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ABSTRACT due to technical limitations or to different temporal lat&s
OIof the phenomena under study. In previous work, we consid-

Principal Component Analysis (PCA) is a widely applie
P b ysis ( ) y app ered an Order Preserving Factor Analysis (OPFA) model that

method for extracting structure from samples of high di- o f d . ircular shifts i hofa
mensional biological data. Often there exist misalignr:;nent‘emcOunte or order-preserving circular shifts in eacfioac

between different samples and this can cause severe pmbleﬁ'f‘d we demonstrated its _effe_ctlveness for extracting erder
in PCA if not properly taken into account. For eXample,preservmg factors from misaligned data [4]. Here, we pro-

subject-dependent temporal differences in gene expmssi@qse an aIterngnve approach tq QPFA that. apphe.s 10 mis-
response to a treatment will create relative time shiftn t aligned data W'.thOUt order restrictions and is applicable t
samples that decohere the PCA analysis. Depending on t}l%rger sample sizes.
characteristics of the underlying signal, the sensitigftP CA In this paper, we consider the limitations of PCA for the
to such misalignments is severe, leading to a phase tramsiti Problem of estimating a rank-1 signal subspace from high-
phenomenon that can be studied using the spectral theory @fmensional misaligned data. We introduce a modified ver-
autocorrelation matrices. With this as motivation, we pro-Sion of PCA, called Misaligned PCA (MisPCA), that simul-
pose a new method of PCA, called MisPCA, that expncmytaneously aligns the data and estimates the aligned sighal s
accounts for the effects of misalignments in the samples. Wepace. For signal subspaces of rank greater than one, a defla-
illustrate MisPCA on clustering longitudinal temporal gen tion procedure is applied to sequentially estimate suceesi
expression data. principal components.

1 INTRODUCTION _ The paper _is diyided into two parts. _First,_ we propose a

simple approximation of the combinatorial MisPCA estima-

Principal Component Analysis (PCA) [1] is a widely usedtion problem that considerably improves the PCA estimate
technique for dimensionality-reduction of high dimensibn whenever misalignments are present. Second, building on
data, with applications in pattern recognition [2], blintan-  recent results in random matrix theory [5, 6], we derive
nel estimation [3] and network-traffic anomaly detectih [ high-dimensional asymptotic results that characterize th
In all these applications, PCA can be used to separate the lminimum SNR necessary to detect and estimate the signal
tent features corresponding to signal from the random fluctufrom the sample covariance.

ations of noise. The fundamental assumption underlyirgy thi  Tpis paper is organized as follows. Section 2 introduces
approach is that the signal lies in a lower dimensional subme misaligned signal model. We give algorithms for Mis-
space, while the noise is random and isotropic; spreading igjigned PCA in Section 3. Section 4 studies the statistical e
power across all directions in the observation space. fects of misalignments on the sample covariance. We present
Unfortunately, in many cases, despite the appropriatenesgmerical results and a gene expression data analysis appli
of the low-dimensional subspace model, measurement kimitg ation in Section 5 and we conclude the paper in Section 6.
tions can lead to observations revealing different sigobt s The following notation is used. Boldface upper case let-

spaces. This occurs for example when the sampling tim .
a?:ross observations can not bg svnchronized a P rog iate %rs denote matrices, boldface lower case letters denéte co
y PPropy mn vectors, and standard lower case letters denote scalars
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2. PROBLEM FORMULATION where, for anyr € {0, -, dmax}", possibly different from

d, we define the x p matrix:

We consider the following discrete-time, circularly mis-
aligned, rank-1 signal model, 1 «

g g S(r)=- Y Claz!C,,. (3)
Z‘Z[k‘] Zazh[lﬁ—d?]—FQ[k], t=1,---,n. Q) i=1

oThis guantity can be interpreted asaigned sample covari-

Here h [k] is an unknown real sequence of length equal t Y i
ance matrix with alignment parameter equal ta When

p and indexed byt, and the integer valued elements of the

vectord € {0, - , dmax}" parameterize the amount of cir- 7 = 0 this coincides with the sample covariance.
cular shift in each observation, with,.. < p. For each Maximizing! (h, d, SNR) under the constrainth/||, = 1
i = 1.--- .n the random variables; are i.i.d. zero-mean for a fixed SNR leads to the Misaligned Principal Component
Gaussian and the-length sequences [k] are i.i.d., zero- Analysis (MisPCA) solution:
mean Gaussian white processes. To simplify the notation, we MisPCA
will further assume that [¢? [k]] = S°7_, % [k] = 1, and A =max A (S(7)) : (4)
we define the Signal-to-Noise Ratio (SNR) as: st T€{0, dmax}",
E [a?] which consists of finding the alignment vecterthat maxi-
SNR= ElE k] mizes the leading eigenvalue of the aligned covarighee).

The optimal alignment is denoted laf)'S°CA and the corre-
The problem considered in this paper is that of estimatieg thsponding MisPCA signal estimate is given by:

signal sequenck [k] from a collection of observations obey- _ _

ing model (1). For convenience, we will write (1) in vector RMISPCA — ) (S (dMSPCA)) .

form: . .
To estimate the SNR, it suffices to maximizghM'sP<A, dMSPCA SNR)

z, =aCsh+e¢, i=1---n, under the constraint SNR 0. The optimum occurs at (see

_ _ _ Appendix A.1):
wherex;, h ande; arep-dimensional real vectors, ar@;, is

ap x p circular shift matrix with shift equal td;: SNRMiSPCA _ 0 if AMISPCA 1 5
_ T AMISPCA_ 1 otherwise. ©)
(Ca] :{ 1 if k= (d; +1)modp
dilkit 0 otherwise. Unfortunately, the MisPCA problem (4) is combinatorial,
. h . | h and exhaustive search is prohibitive even for smallHere
Using the pro_per'gles o; anq € We (_:an_conc_ude that; e consider two simple approximate solutions to (4). The
follows a multivariate Gaussian distribution with zero mea first approximation ignores the misalignments altogether
and covariance: solving (4) withd = 0. This leads to the usual PCA estimate
S = B [z:2T] = SNRCy,hhTCT + 1, (2 OfM
hPA = v, (S(0)). (6)
3. ALGORITHMS

The second approximation, alternatively estimaleand h.
In general, the covariance matrix of each observation is nokt each iteratiort > 1, we compute:

the same forall = 1,--- ,n. However, equation (2) reflects

an u_nderlymg rank-1 structure corr'esp'ondmg to thg signal d@-MisPCA = arg max h@j\qisPCAT S (1) h@;r\qisPCA
In this section we propose to exploit this fact by estimafing TE{0, dmax}

from the joint likelihood of the misaligned dafa:; };_,. The =~ pAMsPCA  — (s (df'MiSPCA))

log-likelihood function is:
. ., where we seh” to an initial estimate of and stop the algo-
NR) — ¢ — O P A >, rithm when the change in likelihood is sufficiently small. We
L(h,d,SNR) = c ;t (B @) ; 0g det 2% call this procedure Alternating MisPCA (A-MisPCA).
wherec denotes a constant independent of the relevant param-
eters. Using the Sherman-Morrison-Woodbury matrix inver-
sion formula,

4. STATISTICSOF THE MISALIGNED
COVARIANCE

SNR The performance of the algorithms presented in the last sec-

l(h,d,SNR) = c + nthS(d) h —nlog (SNR+1), tion depend on the statistics of the leading eigenvalue and



eigenvector of the random matri& (), for a fixed, deter-
ministic 7. In this section, we use recent asymptotic rest
on the spectrum of large random matrices [5, 6] to charac
ize the asymptotic behavior o (S (7)) andvy (S (7)) in
the following setting: We assume that the number of varsk
p = pn grows linearly with the number of samplesso that,
asn tends to infinity,

lim Pn _ c>0.

n—oo N

(7)

Note that this includes the possibility pf, being larger than
the number of observations Before we proceed to state
the main result, we will need to define the following quanti-
ties. For anyt € {0,--- ,p — 1}", define the functiom (t) :
{0,--- ,p—1}" — {0,--- ,n}”, with coordinates given by:

_ |{j€{1,"',’ﬂ} :tj:i_1}|

S (t) "

(8)

where|S| denotes the cardinality of a s&t (One can inter-
prets(t) = [s1 (t),---, s, (t)] as a histogram of the values
in ¢.) In addition, for anyh € R?, we define the x p auto-
correlation matrixR;, of h as:

[Rh]i,j = hTCi—jh

9)
Finally, the expected value & (7) is given by:
Y () := E[S (7)] = SNR Hdiags (d—,7) H” + I,,

whereH = [ h  Cih Cp_1h |, d denotes the true

alignment parameter with which the data was generated, and

—p indicates a modulp subtraction.
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Fig. 1. Predicted and average values of

|(v1 (S (0)), v, (£(0)))]* for h € R20 equal to a
rectangular pulse with width7 and10. The phase transition
SNR predicted by Theorem 4.1, denoted Bl?/ﬁ in the
figure, is higher for narrow signals, which are less robust to
misalignments.

See Appendix A.2 for a proof. This result is better under-
stood graphically. Figure 1 shows the avergge (S (0)) , w)/|?
computed over 50 random realizations generated with model
(1) for a signal of dimensiop = 200, n = 200 samples and
two choices oth, with dy,ax = 100. Notice that the empirical
results accurately match the asymptotic theory.

Theorem 4.1 determines a “no-hope” regime for PCA and
MisPCA. Consider for instance the PCA estimate, where
0, and uniformly distributed misaligmentbso thats (d) =

L_1. Then Theorem 4.1 implies that if the SNR is lower

dmax

than

dm ax

A1 (Ry)

(11)

3

The following result shows that the leading eigenpair of i, pca estimate, defined in (6), is orthogonal to the leading
S (7) matches that oE () only if the SNR is higher than a ejgenvalue o (0), which contains partial information about

phase tl’ansition SNR Wh|Ch depends on the UnknOWn pal’an{he under'ying Signaﬂl_ The Sca|ar accompanyir{@ in (11)
eters of the modeh andd. can be interpreted as a tradeoff between the magnitude of the

Theorem 4.1 Let 7 € {0,--- ,dmax)” and S () be the misalignments and the smoothness of the signal

pn X pp aligned sample covariance evaluatedmtdefined More generally, if SNR< 0= foranyr € {0, - -+, dinax}",
in (3). Let SNRh andd be the true model parameters as then the first part of Theorem 4.1 asserts that the MisPCA ob-

defined in Section II. Then, assuming (7)pasn — oo, jective in (4) is almost surely uninformative:

c e A (S (7)) 2 (1 ++v0)? asn — oo,

Al(S(T))ﬁ'{ (SNRy+1)(1J;SN—R) SNR> 1(8 (7)) = ( )

(1+ /o) otherwise and hence there is little hope for recoveribgndh.
and:

5. EXPERIMENTS

BNR) e R

(w1 (S (7)), w)|* 2% (SNR)*+cSNR, v In this section, we present numerical results that dematestr
0 otherwise the benefit of using the A-MisPCA algorithm described in

Section Ill.
where23 denotes almost sure convergenae= v, (2 (7)),
andc is defined in (7). Herey is the gain/loss due to mis-
alignments (i.ez being different fromd), and is given by:

v= i (diag(s (d—,7))* Rydiag(s (d—,7))* ) , (10)

5.1. Numerical comparison of MisPCA Algorithms

We compare the PCA and A-MisPCA approximations de-
scribed in Section Il. As a benchmark, we compute the
Oracle-PCA, which assumes knowledge dbfand consists

wheres (t) and Ry, are defined in (8) and (9), respectively. of performing PCA onS (d).
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rithms to attain a level of fidelity, defined a#(halgo, h)| >
p, for p = .15 andp = .7, as a function of the number of Fig.3. Hierarchical Clustering results obtained after MisPCA
the maximum delay ant’ is the time width of the rectangu- the right most panels show the centroids/¢- standard de-

lar signalh. Since PCA is biased, it fails to attain the fidelity Viations) after MisPCA and PCA, respectively. The middle
level in several regimes. panels correspond to a 2-dimensional embedding of the data

projected on the MisPC’s (left) and the PC’s (right).
In our experiments, we estimate the minimum SNR
needed for each algorithm to attain a certain level of figelit An important problem in the analysis of temporal gene ex-

with respect to the generative here a rectangular signal of . . . . .
. ! pression data is that of performitgmporal clusteringwhich
width W. The top plots of Figure 2 show the results as a P o N
. ] nsists in identifying gr f genes with similar termglor
function of the number of samples with dﬁ,—x = 5. The consists in identifying groups of genes with similar tergo

, ._pattern. These genes are likely to be part of a biologic#l-pat
bot{gom plots. of the same figure show the resuits as a funct'o\?'vt':\y and their temporal responses relate to the mechanistics
of “mex for fixed n = 100. These results demonstrate the

dvant f A-MisPCA PCA in al N .~ ~of the process under study. In this section, we use A-MisPCA
?) \llan ige gm '< 'i q Ogg;f It;] ?tm?ﬁ e\fry_repgén;e.as a dimensionality reduction tool prior to clustering, ared

nly when=y= = 1 does are better than A-mis " show its advantage with respect to dimensionality redactio
In that regime, the misalignments are small compared to th

. . . Ssing standard PCA. For this purpose, we compute the first
\évslgitr:;t]:he rectangular signal and hence affect little tAP k Misaligned Principal Components (MisPC'’s) using a de-

flation heuristic. At each step, we compute the A-MisPCA
estimate on the residual obtained after projecting the aata
5.2. Application to longitudinal gene expression data  the previously obtained MisPC’s. The numiieof Principal
clustering Componentsi = 4) is chosen as to minimize the cross vali-

In this section we apply our methodology to the study of arfiation error, using the cross-validation proceglure dbedrin
influenza challenge study which is part of the (DARPA) Pre[4]- We apply the same methodology to obtain a rarRCA

dicting Health and Disease program [7]. This dataset condecomposition. As is common in gene-expression data anal-

sists of a collection 0272 microarray samples of dimension YSIS: We apply an Analysis-of-Variance pre-processing sie
12023 genes obtained from individuals. All of these sub- Select 1000 genes exhibiting high temporal variability.eTh

jects were inoculated with influenza A H3N2Wisconsin andClUstering results, obtained with a hierarchical clusigral-

n = 16 blood samples were extracted before and after inocgorithml’ are shown in Figure 3. The MisPCA-based cen-
ulation at prespecified time points. Finally, the clinicaon troids, shown on the leftmost panel, have on average 30% less

the team established which of these subjects developed-symfRTiance that those obtained using PCA. The second and the

toms, based on a standardized symptom scoring method. +a-; _ . _ o _ '
previous work, we showed that the trajectories of the genel_ The hlerarchlcal clustering _algorlthm_ls used W|_th staddzd Eu-

. . . .. . Clidean distance and complete linkage. Different choideth@® number of
expression values for different subjects are misaligneti Wi ¢jysters were explored ar&iwas shown to give the most interpretable re-
respect to one another [4]. sults.




third pannel show a 2-dimensional embedding, computed us- A. APPENDIX

ing Multidimensional Scaling (MDS), of the projection ofth o MisPCA

data on the MisPC’s and the Principal Components (PC’s). .1. Derivation of SNR™

is clear that the clusters corresponding to up-regulateége Itis easy to verify that i\MSPCA < 1, then (hMisPCA’ dMisPCA SNR)

(Iow—ltot-hégh Va”?]t.'og)t arle bettgr t;epar att(;d f|\r/|qmpg]§ gﬁwnis monotonically decreasing over SNR0. Otherwise, it has
regulated ones (high-to-low variation) in the Mis -tihse positive stationary point at:

projections.
SNRJ _ )\MiSPCA —1.
6. CONCLUSIONS i i

The second derivative df(RMSPCA gMISPCA SNR) with re-
We have introduced a new method of PCA that compensaté&gpect to SNR is negative at SKFhence SNRis at least a lo-
for potential circular shifts in the observed data. We hawe p cal maxima. Itis easy to check tHathMisPCA, dMSPCA SNR)
posed an approximate algorithm to solve the Misaligned PCAs strictly increasing oved < SNR < SNR’ and strictly de-
problem and have shown its advantage over other approximareasing over SNR> SNR, thus the local maxima is also a
tions. Our methodology can be used to enhance the clusterirgiobal maxima. This finalizes the proof of (5).
of misaligned data to obtain centroids that capture more defi
nite latent temporal features from gene expression timeser A .2. Proof of Theorem 4.1

The eigenvalue decompositionBf(7) is denoted b s Ax QL,
whereQy is a unitary matrix containing its eigenvectors and
Ay is a diagonal matrix containing its eigenvalues:
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