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Abstract—We develop mask iterative hard thresholding al-
gorithms (mask IHT and mask DORE) for sparse image re-
construction of objects with known contour. The measurements
follow a noisy underdetermined linear model common in the
compressive sampling literature. Assuming that the contour of
the object that we wish to reconstruct is known and that the
signal outside the contour is zero, we formulate a constrained
residual squared error minimization problem that incorpor ates
both the geometric information (i.e. the knowledge of the object’s
contour) and the signal sparsity constraint. We first introduce a
mask IHT method that aims at solving this minimization problem
and guarantees monotonically non-increasing residual squared
error for a given signal sparsity level. We then propose a double
overrelaxation scheme for accelerating the convergence ofthe
mask IHT algorithm. We also apply convex mask reconstruction
approaches that employ a convex relaxation of the signal sparsity
constraint. In X-ray computed tomography (CT), we propose
an automatic scheme for extracting the convex hull of the
inspected object from the measured sinograms; the obtained
convex hull is used to capture the object contour information.
We compare the proposed mask reconstruction schemes with
the existing large-scale sparse signal reconstruction methods via
numerical simulations and demonstrate that, by exploitingboth
the geometric contour information of the underlying image and
sparsity of its wavelet coefficients, we can reconstruct this image
using a significantly smaller number of measurements than the
existing methods.

I. Introduction
Compressive sampling exploits the fact that most natural

signals are well described by only a few significant (in mag-
nitude) coefficients in some [e.g. discrete wavelet transform
(DWT)] domain, where the number of significant coefficients
is much smaller than the signal size. Therefore, for anp × 1
vector x representing the signal and an appropriatep × p
sparsifying transform matrixΨ , we havex = Ψ s, where
s = [s1, s2, . . . , sp]

T is an p × 1 signal transform-coefficient
vector with most elements having small magnitudes. The idea
behind compressive sampling or compressed sensing is to
sensethe significant components ofs using a small number
of linear measurements:

y = Φ x (1)

wherey is anN × 1 measurement vector andΦ is a known
N × p sampling matrixwith N ≤ p; here, we focus on
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the scenario where the measurements, signal coefficients, and
sampling and sparsifying transform matrices are real-valued.
Practical recovery algorithms, including convex relaxation,
greedy pursuit, and probabilistic methods, have been proposed
to find the sparse solution to the underdetermined system (1),
see [1] for a survey.

Compressive sampling takes the advantage of the prior
knowledge that most natural signals are sparse in some
transform domain. In addition to the signal sparsity, we use
geometric constraints to enhance the signal reconstruction
performance. In particular, we assume that the contour of
the object under inspection isknown and that the signal
outside the contour is zero. Aconvex relaxation methodwas
outlined in [2] for image reconstruction with both sparsityand
object contour information. (Note that [2] does not provide
sufficient information to replicate its results and, furthermore,
the method’s development in [2, eqs. (4)–(6)] clearly con-
tains typos or errors.) Here, we propose (i) iterative hard
thresholding and convex relaxation algorithms that incorporate
the object’s contour information into the signal reconstruction
process and (ii) an automatic scheme for extracting the convex
hull of the inspected object (which captures the object contour
information) from the measured X-ray computed tomography
(CT) sinograms.

We introduce our measurement model in Section II and the
proposed iterative hard thresholding methods in Section III.
Our mask convex relaxation algorithms are described in Sec-
tion IV. The experimental results are given in Section VI.

We introduce the notation:‖·‖p and “T ” denote theℓp norm
and transpose, respectively, and the sparse thresholding oper-
atorTr(s) keeps ther largest-magnitude elements of a vector
s intact and sets the rest to zero, e.g.T2([0, 1,−5, 0, 3, 0]T ) =
[0, 0,−5, 0, 3, 0]T . The largest singular value of a matrixH is
denoted byρH and is also known as the spectral norm ofH .
Finally, In and0n×1 denote the identity matrix of sizen and
then× 1 vector of zeros, respectively.

II. Measurement Model
We incorporate the geometric constraints via the following

signal model: the elements of thep × 1 signal vectorx =
[x1, x2, . . . , xp]

T are

xi =

{
[Ψ s]i, i ∈ M
0, i /∈ M

(2)
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for i = 1, 2, . . . , p, where [Ψ s]i denotes theith element of
the vectorΨ s, the maskM is the set ofpM ≤ p indices
corresponding to the signal elements inside the contour of
the inspected object,s is the p × 1 sparse signal transform-
coefficient vector, andΨ is the known orthogonal sparsifying
transform matrix satisfying

Ψ Ψ
T = Ψ

T
Ψ = Ip. (3)

Therefore, thepM × 1 vector of signal elementsinside the
maskM (xi, i ∈ M) is xM = ΨM,: s, where thepM × p
matrix ΨM,: contains thepM rows of Ψ that correspond to
the signal indices within the maskM. If the resultingΨM,:

has zero columns, the elements ofs corresponding to these
columns are not identifiable and are known to be zero because
they describe part of the image outside the maskM. Define the
set of indicesI of nonzero columns ofΨM,: containingpI ≤ p
elements and the correspondingpI×1 vectorsI of identifiable
signal transform coefficientsunder our signal model. Then,

xM = ΨM,I sI (4)

where thepM×pI matrixΨM,I is therestrictionof ΨM,: to the
index setI and consists of thepI nonzero columns ofΨM,:.
Now, the noiseless measurement equation (1) becomes [see
also (2) and (4)]

y = Φ x = Φ:,MΨM,I sI (5)

where theN × pM matrix Φ:,M is the restriction of the full
sampling matrixΦ to the mask index setM and consists of the
pM columns of the full sampling matrixΦ that correspond to
the signal indices withinM. We now employ (5) and formulate
the following constrained residual squared error minimization
problem that incorporatesboth the geometric information (i.e.
the knowledge of the inspected object’s contour) and the signal
sparsity constraint:

(P0) : min
sI

‖y −H sI‖
2
2 subject to‖sI‖0 ≤ r (6)

where‖sI‖0 counts the number of nonzero elements in the
vector sI and H = Φ:,MΨM,I. We refer tor as thesignal
sparsity leveland assume that it isknown. Finding the exact
solution to (6) involves a combinatorial search and is therefore
intractable in practice. In the following, we present greedy
iterative schemes that aim at solving (6).

III. Mask IHT and Mask DORE
We first introduce a mask iterative hard thresholding (mask

IHT) method and then propose its double overrelaxation
acceleration termed mask DORE.

Assume that the signal transform coefficient estimates
(q)
I is

available, whereq denotes the iteration index.Iteration (q+1)
of our mask IHT scheme proceeds as follows:

s
(q+1)
I = Tr

(
s
(q)
I + µ(q) HT (y −H s

(q)
I )

)
(7)

whereµ(q) > 0 is a step size chosen to ensure monotonically
decreasing residual squared error, see also Section III-A.
Iterate untils(q+1)

I ands
(q)
I do not differ significantly. Upon

convergence of this iteration yieldings(+∞)
I , construct an

estimate of the signal vectorxM inside the maskM using
ΨM,I s

(+∞)
I . In [3], we consider (7) with constantµ(q) (not

a function of q) set to µ(q) = 1/ρ2
Φ

. For the full mask
M = {1, 2, . . . , p} and constantµ(q), (7) reduces to the
standard iterative hard thresholding (IHT) algorithm in [4].

We now propose our mask DORE iteration that appliestwo
consecutive overrelaxation stepsafter one mask IHT step to
accelerate the convergence of the mask IHT algorithm. These
two overrelaxations use the identifiable signal coefficientesti-
matess(q)I ands(q−1)

I from the two most recently completed
mask DORE iterations.Iteration (q + 1) of our mask DORE
scheme proceeds as follows:
1. Mask IHT step.

ŝI = ŝI(s
(q)
I , µ(q)) = Tr

(
s
(q)
I + µ(q) HT (y −H s

(q)
I )

)
(8)

whereµ(q) > 0 is a step size chosen to ensure monotonically
decreasing residual squared error, see also Section III-A.
2. First overrelaxation. Minimize the residual squared error
‖y − H sI‖

2
2 with respect tosI lying on the straight line

connectingŝI ands(q)I :

z̄I = ŝI + α1 (ŝI − s
(q)
I ) (9a)

which has aclosed-formsolution:

α1 =
(H ŝI −H s

(q)
I )T (y −H ŝI)

‖H ŝI −H s
(q)
I ‖22

. (9b)

3. Second overrelaxation.Minimize the residual squared error
‖y − H sI‖

2
2 with respect tosI lying on the straight line

connectingz̄I ands(q−1)
I :

z̃I = z̄I + α2 (z̄I − s
(q−1)
I ) (10a)

which has a closed-form solution:

α2 =
(H z̄I −H s

(q−1)
I )T (y −H z̄I)

‖H z̄I −H s
(q−1)
I ‖22

. (10b)

4. Thresholding. Thresholdz̃I to the sparsity levelr: s̃I =
Tr(z̃I).
5. Decision.If ‖y −H s̃I‖

2
2 < ‖y −H ŝI‖

2
2, assigns(q+1)

I =

s̃I; otherwise, assigns(q+1)
I = ŝI and completeIterationq+1.

Iterate untils(q+1)
I ands

(q)
I do not differ significantly. As

before, upon convergence of this iteration yieldings(+∞)
I ,

construct an estimate of the signal vectorxM inside the mask
M usingΨM,I s

(+∞)
I .

A. Step size selection
In Iteration 1 of our mask DORE and mask IHT schemes,

we seek the largest step sizeµ(0) that satisfies

‖y −H ŝI‖
2
2 ≤ ‖y −H s

(0)
I ‖22 (11)

where ŝI = ŝI(s
(0)
I , µ(0)) is computed using (8) withq = 0.

We achieve this goal approximately as follows: Start with an
initial guess forµ(0) > 0, compute the correspondinĝsI =

ŝI(s
(0)
I , µ(0)), and



• if (11) holds for the initial step size guess, double
(repeatedly, if needed)µ(0) until the condition (11) for
the correspondinĝsI = ŝI(s

(0)
I , µ(0)) fails;

• shrink (repeatedly, if needed)µ(0) by multiplying it with
0.9 until (11) for the correspondinĝsI = ŝI(s

(0)
I , µ(0))

holds;
• completeIteration 1 by moving on to Steps 2–5 in mask

DORE or settings(q+1)
I = ŝI in mask IHT.

In each subsequentIteration q + 1 (q > 0), start withµ(q) =

µ(q−1), compute the correspondinĝsI = ŝI(s
(q)
I , µ(q)) in (8),

and

• if

‖y −H ŝI‖
2
2 ≤ ‖y −H s

(q)
I ‖22 (12)

does not hold for the initial step sizeµ(q) = µ(q−1),
shrinkµ(q) by multiplying it (repeatedly, if needed) with
0.9 until (12) for the correspondinĝsI = ŝI(s

(q)
I , µ(q))

holds;
• completeIteration q + 1 by moving on to Steps 2–5 in

mask DORE or settings(q+1)
I = ŝI in mask IHT.

Therefore, our step sizeµ(q) is a decreasing piecewise constant
function of the iteration indexq. The step sizeµ(+∞) obtained
upon convergence (i.e. asq ր +∞) is larger than or equal to
0.9/ρ2

H
, which follows easily from Theorem 1 below.

Theorem 1:Assuming that

0 < µ(q) ≤ 1/ρ2
H

(13)

and that the signal coefficient estimate in theq-th iterations(q)I

belongs to the parameter space

Sr = {sI ∈ R
pI : ‖s‖0 ≤ r } (14)

then (12) holds, wherêsI = ŝI(s
(q)
I , µ(q)) in (12) is computed

using (8). Consequently, under the above conditions, the mask
IHT and mask DORE iterations yield convergent monotoni-
cally nonincreasing squared residuals‖y − H s

(q)
I ‖22 as the

iteration indexq goes to infinity.
Proof: See the Appendix.

IV. Mask Convex Relaxation Methods
Consider a Lagrange-multiplier formulation of (6) with the

ℓ0 norm replaced by theℓ1 norm:

(P1) : min
sI

(12 ‖y −H sI‖
2
2 + τ ‖sI‖1) (15)

whereτ is the regularization parameter that controls the signal
sparsity; note that the convex problem (15) can be solved in
polynomial time. Here, we solve (15) using the fixed-point
continuation active set (FPCAS) and gradient-projection for
sparse reconstruction with debiasing methods in [5] and [6],
respectively. We refer to these methods asmask FPCAS and
mask GPSR, respectively.

Fig. 1. Geometry of the parallel-beam X-ray CT system.

V. Automatic Mask Generation from X-ray CT
Sinograms Using a Convex Hull of the Object

In X-ray computed tomography (CT), accurate object con-
tour information can be extractedautomatically from the
measured sinograms. In particular, we construct a convex hull
of the inspected object by taking intersection of the supports
of the projections (over all projection angles) in the spatial
image domain.

To illustrate the convex hull extraction procedure, consider
a parallel-beam X-ray CT system. Denote the measured sino-
gram bypθ(t), whereθ is the projection angle andt is the
distance from the rotation centerO to the measurement point.
To obtain sufficient data for reconstruction, the range oft
must be sufficiently large so that both ends of every projection
pθ(t) are zero. Define the range of the sinogram at angleθ
by [aθ, bθ] = inf {[a, b] ∈ R : pθ(t) = 0 for all t /∈ [a, b]} and
the corresponding range in the spatial image domain:

Aθ =
{
(x, y) ∈ R2 : x cos θ + y sin θ ∈ [aθ, bθ]

}

We construct the convex hull of the inspected object by taking
the intersection

⋂π
θ=0 Aθ. In practice, only a finite numberK

of projections is available at anglesθ1, θ2, . . . , θK ∈ [0, π),
and the corresponding convex hull of the object can be
computed as

⋂K
k=1 Aθk . Clearly, the anglesθ1, θ2, . . . , θK

determine the tightness of the obtained convex hull.
When imaging objects whose mass density is relatively high

compared with that of the air, it is easy to determine the
supports of the projections from the measured sinograms and
extract the corresponding convex hull. For low-density objects
such as pieces of foam, we need to choose carefully a threshold
for determining these supports.

VI. Numerical Examples
In the following examples, we use the standardfiltered back-

projection(FBP) method [7, Sec. 3.3], which ignores both the
signal sparsity and geometric object contour information,to
initialize all iterative signal reconstruction methods. The mask



DORE and DORE methods employ the following convergence
criteria:

‖s
(p+1)
I − sI

(p)‖22
/
pI < ǫ, ‖s(p+1) − s

(p)‖22
/
p < ǫ (16)

respectively, whereǫ > 0 denotes the convergence threshold.
Shepp-Logan phantom reconstruction. We simulated

limited-angle parallel-beam projections of ananalog Shepp-
Logan phantom with1◦ spacing between projections and miss-
ing angle span of25◦. Each projection is computed from its
analytical sinogram using [8, functionellipse_sino.m]
and [7] and then sampled by a receiver array containing511
elements. We then compute FFT of each projection, yielding
N = 512 frequency-domain measurements; the corresponding
frequency-domain sampling pattern is shown in Fig. 2(a).

Fig. 2(b) depicts both the full and outer-shell masks of
the phantom that we use to implement the DORE, GPSR,
FPCAS and mask DORE, GPSR, and FPCAS methods, re-
spectively. Because of the nature of X-ray CT measurements,
our full mask has circular shape containingp = 205859
signal elements. The elliptical outer-shell mask containing
pM = 130815 ≈ 0.6355 p pixels has been constructed from the
phantom’s sinogram using

⋂180
k=1 Aπ (k−1)/180, see Section V;

this choice of the mask implies that we have prior information
about the shape of the outer shell of the Shepp-Logan phan-
tom beyond the information available from the limited-angle
projections that we use for reconstruction, see Fig. 2(a).

Our performance metric is the peak signal-to-noise ratio
(PSNR) of a reconstructed imagex̂ = [x̂1, x̂2, . . . , x̂p]

T inside
the mask M:

PSNR (dB)= 10 log10

{ [(maxi∈M xi)− (mini∈M xi)]
2

∑
i∈M(x̂i − xi)2/pM

}

wherex is the true image.
We select the inverse Haar (Daubechies-2) DWT matrix

to be the orthogonal sparsifying transform matrixΨ ; the
true signal vectors consists of the Haar wavelet transform
coefficients of the phantom and is sparse:

‖s‖0 = 7866 ≈ 0.0382 p.

For the above choices of the mask and sparsifying transform,
the number of identifiable signal transform coefficients ispI =
132450 ≈ 0.6434 p. Note that‖s‖0 = ‖sI‖0 ≪ pI, implying
that the identifiable signal coefficients are sparse as well.

We compare the reconstruction performances of

• mask DORE (r = 7000) and DORE (r = 8000) with
ǫ = 10−14 [see (16)], wherer are tuned for good PSNR
performance;

• the mask FPCAS, mask GPSR, FPCAS, and GPSR
schemes, all using the regularization parameterτ =
10−5 ‖HT

y‖∞ tuned for good PSNR performance;
• the standard FBP method.

(Here, we employ the convergence thresholdtolP = 10−5

for the mask GPSR and GPSR schemes, see [6].)
Figs. 2(c)–2(i) show the reconstructions of various methods.

To facilitate comparison, we employ the common gray scale to

represent the pixel values within the images in Figs. 2(c)–2(i).
Clearly, taking the object’s contour into account improvesthe
signal reconstruction performance.

Industrial object reconstruction. We apply our proposed
methods to reconstruct an industrial object from real fan-beam
X-ray CT projections. First, we performed the standard fan-
to-parallel beam conversion (see [7, Sec. 3.4]) and generated
parallel-beam projections with1◦ spacing and measurement
array size of1023 elements, yieldingN = 1024 frequency-
domain measurements per projection. Our full mask has circu-
lar shape containingp = 823519 signal elements. The outer-
shell mask containingpM = 529079 ≈ 0.6425 p pixels has
been constructed from the phantom’s parallel-beam sinogram
using

⋂180
k=1 Aπ (k−1)/180, see Section V.

Them×m orthonormal sparsifying matrixΨ is constructed
using the inverse Daubechies-6 DWT matrix.

We consider two measurement scenarios: no missing angles,
i.e. all 180 projections available, and limited-angle projections
with missing angle span of20◦, i.e. 160 projections available.

We compare the reconstruction performances of mask
DORE (r = 15000) and DORE (r = 20000) with ǫ = 10−8;
the mask FPCAS and FPCAS schemes using the regularization
parameterτ = 10−6 ‖HT

y‖∞; the standard FBP method.
The reconstructions of mask FPCAS and FPCAS are very
similar to those of mask DORE and DORE; hence we present
only the mask DORE and DORE reconstructions in this
example. Figs. 3(a)–3(c) show the reconstructions of the
FBP, DORE, and mask DORE methods from180 projections
whereas Figs. 3(d)–3(f) show the corresponding reconstruc-
tions from160 limited-angle projections. Figs. 3(g)–3(i) show
the corresponding reconstruction profiles for slices depicted in
Figs. 3(a)–3(f). Observe the aliasing correction and denoising
achieved by the sparse reconstruction methods.

Appendix
We now prove Theorem 1. Consider the inequality:

‖y−Hs
(q)
I ‖22 −‖y−H ŝI‖

2
2 = ‖y−Hs

(q)
I ‖22 −‖y−H ŝI‖

2
2

+
1

µ(q)
‖s

(q)
I − s

(q)
I ‖22 − ‖H (s

(q)
I − sI

(q))‖22

≥ ‖y −H ŝI‖
2
2 +

1

µ(q)
‖ŝI − sI

(q)‖22 − ‖H (ŝI − sI
(q))‖22

− ‖y −H ŝI‖
2
2 (A1a)

=
1

µ(q)
‖ŝI − sI

(q)‖22 − ‖H(ŝI − s
(q)
I )‖22

≥ (
1

µ(q)
− ρ2

H
) ‖ŝI − s

(q)
I ‖22 (A1b)

where (A1a) follows by using the fact̂sI in (8) minimizes

µ(q)‖y−H sI‖
2
2+‖sI−sI

(q)‖22−µ(q)‖H(sI−sI
(q))‖22 (A2)

over all sI ∈ Sr , see also (14). To see this, observe that (A2)
can be written as

‖sI − s
(q)
I − µ(q) HT (y −H s

(q)
I )‖22 + const (A3)

where const denotes terms that are not functions ofsI. Finally,
(A1b) follows by using the Rayleigh-quotient property [9,
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 2. (a)155 limited-angle projections in the 2-D frequency plane, (b) the full and outer-shell masks of the Shepp-Logan phantom, (c) FBP (PSNR=
19.9 dB), (d) DORE (PSNR= 22.7 dB), (e) GPSR (PSNR= 22.9 dB), (f) FPCAS (PSNR= 22.5 dB), (g) mask DORE (PSNR= 25.8 dB), (h) mask
GPSR (PSNR= 25.3 dB), and (i) mask FPCAS (PSNR= 26.4 dB) reconstructions.

Theorem 21.5.6]:‖H (ŝI − sI
(q))‖22/‖ŝI − sI

(q)‖22 ≤ ρ2
H

.
Therefore, in each iteration,‖y − H s

(q)
I ‖22 is guaranteed to

not increase if the condition (13) holds. Since the sequence
‖y − H s

(q)
I ‖22 is monotonically non-increasing and lower

bounded by zero, it converges to a limit.
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