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Abstract—In this work 1, we consider the joint precoding across
K distant transmitters (TXs) towards K single-antenna receivers
(RXs). In practical networks, cooperation between TXs is limited
by the constraints on the backhaul network and the common
approach to limit the backhaul overhead is to form small disjoint
clusters of cooperating TXs. Yet, this limits the performance due
to interference at the cluster edge. We overcome this problem
by directly optimizing the allocation of the user’s data symbol
without clustering but solely subject to a constraint on the total
number of symbols allocated. Since the problem of optimal data
symbol allocation is of combinatorial nature, we use a greedy
approach and develop greedy algorithms having low complexity
while incuring only small losses compared to the optimal data
symbol allocation. Moreover, the algorithms are shown to be
Multiplexing Gain (MG) optimal in many settings. Simulations
results confirm that our approach outperforms dynamic cluster-
ing methods from the literature.

I. I NTRODUCTION

In order to achieve high spectral efficiencies in future
cellular systems, full frequency reuse is considered. However,
such systems severely suffer from Inter-Cell Interference(ICI)
thus degrading the throughput, especially for cell edge users.
Promising approaches for mitigating the ICI are Multicell
MIMO methods (or CoMP in the 3GPP terminology) and are
considered for next generation wireless networks. In Multicell
MIMO the set of user’s data symbols are shared across a group
of cooperating TXs thereby jointly serving the set of users in a
distributed MIMO fashion. With full data symbol sharing and
CSI sharing, Multicell MIMO can be seen as virtual multiple-
antenna broadcast channel (BC) channel [1].

Sharing of data symbols and Channel State Information
(CSI) implies high backhaul and feedback overhead which in-
creases as the number of cooperating terminals in the network
increases. The common approach to reduce the overhead and
make cooperation suitable for practical application is to form
disjoint clusters of cooperating TXs [2]. Yet, the cluster-edge
users still suffer from inter cluster interference. This method
is improved in [3] where greedy algorithm which aims at
optimizing the formation of disjoint cluster of TXs at each time
slot is developed. Yet, dynamic clustering still suffers from
inter-cluster interference and becomes complicated when the
cluster size increases. In [4], a scheme is presented where each

1This work has been performed in the framework of the European research
project SAPHYRE, which is partly funded by the European Union under its
FP7 ICT Objective 1.1 - The Network of the Future.

RX chooses the set of TXs serving it such that overlapping
clusters are formed. However, the design of the clusters is
not optimized and the set of TXs is selected based on simple
heuristics. Finally, in [5]–[7], the impact of partially sharing
the users data is analytically studied for one dimensional
networks.

In this paper we consider an alternative to clustering and
we directly optimize the data symbol allocation subject to
a constraint on the total number of symbols being routed.
Note that in directly optimizing the data symbol allocation,
the knowledge of the CSI for the whole multiuser channel is
necessary for all TXs to apply joint precoding. This represents
a strong requirement for large cooperation areas and a method
reducing the CSI sharing necessary for joint precoding is
proposed in a companion paper [8].

The main contributions of the paper are as follows: First, we
develop a precoding scheme adapted to this partial data sharing
setting. We analyze the MG and then we develop a greedy
algorithm to obtain a trade off solution with good performance
and low complexity. Our approach is based on extending the
approach used for TX antenna selection to Multicell MIMO
system, which has been studied in the context of single user
and Multiuser MIMO systems [9], [10].

II. SYSTEM MODEL

We first present the multicell MIMO network model and
then we introduce the model for the backhaul data sharing.

A. Multi-cell MIMO

We consider a network that consists ofK TXs, with TX k
equipped withNk antennas andK single-antenna RX’s. The
total number of antennas at the transmit side is denoted by

NT =
K
∑

k=1

Nk. Thek-th RX receives

yk = hH
kx+ ηk (1)

wherehH
k ∈ C

1×NT represents the channel vector correspond-
ing to the k-th RX, x ∈ C

NT×1 represents the combined
transmit signals of all users sent by all the transmit antennas
and ηk ∼ CN (0, σ2) represents the i.i.d. complex circular-
symmetric additive Gaussian noise at thek-th RX. The whole
multiuser channel matrix of the system is

H = [h1,h2, . . . ,hK ]
H
. (2)



The channel is block fading and models a Rayleigh fading
scenario with a long term pathloss corresponding to a cellular
setting. Thus, the entries of the channel matrixH read as
{H}ij = γijGij whereGij is i.i.d. CN (0, 1) to model the
Rayleigh fading andγij is a positive real number modeling
the long term attenuation. It is assumed that all the TXs have
the knowledge of the CSI of the whole multiuser channel.
Multi-transmitter cooperative processing in the form of joint
linear precoding is adopted. Thus, the transmitted signalx is
obtained from

x = Ts = [t1 · · · tK ]







s1
...
sK






(3)

wheres ∈ C
K×1 is the vector of transmit symbols (whose

entries are independentCN (0, 1)), T is the precoding matrix
andtk ∈ C

NT×1 is the beamforming vector of the symbolk.
Noting that in a statistically symmetric isotropic network,

fulfilling a sum power constraint will lead to an equal average
power used per TX, we consider for simplicity a sum power
constraint‖T‖2F = K × P . We also assume that all data
streams are allocated with an equal amount of power so that
∀k, ‖tk‖2 = P .

B. Zero-Forcing Precoders

Conventional Zero Forcing (ZF) results in complete removal
of interference at the receivers. This is optimal at high SNRbut
not necessarily at intermediate SNR. To further improve the
performance of the precoder, regularized ZF precoder, which
achieves good performance even at intermediate SNR is used
and is given by [11]

T =

√
KP

∥

∥

∥
HH (HHH + αI)

−1
∥

∥

∥

H
H
(

HH
H + αI

)−1
(4)

whereα = K ×
(

σ2/P
)

is the regularization constant.

C. System Performance model

In this work we aim at maximizing the sum-rate of the
system under the constrained backhaul overhead. The sum-
rate of the system is equal to

R =

K
∑

k=1

Rk =

K
∑

k=1

log2 (1 + SINRk) . (5)

where the signal to Interference plus noise ratio (SINR) of the
k-th data stream is given by

SINRk =
|hH

k tk|2

σ2 +
K
∑

j=1,j 6=k

|hH
k tj |2

. (6)

Furthermore, the Multiplexing gain (MG) of the system is
defined as

MG ,

K
∑

k=1

MGk ,

K
∑

k=1

lim
P→∞

Rk(P )

log2(P )
. (7)

D. Backhaul Data Symbol Routing

To represent the effect of the allocation of the user’s data
symbols to the TXs, we introduce the concept ofrouting
matrix which specifies to which TXs the symbol of a given
user is being routed to, independently of any pre-determined
clustering concept. In realistic settings, e.g. cellular networks,
we are concerned with the sharing of the user’s data symbols to
the TXs and not to each antenna individually, as the different
antennas at a given TX are collocated and perfectly cooperate.
To model the data symbol sharing we define the routing matrix
D ∈ {0, 1}K×K as the matrix whose element{D}i,j ∈ {0, 1}
is 1 if symbol sj is allocated to TXi and 0 otherwise. The
number of user’s data symbol shared in the backhaul network,
that we also call routing links can be seen to be equal to
d = ‖D‖2

F
.

Yet, the antenna configuration has not been taken into
account in the routing matrix. Therefore, we need to introduce
more notations to represent it. Thus, we define the expansion
matrix E ∈ C

NT×K as:

E ,
[

AT
1 · · · AT

K

]T
(8)

where the matrixAk ∈ C
Nk×K is defined asAk ,

1[Nk×1]e
T
k. The vectorek ∈ C

K×1 is the k-th vector from
the canonical basis. Now the matrix̃D , ED can be defined
and represents well the data sharing constraints, as will be
shown in Section III.

E. Optimization Problem

In order to optimize the backhaul routing directly, we
formulate the following sum-rate maximization problem:

maximize
D∈{0,1}K×K

K
∑

k=1

Rk

subject to d = ‖D‖2
F
≤ d∗.

(9)

whered∗ is the constraint on the backhaul routing overhead.
Above problem is a discrete combinatorial optimization prob-
lem and generally exhaustive search is required to find the
optimal data symbol allocation. For exhaustive search, a total
of

(

K2

d∗

)

data allocation combinations need to be searched

over, i.e the complexity grows as
(

K2

d∗

)

. This is prohibitive
even for small number of cooperating nodes, for example
K = 7 considered in this paper. Therefore, we propose two
low complexity greedy algorithms. At each iteration of the
algorithm a data symbol is rooted (resp. removed) to (from)
TX so as to achieve the largest sum-rate. This is done until
the constraint on the number of routing links is reached.

III. PRECODEROPTIMIZATION

In this section we consider the design of the precoderT

given the routing matrixD. Note that each beamforming
vector can be derived independently due to the ZF constraints.
If one TX does not receive one symbol, it cannot participate
into the transmission of that symbol and the coefficient used
for that beamformer at that TX is then0. Therefore the
precoder with constrained backhaul overhead will be of the



form T ⊙ D̃, where ⊙ is the element wise product. The
beamforming vectortk transmitting the symbolk is obtained
from the following optimization:

minimize
tk

∥

∥

∥
H

(

tk ⊙ D̃:,k

)

− φ:,k

∥

∥

∥

2

2
(10)

whereφ = HT and the precoderT is obtained using (4) with
full routing.

In optimization (9) we consider no predefined constraint on
the routing pattern’s structure. Therefore, there may be some
columns of the routing matrix containing only zero i.e. a user
is not served. This is some kind of user selection and accounts
for a positive MG with partial data sharing.Thus, we define
a non-active useras a user whose data symbol is not routed
to any TX, i.e.,D:,k = 0K×1, or the power allocated to the
userpk = 0. If there arenon-active usersin the system, the
precoding scheme needs to be modified so that interference is
removed only at active users. We start by introducing some
notations and we denote the set of indices such thattk ⊙
D̃:,k 6= 0 by J and the reduced vectortk (J ) ∈ C

n2×1 with
n2 = |J | made of the elements ofJ . Further more, the set
of indices corresponding to the active-users is denoted byA,
with n1 = |A|. The matrixH (A,J ) ∈ C

n1×n2 is used to
represent the channel containing only the rows and columns
consisting inA and J respectively. Finally,φ̃ = φ (A,A)
represents a sub matrix ofφ formed by keeping the rows and
columns of the active-users. The beamforming vectortk can
now be obtained from the following optimization:

minimize
tk(J )

∥

∥

∥
H (A,J ) tk (J )− φ̃k

∥

∥

∥

2

2
(11)

which can be solved as a conventional Least Square prob-
lem. The beamforming vector of userk is then obtained by
reinserting the coefficients obtained intk at the positions
corresponding toJ in tk.

IV. M ULTIPLEXING GAIN ANALYSIS

In this section we consider the fundamental limit behind
the optimization problem (9) and look for the maximum MG
achievable when there is a constraint on the number of data
symbols allocated. In the following analysis we assume that
there will always be enough users to serve in the system so
that the MG is not restricted by the total degrees of freedom
available at the RXs. Mathematically, ifγ is the maximum
MG, thenK ≥ γ.

Proposition 1. In order to achieve the maximum MGγ under
the constraint‖D‖2F ≤ d∗, the following conditions needs to
be satisfied

KTX
∑

k=1

Nk ≥ γ ( ZF Feasibility ) ,

γ ×KTX ≤ d∗ ( Sharing Constraint) .

(12)

Proof: W.l.o.g, we consider the TXs to be ordered in
decreasing number of antennasN1 ≥ N2 ≥ . . . ≥ NK . To

achieve maximum MG ofγ with ZF precoding, we need to
satisfy the following conditions.

• ZF Feasibility: To cancel the interference atγ − 1 TXs,
each one of theγ data symbols should be transmitted
from at leastγ antennas.

• Sharing Constraint: To achieve ZF Feasibility, let all the
γ data symbols are routed toKTX TXs. Then the total
number of routing links can be seen to be equal toγ ×
KTX and it should be less than are equal to the given
constraint on the number of routing linksd∗.

Corollary 1. The maximum MGγ achieved with all TXs
havingN antennas under the constraint‖D‖2F ≤ d∗ is given
by

γ = max







N
⌊

√

d∗/N
⌋

,









d∗
⌈

√

d∗/N
⌉















. (13)

Proof: Since all the TXs haveN antennas,Nk = N, ∀k.
Rewriting the constraints of the problem (12), we get

γ ≤ d∗

KTX

andγ ≤ NKTX . (14)

Therefore, the optimization problem can be reformulated as

γ = max .
KTX

min

{

d∗

KTX

, NKTX

}

. (15)

Since the first argument in the minimization is increasing in
KTX and the second one is decreasing inKTX , the maximum
occurs when both terms are equal such thatKTX =

√

d∗/N .
Yet, KTX has to be an integer, and from the analysis of (15),
we conclude thatKTX =

⌊

√

d∗/N
⌋

or KTX =
⌈

√

d∗/N
⌉

.

If KTX =
√

d∗/N /∈ N we look for the following cases.

• If KTX =
⌊

√

d∗/N
⌋

then d∗

KTX

≥ NKTX and

γ = N
⌊

√

d∗/N
⌋

(16)

• If KTX =
⌈

√

d∗/N
⌉

then d∗

KTX

< NKTX and

γ =









d∗
⌈

√

d∗/N
⌉







 (17)

Inserting (16), (17) in (15) concludes the proof.
From the MG analysis, we now know how many users

should be served to maximize the MG, which is in itself
interesting and will be useful in evaluating the MG optimality
of our algorithm.

V. GREEDY DATA SYMBOL ALLOCATION

A. Greedy Algorithms

We consider two possible versions of the greedy algorithms.
In Decreasing greedy algorithm (DEC), we initialize the
routing matrixD = 1N×K and at each iteration the element
of D which causes the least degradation in the sum-rate is set
to 0 (i.e. removing the routing link of one symbol to one of



the TX) . This process is continued till the constraint on the
number of backhaul links is reached. Similarly the Increasing
greedy algorithm (INC) starts withD = 0N×K and at each
iteration the element ofD which leads to the largest increase
in the sum-rate is set to1 until the constraint on the number
of backhaul links is reached. Due to the space limitation we
omit the details of INC and we refer the reader to [12].

Algorithm 1 Decreasing greedy algorithm
Input: H, d∗, Output: D,p

Initialize: D = 1N×K , p = P × 1K×1

1: for d = 1 to K2 − d∗ do
2: Cinit = 0, Dtemp = D, p = p

′

3: for RX k = 1 to K do
4: for TX l = 1 to K do
5: if {Dtemp}lk 6= 0 then
6: {Dtemp}lk = 0
7: T = precoding (Dtemp,H,p) %(From Sec.III)
8: Csum= sumrate(T,H) %using (5)
9: if Csum ≥ Cinit then

10: m = l, n = k, Cinit = Csum

11: end if
12: Dtemp = D

13: end if
14: end for
15: end for
16: {D}mn = 0, T = precoding (D,H,p)
17: Csum= sumrate(T,H) %using (5)
18: p

′

=Power allocation(p,T, Csum) %(C.f Sec.V-B1)
19: end for

B. Analysis of Greedy Algorithms

Using the MG analysis in Section IV, we can make
some improvements to the constrained greedy algorithms. The
greedy algorithms at any given step try to maximize the
performance at each step and they does not necessarily achieve
the maximum MG. For example, in a system consisting of
K = 7 TX/RX pairs, in the DEC we start with full cooperation
and therefore MG is7. Removing one symbol form an antenna
results in creating interference to all the other streams such
that MG is 1, whereas the optimal strategy (at high SNR)
with 48 routing links is to serve6 users so that MG of
6 is achieved. By not being MG optimal does not hurt the
performance at low SNR but in intermediate and high SNR
but it has a considerable effect on the performance of the
algorithm. Therefore, we propose some improvements to the
greedy algorithms.

1) Binary Power Control:In Binary Power Control (BPC)
power allocated tok-th userpk takes only two values0 or P
[13]. In this work we use the idea of BPC in Algorithm 1 in
step18 to make it MG optimal. After each step of removing
a data symbol fromD we check whether by turning off a
user completely, results in an increase in the sum-rate. If the
sum-rate increases by turning offk-th user completely, then
the power allocated to that userpk = 0. We will show in the

following proposition that MG can be increased by turning off
the correct number of users at high SNR.

Proposition 2. With single antenna TXs, the DEC with BPC
as described in Algorithm 1 achieves the optimal MG.

Proof: By using the definition of MG and ZF, proving
the MG optimality is equivalent to show that the algorithm
makes sure that|A| = ⌊

√
d∗⌋ and∀k ∈ A the beamforming

vectorstk (J ) ∈ C
n2×1, n2 = |J | ≥ ⌊

√
d∗⌋, whereA is the

active user index set and⌊
√
d∗⌋ is the maximum MG that can

be achieved withd∗ routing links [C.f. Section IV].
We consider asymptotically high SNR such that the behavior

of the algorithm can be predicted as it selects at each step the
routing with the largest MG. Let start from the first step with
|A| = K and∀k ∈ A, tk (J ) ∈ C

n2×1, n2 = |J | = K. Re-
moving thek-th symbol froml-th TX i.e.{D}l,k = 0 results in
tk (J ) ∈ C

n2×1 with n2 = |J | = |A|−1. The reduced chan-
nel matrix corresponding totk (J ) is H (A,J ) ∈ C

|A|×|J |.
Thus,rank (H (A,J )) = |J | and the solution of (11) will not
be able to ZF the interference, resulting in a MG of1. At this
stage turning off a data stream results in an increase in MG
thus BPC will turnoff a user. Supposepi = 0, then thei-th
user is non-active which results in|A| = |J | and the system
is in a square setting such that ZF is feasible and MG is|A|.
Sincepi = 0, removing thei-th user’s data symbol from the
other TXs does not diminish the MG or sum-rate. Therefore,
in the following iterations the DEC algorithm will remove the
i-th symbol from all the other TXs resulting inT:,i = 0K×1.
A square setting is then obtained and the same method can be
repeated until the constraintd∗ = ‖D‖2F is reached.

VI. SIMULATIONS

We simulate a multicell network consisting ofK = 7
TXs and RXs. The pathloss between thel-th TX and the
k-th RX which are separated by distancerKm

lk is 128 +
37.6 log10

(

rKm
lk

)

. The noise power at the receiver isPnoise =
−104 dBm. In the simulations, an average cell edge SNR of
20 dB is maintained by selecting the transmit powerpTx = 50
dBm and the cell radius equal to1.5 km. The simulation
results are averaged over 1000 uniform randomly generated
user positions (such that each cell has exactly one user) and
Rayleigh fading realizations.

Fig. 1 shows the sum-rate achieved by Algorithm 1 with
single antenna TXs for different data sharing in terms of
the average SNR for cell edge user when the power per TX
changes. The data sharing is represented by the percentage
of data symbols shared compared to full cooperation i.e,
d∗/K2. For the dynamic clustering approach, we consider the
algorithm from [3], with clusters of size4 and3 (Sharing%
is
(

42 + 32
)

/72 ≈ 50%) and6 and1 (
(

62 + 12
)

/72 ≈ 75%).
As expected, the optimized data symbol allocation results in
better performance than the clustering methods. It can be
seen that the Algorithm 1 with50% sharing outperforms the
dynamic clustering solution with75% sharing.

In Fig. 2 the performance of the two algorithms with
multiple antennas at the TXs with[N1, N2, ..., N7] =[2 1 1
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Fig. 1. Sum-rate in terms of average cell edge SNR for differentbackhaul
overhead in single antenna setting.

3 1 2 1] is considered. The DEC is close to optimal at high
percentage of data sharing and the INC is close to optimal
for low percentage of data sharing. The greedy algorithms
outperforms dynamic clustering at all percentages of data
sharing. From the performance curves of both the INC and
the DEC we get the nice intuition of the performance of
the optimal data symbol allocation. Note that the sum-rate
curve of the INC is not smooth. This is not a consequence
of the averaging but caused due the variations in MG as
the INC is not MG optimal(C.f V-B). Finally, the greedy
algorithms outperforms dynamic clustering even when the the
routing solution is obtained based on only the longterm CSI.
In long term greedy, the routing is computed only once at the
beginning when a user group selected randomly and kept same
for remaining100 Rayleigh fading realizations while keeping
the selected user positions are fixed.

VII. C ONCLUSION

In this work, an alternative to the clustering has been
provided where direct optimization on data symbol allocation
subject to the constraint on the backhaul overhead is done.
By the simulation results we have shown that the proposed
routing algorithm out performs the the dynamic clustering
algorithms from the literature. This was an expected resultas
the data symbol allocation is optimized without the constraint
of forming disjoint clusters. Furthermore, the routing solution
based only on the long term information outperforms the
dynamic clustering, while still having less cost on the network
architecture and therefore appears as a practical alternative
to clustering in Muticell MIMO systems. By exploiting the
inherent sparsity in the channel in a large network, the
approach of directly optimizing the data symbol allocation
is extended for large cooperation domains [14]. Finally, the
future work consists of studying the partial data sharing setting
with multiple antenna RXs [15].
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