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Abstract—This paper studies a downlink multiuser transmit a certain class of hard (nonconvex) optimization problems,
beamforming design under spherical channel uncertaintiesusing and has recently gained popularity owing to its wide scope
a worst-case robust formulation. This robust design problen is of applicability [9], [10]. For a general application, SDR

nonconvex. Recently, a convex approximation formulation bsed . idered bootimal solver: h for th t
on semidefinite relaxation (SDR) has been proposed to handtke IS considered a suboptimal Solver, however, Tor the worst-

problem. Curiously, simulation results have consistentlyndicated ~case robust beamforming problem, simulation results have
that SDR can attain the global optimum of the robust design indicated that SDRshould to be a globally optimal solver,
problem. This paper intends to provide some theoretical inghts  which is a rather surprising empirical finding. As such, lgein
into this important empirical finding. Our main result is a  gpje tg provide a theoretical analysis proving whether SBR i
dual representation of the SDR formulation, which reveals a . R
interesting linkage to a different robust design problem, ad the optimal V_VOUId be of much _S'gn'f'cance' A recent result [11]
possibility of SDR optimality. has partially addressed this open question, where the SDR
optimality under sufficiently small error radii is analyzed
This paper intends to address the mystery of SDR optimality
This paper focuses on a standard wireless multiuser uiri-worst-case robust transmit beamforming optimizationgis
cast system where a multiple-antenna transmitter bro&licas different analysis approach. We show that the worst-case
independent data streams to multiple single-antennavexsei robust problem has a close relationship to a different robus
using transmit beamforming [1]. In this context, the efficacbeamforming problem, in form of max-min optimization. In
of beamforming designs relies on knowledge of the chanr@rticular, we prove that their SDR problems are dual, or
state information (CSI) of all the receivers. However, thequivalent, to each other. This new, intriguing, dualityatien-
transmitter often has some uncertainties on the CSI, duestap provides a new perspective and useful insights explgin
issues such as finite-length training and finite-rate feeklbathe optimality of SDR. In particular, we will give a conditio
[2]. CSI uncertainties at the transmitter can result in $ign under which SDR provides globally optimal solutions to the
icant performance outage, if not taken into consideration worst-case robust problem.
the beamforming designs. The CSI uncertainty problem has
motivated considerable research endeavors in robustnians . . S'G_NAL MODEL AND BACKGROUND )
beamforming design techniques. This includes the chancé-onsider a wireless downlink system where a transmitter,
constrained robust designs [3], [4], where the CSI unaetigs  €duiPped withN; antennas, wants to communicate wikh
are modeled as random variables, and the worst-case robifsgle-antenna receivers using transmit beamforming. The
designs [5]-[8], where the CSI uncertainties are modeled Rblem f%mulatlon follows a standard unicast setting [1]
bounded unknowns within a predetermined, small error set-€t i fv(c * denote the channel vector of receiveand let.
Our problem of interest is the worst-case signal-td®: € C™t be the as;oc!a_\ted_ beamforming vector for receiver
interference-plus-noise ratio (SINR) constrained rolttasts- * The SINR of receivet is given by
mit beamforming design problem under spherically bounded | w,;|?
CSl uncertainties, which has drawn much interest recefily [ SINRi (w1, ..., wre, hi) = =7 H. 12 27
; . . . Zk;ﬁi |h; wi|* + o}
[8]. Presently available beamforming solutions for thisrste
case robust problem are based on approximation methodbere o7 > 0 is the noise power at receiver for all
either restriction [6], [7] or relaxation [8], and it is nowoh i =1,..., K. Our goal is to design the beamforming vectors
clear whether the worst-case robust problem can be opgimafkw; } £ | such that each receiver achieves a desired SINR level.
(and efficiently) solved. However, simulations seem to have Conventionally, transmit beamforming designs requiré ful
provided the answer to the latter— the semidefinite relaxati channel state information (CSI) at the transmitter; i.agQw-
(SDR) method [8]. SDR is a convex relaxation technique fadge of {h;}X . In wireless communications, however, it
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is difficult for the transmitter to acquire accurate CSI, duehere the matrix function®,; (W7y,..., Wx, \;) are defined
to imperfect channel estimation and finite rate feedback [2s
Hence there are channel uncertainties at the transmitey; i

‘I’i(le--wWKv)\i)é[_I} —W; — ZWk

hi=hi+e;, i=1,... K, (2) hH
k#i
whereh,; denotes the channel estimate available at the trans- T 0 .
mitter, ande; € C™¢ represents the channel uncertainty. In this + { 0 —o0?- /\Z—r?} L= K ()
work, we focus on spherically bounded channel uncertantie Where is the N, by N, identity matrix. Note that the SDR
led? <2, i=1,...,K, A3) problem (6) is a semidefinite program (SDP), which is convex
and tractable.
where || - | denotes the Euclidean norm, and > 0 is the ~ The SDR problem (6) is methodologically an approximation
radius of the uncertainty ball. We study the following werstto the worst-case robust problem (4) because the rank®;of
case robust beamforming design [6], [8]: are not constrained. However, if the optimal solution of the
SDR problem (6), denoted bWy, ..., W), is of rank one;

, K ) i.e., Wr = wr(w?)H forall i = 1,..., K, then it can be
w0, O Z i (42)  verified that(w?, .. ,wk) is a gIobaIIy optimal solution to
=1, K =1 the worst-case robust formulation (4). Rather surprisingis

s.t. SINR; (w1, ..., wg, h; +e;) >~ V|e> <r?,  found through simulations that SDR yields rank-one sohutio
i=1,... K, (4b) automatically, and it happens seemingly all the time [81][1

(see also [4]). Our endeavor in the subsequent section is to
where~; > 0 is the SINR requirement of receivéy which provide a dual formulation of the SDR problem (6) that may
must be fulfilled even under worst possible CSI uncertagntieshed light into this empirical finding.

The challenge of solving the worst-case robust problem (4)Before we proceed to the main result, let us present some
lies in the worst-case SINR constraints in (4b), each of higimulation results to further strengthen the motivation of
corresponds to an infinite number of nonconvex quadratize raised analysis problem. Specifically, we benchmark the
constraints. As mentioned, there are several approximati®DR method against other concurrent approximation methods
methods for managing problem (4) [6]-[8], and here we focurgmely, the robust SOCP-based method in [6], and the MMSE-
on the SDR method [8]. The development of SDR consists bfsed SDP method in [7]. The simulation settings afe= 4,
two steps. The first step, which is standard (see, e.g. [O]),K = 4, v £ 71 = -+ = Ik, o} = - = o0k = 0.1,
to substituteW; = w,w!, k =1,..., K, into (4b), and then 7 = ri = --- = rx = 0.1, and (hy,...,hg) being inde-
replaceW; = w;w by W, » 0 (|.e., W; being positive pendent and identically distributed complex Gaussianasemd
semidefinite (PSD)) to obtain a relaxed problem variables with zero mean and unit variance. The result issaho
in Fig. 1, where we see that the SDR method outperforms the
other two methods. Moreover, we should emphasize that the

WIQE}W Zrﬁ (52) SDR method yielded rank-one solution in all the trials ran.
e I1l. DUALITY OF WORSTCASE ROBUST SDR
9 Consider the following max-min optimization problem
s.t (h +ez W ZWk h-—|—ei)20'i
k#i . )
v Heiu?grg, F=1.. K (5b) Jomin D el
max i=1,...,. K T B
Wi,..., Wk =0, (5¢) f;f(c}( s.t. SINR; (w1, ..., wg, h; +e;) > v,

3

whereH"" is the set of allV; by N, Hermitian matrices, and i=L.. K
Tr(W;) denotes the trace df¥;. The motivation of this step st fleil? <rf i=1,... K, (8)
is to linearize the nonconvex constraints. The second step
to turn (5b) to finite numbers of constraints, thereby emapli
efficient implementations. By applying-lemma (see [12]) to
(5b), we obtain the following SDR formulation of (4):

At first look, problem (8) is different from the worst-case
robust problem in (4). In (8), the inner minimization is a
standard non-robust beamforming design problem [1] which
finds the most power efficient design given a presumed CSI

{h; + e;}i 1. The outer maximization, however, targets to
min > Tr(W) (6a) finda ‘worst” set of CSI uncertaintiefge; } /| that maximizes
WTGHM_X A the inner-minimum transmit power. We should also note that

1=1

problem (8) has a flavor of two-player zero-sum game.
We are particularly interested in applying SDR to (8). Like
Wi,....,.Wg =0, Ai,...,Ax 20, SDR for the worst-case robust problem, we replace each

s.t. ‘I’i(Wl,.. WK,)\)}O Zzl,...7K, (6b)



2 ———————T— T A. Main Result

@ ————Robust SOCP via structured SDP 6]

D | — MMSE-based SDP [7] T It turns out that problems (9) and (6) are strongly connected

g ® SDR in (5) s

é . gl Proposition 1 Suppose that problem (6) is feasible. Then

9 e problems (9) and (6) attain the same optimal objective value.

- e ] Moreover, if (W, ..., Wi, Af,...,\)) is an optimal so-

= s T lution of problem (6), then there exists (Vy*,..., V%) such

vd -+ . . .

s i b ] that (Vi*,..., Vi, Wy, ... ,W}) is an outer-inner solution

2 4+ el —1 of problem (9).

S /// ’_/‘/ L

ST e oo . I . -

R s p B As the main contribution of this paper, Proposition 1 pro-
. . vides a solution correspondence between problems (9) and (6
& 7 & 9 W0 ‘(‘dB)‘2 oMot 6 showing that problem (9) is actually a dual representation o
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problem (6). To prove that problems (9) and (6) attain the
same optimal objective value, we show that the Lagrangian
dual of problem (6) is equivalent to the Lagrangian dual of
w;w! with a PSD matrixW;, and eache!’ 1][e” 117 with problem (9). The former can be shown to be

a PSD matrixV;, to obtain the following problem

Fig. 1. Simulation results of average transmission powesuge
target SINR~, for uncertainty radiug = 0.1.

K A$KIZU N+ (11)
min ZTr(WZ) i=1,...,
Wil 2 St Yi(Ar. . Ak) =0, i=1,.... K,
K
1 : 2\[ A, F_
VEI?H?,V)'E+1 s.t. Tr _Wl_ZWk Rl > 0‘1.2’ FI‘I.(AZ) < (1+Tz)[AZ]Nt+11 ? 17"'1K7
i=1,.. K Vi P Ai,...,Ag = 0,
i=1..., K, where Ay,...,Ax € HNt! are the (Lagrangian) dual
Wi,..., Wk =z 0. variables associated with constraints (6b), and
st. Te(V;)) < (1+73), i=1,..., K, I
Vilyes =1, i =1,..., K, Yi(As, ..., Ax) £ I‘;ﬂfh]&{wﬁ
‘/la"'aVKioa (9)

+ Z [T hy] Ak[I],izl,...,K. (12)

where [V;|n,+1 is the (N; + 1, N; + 1)th entry of V; and N

R =[ITh]V,[ITh]", i=1,. K
An important observation of problem (9) is that ther
always exists a rank-one solution for the inner minimizatio

é\low let us consider the Lagrangian dual of the inner mini-
mization problem of (9), which can be shown to be

of problem (9): K )
Fact 1 [1] Consider the following SDP: EX o ;”iai (13)
s K
Wfrelﬁnfvt ZTr (10) st. T — —Z_Ri + Z welRi =0, i=1,... K,
i=1,..., k=1 k#i
1 K where 1, ..., ux are the dual variables associated with
s.t. Tr —W,; — ZWk R;| >0?, i=1,...,K, the trace inequality constraints of the inner problem of (9)
i ki Replacing the inner problem of (9) with its dual (13), we
W,>0,i=1,... K, obtain the following problem
where R.l’ .. .,RK_E 0. Sjppose that (10) is feasible. Then max imag
there exists an optimal solution (W7, ..., W) for which 1 >0,
rank(W+) = 1 for all i I (14)
‘ ' ;ZEEI”:K’ s.t. Y(,ul‘/lavﬂKVK)to
Fact 1 implies that the SDR ¢W/, ..., W) is always tight i=1L..., K,
for the max-min SDR problem (9). Fact 1 raises an intriguing st. Te(V;)) < (1+73),i=1,...,K,
question—What is the relationship between the max-min SDR Vins1=1,i=1,... K,
problem (9) and the robust SDR problem (6)? If the optimal V. ' Ve =0
solutions of(W, ..., W) of the two problems are identical, Lo TR=

then Fact 1 immediately implies that (6) has a rank-orf&ince strong duality holds for the inner parts of (9) and (14)
optimal solution and hence SDR is tight to (6) as well. the two problems have the same optimal objective value.



One may observe a connection between (11) and (14): where®,(-) andY;(-) are defined in (7) and (12), respectively.
B B . Proof of Lemma 1: Lemma 1 can be easily proved by in-
[Ailverr = pi, Ai = Vi i =1, K. (15) spection of (14) and (11). What remains is to show that
In fact, (11) and (14) are equivalent problems, as we showin > 0 and [A}]y,41 > 0 for all i = 1,...,K. The
Appendix the following lemma: former has been proved in [13, Proposition 4.2]; while the
latter can be proved as follows. One can observe from (17a)
Lemma 1 If (A7,..., A%) is an optimal solution of (11) and (17f) that[A*]y,s1 = O results in A* = 0. In

then this case,Y;(A7,..., A)) in (12) is positive definite, i.e.,
(Vi VE) = (AT/[AT Netts - Al [ AN 11), Y;.(A{, N L 0._ By the cqmplementary sllackness (17e),
(0" £) = ((A47] [A%] ) (16) this leads to the primal solutio®V* = 0, which however
N UNetdy -0 LK ING A violates (17b) [see (7)] due t6? > 0. ]
is an optimal outer-inner solution pair of (14). If Proof of Proposition 1: Here we prove thatWy, ..., W}),
(V" ..., VE i, ..., 1wy ) is an optimal outer-inner solution the optimal primal solution of (6), is also optimal to
of (14), then (A7,..., A% ) = (WiV*, ..., ui VE)isoptimal  (9). By Lemma 1 which shows that Aj/[A%]n,+1,
to (11). o AN J[A% N, 1) is an optimal outer maximizer of (9),

it suffices to show tha{Wy,..., W) is optimal to the

Lemma 1 shows thatVy,. .., V) of (14) only differs from aollowing problem

(A7,..., A%) of (11) up to a positive scalar. Hence, (14) an
(11) attain the same optimal objective value, implying @3t

and (6) attain the same optimal objective value. By Lemma mln Z Tr(W, (18)

one can further show th&Wy, ..., W), the optimal primal "~

solution of (6), is also optimal to (9). The detailed proof is I

presented in Appendix. s.t. Tr W - Z Wi i| A} { }
k=1,k#i i

B. Implication and Concluding Remark

To show that the robust SDR problem (6) has a rank-one so-
lution, we still need to prove that the optim@Vy,..., Wg) This can be shown by examining th@¥Vy", ..., W} ) satisfies

2 U?[A:]Nt-ﬁ-la 1= 1,. 7K

of (9) is also optimal to (6). Now, let us assume: the KKT conditions of (18), which are given as follows:
Condition 1 The optimal solution of the inner minimization Wi,..., Wk =0, p1,...,ux >0, (19a)
of problem (9), (W7, ..., W), is unique. Y: (u1 (AT /[ATIN+1), - - s e (AK /[A¥IN,41)) = O,

(19hb)

Condition 1 is considered mild; by numerical experience, ) .
Condition 1 is found to hold all the time. Under CondmorV 11 (AT /AN 1), - s i (AR [AK I N+1)) Wi = 0,

1, we can infer from Fact 1 and Proposition 1 that the SDR (19c¢)
problem (6) has a rank-one solution. Hence, we conclude that T
i iti W Z Wi |:th| - U?[A;]Nﬁ*la
Claim 1 Under Condition 1, the SDR problem (6) solves the k=1 ki i
worst-cast robust problem (4) optimally. (19d)
Our analysis above narrows down the SDR optimaliior i =1,..., K.
question to the proof of unique rank-one solution of the inne Since (W7,... , Wi Ai,...,\%) and (Aj,...,A%)

minimization problem of (9). As a future research direcfibn satisfy the KKT conditions in (17a), (17c) and
would be interesting to investigate sufficient conditiomsler (17e), (Wy,...,W}) and (g1, p0K) =

which Condition 1 holds true. ([ATIN,+1s - - - [A%]N,+1) satisfy (19a), (19b) and (19c). To
show that(W7, ..., W}) also fulfills (19d), let us consider

IV. APPENDIX ) -
an alternative representation of (6):

KKT conditions of (6)

The KKT conditions of (6) and (11) can be shown to be Lemma 2 Problem (6) can be equivalently expr | as the
Wi,o..,Wg =0, A1,..., Ak >0,A1,..., Ag>= 0, (17a) following problem

T, (Wy,..., Wi, A\) =0, i=1,..., K, (17b)
Yi(Ar,...,Ag) =0, i= 1K (17¢) in > Te(Wy) (20a)
U, (Wi,..., Wk, \)A; =0, i=1,... K, (17d) =l =
Yi(Ar,...,Ag)W; =0, i=1,. K, (17€) » minTr((im—zK: Wk) [Ihim{‘q)
Tr(A;) < (1 +r)[AiN1, i=1,..., K, (17f) VieV; Yi ey hi
(Tr(A) = (1+r))[AiN,41) X =0, i =1,..., K, (179) >0 i=1,...,K, (20b)



where V; = {V; € HVH | Te(V;) < (14 72), [Vilnog1 =

1,V; = 0}.
It is easy to verity that, fofW}, ..., W),
min Tr Z wi | [I k] Vi 1
Viev; k hfl
k=1,k#i
:af,z’:l,...,K, (21)

same procedure as in obtaining (9), one can obtain the SDR
problem of the minimization problem in (24) as

K
1 — T
in T —W; — Ih;|V,|; . (25
sl S 2 W ]V[hff} (25)

While (25) is obtained by relaxation of the rankdf, the SDR
problem (25) is actually tight and optimal to the minimioati
problem in (24); see [14, Lemma 3.1]. We thus obtain (20b)

by substituting (25) into (24).

i.e., the inequality constraints in (20b) are all active foe
optimal solution(W7,..., W}). Hence, to show that (19d)
is also fulfilled by (W7, ..., W}), it is sufficient to prove
that
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A7 /[Af]N =

. I
e iy T -3 wi | rnvi ]
‘= k=1,k#i g "
st. Tr(V;) < (1+ ri), (22a)
Vilnvi+1 =1, (22b)

(2]
forall i = 1,...,K. Let & and 7; be the dual variables

associated with the constraints in (22a) and (22b), reiedgt

and define (3]

‘i’i (Wl*7 ceey Wf*{aghTi)
[4]
I I 0
- {hH} Z Wi I i } FO &+ T':| ’
v k=1,k+#i v

The KKT conditions of the minimization problem in (22) can [5]
be obtained as

TI‘(‘/Z)S(l + Tiz)v [‘/Z—]Nﬂrl :Lmtové. > OvTi € Ra (233) [6]
O, (Wy, .. Wk, &, m) =0, (23b)
U, (W, W&, ) Vi =0, (23¢c) [
& (Te(V;) = (1477)) =0, 7 ([Viln,41 — 1) = 0. (23d) 8
For eachi € {1 (K}, let Vi = AY /AN, & =
P (1 + r2)Ar. It follows from the KK
cond|t|ons in (17a) (17b) (17d) and (179) tHat*, &r, ) [9]

satisfies all the conditions in (23). Thus (22) is true for all
i1=1,..., K. The proof is then completed. |
Proof of Lemma 2: It suffices to show that (6b) is equivalenf1o]
to (20b). Note that (6b) is equivalent to

W—ZWk

k=1,k#i

(11]

min (h; + ei)H hi +e;)
lle:[|2<r?

[12]

Zog,iZL...,K. (24)

(CUHK 415908), and by a Direct Grant awarded by the
Chinese University of Hong Kong (Project Code 2050489).
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