We now analyzelr (S(v)~!). To that end, we writeLN' x M matrix H = [HE, ..., HY_,]7 under
the formH = ©(H*H)'/2, where® = [©],...,07 ] and®*® = I,,. Besides, we not&J*AU
the SVD of H*H with A = diag(A1,..., Am), A1 < ... < Ay. Hence,

H(eZim/) — @(62MV)U*A1/2U,
where®(z) = 3"/ @27, Using this parametrization,
. . —1
Tr (S(v)™) = Tr [(I + %U@*(&WV)@(&WV)U*A) }

e (1 L) .

wherey(v) = Amin (©* (™)@ (™). Coming back to the outage probability,

FEE( )

P[H cB } (14)

P(I < R) <P
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whereBy = {F, £ S0 M (14 Z4(£ )) " '> MR,
We now prove by contradiction that,, < +oco, whereu,, = supgp {pAm}. If pm = +oo there

exists a sequence of matricBE™ € B, such thatpA(”) — 400. Besides,

K-1 M (n) -1
_ R 1 P)\j (n) k
M <D ) (1 P\ R

k=0 j=1
K-1 M (n) -1
1 p>\j n k
é(m_l)Jr?kZoZ(H MV()<E>> (15)
=0 j=m

As ©(") belongs to a compact we can extract a subsequeiég)) which converges towards a matrix

O For this subsequence, inequalityl(15) becomes

| K1 M p)\(w(n)) (o) * -1
_R j n

Let v, be the function defined by, (v) = Amin(®F, (e 2Z'””)@OO(e?“”’)) andky, ..., k, be the integers
for which 4o (k;/K) = 0. Thendet @(2) = det (31 Ocoyz™!) = 0 for all z € {e¥™i/K j =
1,...,p}. Nevertheless, polynomial — Zf:‘ol ©..,2~! has a maximum degree of (L — 1), therefore
p < M(L —1). Inequality [16) then leads to
_n M(L-1) 1 P e (EVY
M < — IR —— — - J _
M2 < (m— 1)+ ——+ > Z<1+ ! % (17)
ké&{k1,....kp} J=m

Moreover, ifk ¢ {ki,...,kp}, A§w(”))y(¢("))(%) — +oo for j >m, asy¥M) (L) — 4 (L) £ 0 for
k ¢ {ki,...,kp}. Therefore taking the limit of (17) when — +occ gives

M(L-1)

M2 < (m—1

which is in contradiction with the original assumpti@r /M < m=d 4 LEL(Af — (m — 1)). Hence
fim < 400, and By C By = {H, pA,,(H*H) < p, }. Using [13), we thus have

P(I < R) <P(H € By),

which, by AppendiXB, is asymptotically smaller tharr(NL=M+m) in the sense of[{1), therefore

ending the proof. [ |

V. NUMERICAL RESULTS

We here illustrate the derived diversity in the frequendgative case. In the conducted simulation we
took a block length ofl = 64, a number of transmitting and receiving antendds= N =2, L = 2

channel taps and an aimed data r&e-= 3 bits/s/Hz. RateR then verifies[(I1) withm = 1, therefore
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Fig. 2. Outage probability of the MMSE receiver, L=2, K=64=N=2

the expected diversity iEN — M + 1 = 3. The outage probability is displayed on Hig. 2 as a function
of SNR. We observe a slope of10~3 per decade, hence a diversity &f confirming the result stated

in part[IV.

VI. CONCLUSION

In this paper we provided rigorous proofs regarding the rdite of the MMSE receiver at fixed rate,
in both flat fading and frequency selective MIMO channelse Higher the aimed rate the less diversity
is achieved; in particular, for sufficiently low rates, theMM8E receiver achieves full diversity in both
MIMO channel cases, hence its great interest. Nonethelefigquency selective channels, the diversity
bounds are not tight for some specific rates; this could folyblae improved. Simulations corroborated

our results.

APPENDIX A

We prove in this appendix that, fér> 0, P(3_;", pAr < b) > pUN=M+m)
We noteC,, the set defined bg,,, = {A1,..., A : 0 <A <. < Ay Dopn; pAk < b} As the ),

verify 0 < A\ < ... < Ay, We can write

n +00 400
P Zp)\k<b :/ / / PM,N()\L---’)\M) dXi...d\py, (18)
k=1 (A5 Am ) ECm A Am—1

wherepys y : RM — R is the joint probability density function of the ordered eiyalues of a\/ x M

Wishart matrix with scale matrif;; and N degrees of freedom, given by (see, eld., [1]):

M
PM,N = K]\}%N H (A,N_Me_/\i> H(/\i -\, (19)

i=1 i<j
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where K, x is a normalizing constant. We now try to separate the integré8) in two integrals, one
over \i,..., A\, the other over\,,.1,..., \y. As we have(Aq, ..., \y) € €, in (@8), A, < b/p and
thus

/ pM,N()\l,-..,)\M) d)\m+1d)\M

Am 41 <A 20)

Z/ pM,N()\l,...,)\M) d)\m+1d)\M
(Am41yAM)ED

where D = {(Apmt1,.--, ) € Rﬂ‘f‘m; b/p < Ams1 < ... < Auy}. This integral can be
simplified by noticing thapas n (A1, ..., Ay) explicit expression (19) is invariant by permutation of its
parameters\i, ..., Ay, in particular by permutation of its parametevs. 1, ..., A\ys. Therefore, noting

8 = Sym({\n+1,-.-, A }) the group of permutations over the finite §et,+1,..., Ay}, we get

/ / PMN(AL, - AM) dAng1 - dA
b/p

:Z/ pJ\/[,N(Al,...,/\M) d)\m+1...d/\]\/[
sc8 Y 8(Amy1,AM)

:Card(S)/ pM,N()\17---7)\M) d)\m+1...d)\M
(Am+1,A0 )ED

= (M—m)!/()\ Nae) DpM7N()\1,...,)\M) d)\m+1 d)\M (21)
m—1yeeey AM

Using (20) and[(21) in[{18), we obtain

(Zp)\k<b> M m / /1; / PM,N )\1,...,)\M) dA...d .

We now replacey, y by its explicit expression (19) and then try to separaterthiérst eigenvalues from

the others. Note that we can drop the constants— m)! and K, x as we only need an asymptotic

lower bound.
P immb >/ /+O.O.. +Ooﬁ()\N_Me‘Ai>H(Al—)\-)2d)\1...d)\M
k=1 “Jewdvo Jopp N i<j Y
— . )\N—M —Ai >\z — )\ 2
/em /b/ /b <11_Il ’ >2<];§[m( 2 )
M
( I1 (A{.V—Me—%) IT oi—27 I (AZ-—AJ»)2> i ... d\y
i=m+1 1<m<j m<i<j
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Fori < m < j, we have that\; < b/p and thus(A; — X;)? > (), — %)2. Hence,

P(éMk < b)é </e H(Aﬁv_Me_)‘i) IT v —x)? d/\l...d/\m> (22)

m =1 i<j<m
M b 2m
(/ / H (A=) H<Aj——> H(Ai—/\j)Zd)\m+1...d/\1V1>
b b/P =1 j=m+1 P m<i<j
We now have two separate integrals. We first consider thenskeaoe, in which we make the substitution
/Bz:)\z_b/p fori=m+1,..., M.

LA T oy e

i=m+1 j=m+ m<i<j
+00 M N—-M
_(M mb/p/ / < %) 6—51622m> H (/Bi_ﬂj)2 dﬂm—i—l'”dﬂM
i=m-+1 m<i<j
+o0 +o0
25 IT (5 ) T (5= 857 dimen .. 23)
i=m+1 m<i<j

for p large enough, i.e. such that M —m)/r > 1/2_ It is straightforward to see that the integral [n](23)
is nonzero, finite, independent fromand therefore asymptotically equivalent tan the sense of_(1).

Hence, we can drop the second integrallin (22), leading to:

P(imk < b)é / ﬁ(AZN—Me_)‘i) TT =X dhr..dr (24)
k=1 ¢

m =1 i<j<m
Making the substitutiony; = p); for « = 1,...,m in (24) and noting®, = {a1,...,am: 0 < ag <

o< oy, Do o < b} we then have

P(Xm:pAk < b) 2 <p—m—7TI(N—M)_m(M—1) / ﬁ ( ;N—J\/[e—ai/P) H (ai _ Oéj)z dOZl B dOém>

k=1 mi=1 i<j<m
m
> p N =MAm) / H <ozZN_Me_°“) H (o — aj)? day ... douy, (25)
m =1 i<j<m
for p > 1, as we have thea /P > e~ fori=1,...,m. Asb > 0 it is straightforward to see that the

integral in [25) is nonzero but also finite and independentfp; it is therefore asymptotically equivalent

to 1 in the sense of (1), yielding

P(Z/»‘k < b>2 p—m(N—M-i-m)’
k=1
which concludes the proof.
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APPENDIX B

We prove in this section that (B,) < p~"(M=N+m) where the seB; is defined by
B :{)\1 <Aoo <Ay, 0 < A <0b, kzl,...,m},

with b > 0 and \q,..., Ay the ordered eigenvalues of the Wishart matlXH. We use the same
approach as in Appendix]A. For we notg, n the joint probability density function of the ordered
eigenvalues of &/ x M Wishart matrix with scale matriX,; and N degrees of freedom, the probability

P(B;) can be written as

P(Bl) :/ pM,N(Alw--’/\M) d/\l...d/\]\/[.
A1y A0 )EBY

Similarly to Appendix A we try to upper boun#i(B,) by the product of two integrals, one containing
the m first eigenvalues and the other tii¢ — m remaining eigenvalues. We first replagg; v by it

explicit expression (19):

P(B,) :K];;N/ H/\N MM TTw = )2 dh .. dw
7 My A)€B ;5 i<j
i/ (H(Aiv_Me_Ai> I1 ()‘i_)‘j)2>
A A)EBL \ G i<i<m
M
( I1 <)\Z].V_Me_’\i> IT i—2)% 1 (AZ-—AJ-)2> dX\1 ...d\y.
i=m+1 i<m<j m<i<j
Note that we dropped the normalizing constdfit; n, as KMN = 1. Fori < m < j, we have
[Xi — Al < Aj and thus[ [, (X = Aj)* < HJ i1 A", yielding
b/p rb/p b/p oo
[ () )
A A1 i<j<m
( 11 (Afmm Me—Avﬂ) 11 (A,——Aj)2> d\y ... d\y
i=m+1 m<i<j

In order to obtain two separate integrals we discardithean the integral bound simply by noticing that

Am > 0, therefore

b/p rb/p /p
(/ / / )\N_Me_AT‘) IT i)’ d)\l...d)\m>

1<j<m

+oo “+oo
(/ / / )\N+2m_Me_)‘i) IT =22 d)\m+1...d)\M>
m+1 )\ N . .

M=14=m+1 m<i<j
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As the second integral (in,,+1, ..., Aar) IS nonzero, finite and independent pfit is asymptotically

equivalent tol in the sense of {1). Hence,

b/p rb/p b/p m
P(B,) < / / / )\N_Me_)‘i) IT Qi —2)% dr .. dr. (26)
A1 Am—1 1 i<j<m
We now make the substitutions = p)\; for i = 1,...,m inside the remaining integral.
b/p rb/p b/p M
/ // H(AfV_Me_)‘i> TT = A2 dhr...dAn
0 A1 Am—1 51 i<j<m
bbb M
= p (N_M+m)/ // H( ﬁV_Me_ai/p) H (ozz-—ozj)2 doy . ..doy,
Qm—1 =1 i<j<m
< pmN= M+m// / HaN M H (o — ;)? doy ... da, (27)
a1 Qm—1 j=1 i<j<m

ase /P < 1. The remaining integral in (27) is nonzerb ¢ 0), finite and does not depend g¢n
therefore, [(2I7) is asymptotically equivalent go™(N—M+m) in the sense of {1). Coming back {0 [26)
we obtain

P(B;) < p~mUN=M~+m),

APPENDIXC

In this appendix, we review the results of [S], [10] for thexder's convenience.

It has been shown in_[9] that any x n unitary matrix 4,, can be written as

1 0
0 An—l
with 4,1 a(n—1)x (n—1) unitary matrix,d,, a diagonal phases matrix, thaids = diag(e***, ..., e"")

with ¢1,...,¢, € [0,2x], and O,, an orthogonal matrix (the angles matrix). Matri, can be

written in terms of parameter8,,...,f0, € [0,%] thanks to the following decompositior®, =

72

Jn—l,an—2,n—1 ce Jl’g, where
I, 0 0 0
0 cosb; —sinb; 0
Jiji+1 =
0 cosf; —sinb; 0
0 0 0 I,_i_ 1]

Let Uy, be aM x M unitary Haar dlstnbuted matrix. Then, using decomposii{28),

1

Uny =Du(p1) Vi (601)

November 8, 2018
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with @1 = (¢11,....1,m) € [0,27]M, 01 = (011,...,01,m-1) € [0, 1M1, Dps(ep1) the diagonal
matrix defined byD,,(¢1) = diag(e?¥'1,... e m), V,,(6;) the orthogonal matrix defined by
Vi (61) = Jv—1i,mIvi—2.m-1...J12 and Uy a M — 1 x M — 1 unitary matrix. MatrixU,,—; can
naturally be similarly factorized.

Similarly to [10], we can show that, in ord&F,; to be a Haar matrix it is sufficient th&p; ;)i=1... v
are i.i.d. random variables uniformly distributed overival [0, 27|, thaté 1, ..., 60; y/—1 are independent
with densities respectively equal tein ;)" =2, (sin )M —3,. .. (sin #y7_»), 1 and independent fromp;
and thatU,_; is Haar distributed and independent frggm and ;. The proof consists in first showing,
by a simple variable change, that if thie; ;);=1.. s and thef; ;,...,0; - follow the mentioned
distributions therD /(1) V(81) is uniformly distributed over the unity sphere 6f/. The proof is
then completed by showing that W,,_; is a Haar matrix independent froga; and 6, thenU,, is
Haar distributed.

Finally one can parameterize a Haar matiixy; by ¢7, #; and U,;_;. Repeating the same

parametrization folU,,_; we obtain thafU,,; can be parameterized by thié? following independent

variables

(1,155 01,m), (01,1501 0m-1), (02,1, 02,m-1), (B2,1, - -+, 02, 01-2), - - -,
(Prr—2,1,0M—22), 00121, PAr—1,15

whose probability laws are almost surely positive.
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