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Abstract

Recent experimental results have shown that full-duplex communication is possible for short-range

communications. However, extending full-duplex to long-range communication remains a challenge,

primarily due to residual self-interference even with a combination of passive suppression and active

cancellation methods. In this paper, we investigate the root cause of performance bottlenecks in current

full-duplex systems. We first classify all known full-duplex architectures based on how they compute

their cancelling signal and where the cancelling signal is injected to cancel self-interference. Based on

the classification, we analytically explain several published experimental results. The key bottleneck in

current systems turns out to be the phase noise in the local oscillators in the transmit and receive chain

of the full-duplex node. As a key by-product of our analysis, we propose signal models for wideband

and MIMO full-duplex systems, capturing all the salient design parameters, and thus allowing future

analytical development of advanced coding and signal design for full-duplex systems.

I. INTRODUCTION

In full-duplex communication, a node can simultaneously transmit one signal and receive another signal

on the same frequency band. The key challenge in full-duplex communications is the self-interference,

which is the transmitted signal being added to the receive path of the same node. Due to the proximity of

the transmit and receive antennas on a node, self-interference is often many orders of magnitude larger

than the signal of interest. Thus, the main objective for full-duplex design is to reduce the strength of

self-interference as much as possible – ideally, down to noise floor.

Self-interference is usually reduced by a combination of passive and active methods [2–11]. Passive

methods, which use antenna designs, aim to increase the pathloss for the self-interference signal. In
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contrast, active methods employ the knowledge of self-interference to cancel it from the received signal.

However, none of the designs [2–11] manage to eliminate self-interference completely. In fact, in [10],

authors report that even after passive suppression and active cancellation, the strength of self-interference

is 15 dB above the thermal noise floor. Our main focus, in this paper, is to understand the bottlenecks

that limit self-interference from being completely eliminated in current full-duplex systems by answering

the following three questions, observed experimentally in prior works.

Question 1: Active cancellation can occur before or after analog-to-digital conversion. If active can-

cellation occurs prior to digitization of the received signal, it is referred to as active analog cancellation.

The cancellation that operates on the received signal in digital baseband is labeled digital cancellation.

Designs [3, 5, 6, 8] report anywhere between 20-45 dB of active analog cancellation, which raises the first

question that we answer analytically in this paper “What limits the amount of active analog cancellation

in a full-duplex system design?”

Question 2: An interesting observation reported in [10] is that if active analog cancellation and digital

cancellation are cascaded together, then the amount of digital cancellation depends on the amount of

analog cancellation. More specifically, [10] reports that whenever their analog canceller cancels less self-

interference, then the digital canceller cancels more and vice versa. The above observation leads to the

second question which we answer, “How do the amounts of cancellations by active analog and digital

cancellers depend on each other in a cascaded system?”

Question 3: Finally, in [10], it is also reported that more passive suppression results in increased

total self-interference reduction, when both passive suppression and active analog cancellation are used.

However, the total reduction does not increase linearly with amount of passive suppression. We make

preliminary progress towards answering the third question, “How and when does passive suppression

impact the amount of active analog cancellation?”

In this paper, we answer all the three questions using the following procedure. First, we harmonize

all known architectures of active analog cancellers by classifying them into two classes: pre-mixer and

post-mixer cancellers, based on where the cancelling signal is generated. Pre-mixer canceller [5] generates

the cancelling signal prior to upconversion in the digital baseband, while post-mixer canceller [3, 6, 8]

generates the self-interference signal at the carrier frequency. Both pre- and post-mixer perform the

cancellation at the carrier frequency. As a side result, our classification yields another active analog
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canceller architecture which we label as baseband analog canceller. In baseband analog cancellation, both

the cancelling signal as well as cancellation operation is in the analog baseband. The above classification

of analog cancellers allows us to study all architectures systematically using one umbrella analysis, and

thus allows direct comparisons between performance of different cancellers.

Once we classify the known architectures of full-duplex designs, we show that phase noise [12]

associated with local oscillators at the transmitter and receiver turns out to be the source of major

bottleneck in full-duplex systems. In fact, phase noise answers all three questions raised above. To

answer Question 1, we analyze the amount of active analog cancellation possible in different types of

cancellers and show that by incorporating phase noise into the signal model, we can closely match the

cancellation number reported in [5] and conjecture that phase noise also explains results of [6, 8].

To answer Question 2, we show that the amount of active analog cancellation and concatenated digital

cancellation is limited by a quantity that depends on the phase noise properties of the local oscillators.

We show that, if the active analog canceller cancels more, the residual self-interference has a dominant

contribution of phase noise, which is uncorrelated to the self-interference signal and thus cannot be

cancelled by the concatenated digital canceller. On the other hand, if active analog canceller cancels

less, the residual self-interference has a higher correlation to the self-interference signal and thus a larger

fraction of self-interference can be cancelled by the digital canceller.

To answer Question 3, we show that due to phase noise the amount of active analog cancellation, in

a pre-mixer canceller, is dependent on the amount of passive suppression. We show that the sum total

of passive suppression and active analog cancellation increases with an increase in passive suppression,

but individually the amount of active analog cancellation reduces as the amount of passive suppression

increases. As a result, the sum total of passive suppression and active cancellation does not increase

linearly with increase in passive suppression.

Finally, as a by-product of our analysis of active cancellers, we propose signal models for MIMO

and wideband full-duplex systems. The signal models allow us to abstract away the form of active

cancellation, and can be used for signal design and analysis of full-duplex systems. The noise term in

the proposed signal model depends on three parameters: phase noise variance and its autocorrelation,

quality of self-interference channel estimates and thermal noise. Each of the three parameters decides

the dominant noise in full-duplex system in different regimes of transmitted self-interference power, thus
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captures the limits of communication in full-duplex.

The rest of the paper is organized as follows. In Section II, we review the need for active cancellation

and classify the different known architectures of active analog cancellers. In Section III, we show that self-

interference channel estimation error does not explain the amount of active analog cancellation reported

in literature [3, 5, 6, 8]. In Section IV, via a controlled experiment, we show that phase noise limits the

amount of active cancellation. In Section V and VI, we analyse the amount of active analog cancellation

and concatenated digital cancellation possible in different cancellers, uncovering their interdependence.

In Section VII, we show the interdependence between passive suppression and active cancellation for

pre-mixer cancellers. Finally, in Section VIII we propose the MIMO and wideband signal model for

full-duplex systems. We conclude in Section IX.

II. REDUCING SELF-INTERFERENCE IN FULL-DUPLEX

A. Need for self-interference reduction

Due to simultaneous transmission and reception in full-duplex, a combination of incoming signal of

interest and self-interference is received at the full-duplex node. Since the transmit and receive antenna

at the full-duplex node are in physical proximity, the self-interference signal can be 50-100 dB larger in

magnitude compared to the signal of interest. For baseband processing, the received signal is digitized

using an analog to digital convertor, which has a finite number of bits of quantization. Before digitizing

the signal, the automatic gain control scales the input to a nominal range of [−1, 1]. Since the signal of

interest is weaker than the self-interference, the gain control settings are largely governed by the strength

of the self-interference, leading to the signal of interest occupying a range much smaller than [−1, 1] in

the quantized signal. After digitization, even if the self-interference signal can be perfectly subtracted

out, the quantization noise for the signal of interest will be significantly large, leading to a very low

effective SNR in digital baseband. Thus, it is important to reduce the self-interference prior to analog to

digital conversion, so that the signal of interest will have a better effective SNR in digital baseband.

B. Methods of reducing self-interference

Self-interference is reduced by both passive and active techniques. A diagramatic classification of

methods of reducing self-interference is shown in Figure 1. A figure of merit to characterize any technique
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used to reduce self-interference is the ratio of the strength of self-interference before and after the

technique is employed, which is called the amount of suppression for passive and cancellation for active

techniques. Following is a brief review of the methods to reduce self-interference.

1) Passive suppression: Passive suppression aims to reduce the self-interference by reducing the

electromagnetic coupling between the transmit and receive antenna at the full-duplex node. As shown in

Figure 2, the reduction in the strength of self-interference via passive methods occurs before the self-

interference signal impinges upon the receive antenna. Passive methods include (a) antenna-separation,

which achieves reduction of the self-interference by increasing pathloss between transmit and receive

antenna [3, 5, 7], (b) directional-separation, where the transmit and receive antenna on the full-duplex

node have lower mutual coupling as the main lobes of the antennas do not point to each other [13, 14], (c)

polarization decoupling [14], where the transmit and receive antenna operate on orthogonal polarizations

to reduce the coupling.

2) Active analog cancellation: The mechanism of reducing self-interference which employs the knowl-

edge of self-interference to actively inject a cancelling signal into the received signal in the analog domain

is referred to as active analog cancellation. As shown in Figure 2, active analog cancellation operates on

the received signal. Thus, active analog cancellation occurs after passive suppression. The objective of

active analog cancellation is to create a null for the self-interference signal. The null for self-interference

can be created by performing cancellation either at the carrier frequency (RF) or at the analog baseband.

Most active analog cancellers [3, 5, 6, 8] cancel self-interference at RF. We first classify active analog

cancellers which cancel at RF and then describe the canceller which cancel in analog baseband.

a) Active analog cancellation at RF: In Figure 3(a), we depict a block diagram of an active analog

canceller which cancels at RF. Note that, if the cancellation has to be performed at RF, then the cancelling

signal also needs to be upconverted to RF. The cancelling signal is generated by processing the self-

interference signal xsi(t). We classify active analog cancellers based on whether the cancelling signal

has been generated by processing the self-interference signal xsi(t), prior or post upconversion. Those

cancellers where the cancelling signal is generated by processing xsi(t) prior to upconversion are called

pre-mixer cancellers, while cancellers where the cancelling signal is generated by processing after xsi(t)

is upconverted are called post-mixer cancellers. Figure 3(a) shows the pre-mixer processing function

f(.) and post-mixer processing function g(.). The choice of functions f(.) and g(.) are ideal if after
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cancellation the self-interference signal is completely eliminated from the received signal. For many

known implementations, we show the choice of functions f(.) and g(.) classify them as pre- and post-

mixer cancellers as follows.

Parallel radio cancellation: In [5], the negative of the scaled self-interference signal being received at

the receiver of the full-duplex node is generated in the digital baseband and unconverted via a parallel

radio chain. The cancelling signal is then added to the received signal at carrier frequency using a passive

power combiner. The functions

f(t) = h(t); g(t) = δ(t), (1)

are implemented as filters, where h(t) is a filter that is implemented in digital domain. To cancel the self-

interference, the design implements h(t) = −ĥsi(t), where ĥsi(t) is the estimate of the self-interference

channel hsi(t). If ĥsi(t) = hsi(t), and ∗ represents the convolution operation, then the cancellation should

result hsi(t) ∗ xsi(t)− ĥsi(t) ∗ xsi(t) = (hsi(t)− ĥsi(t)) ∗ xsi(t) = 0.

BALUN cancellation: In [6], a copy of the signal in RF is passed through a BALUN1 which produces

the negative of the analog signal being transmitted. The negative signal is then amplified and delayed

using a QHX220 analog chip [15], and finally added to the received signal in the analog domain, thus

cancelling the self-interference. The generation of cancelling signal as well as cancellation occurs at

carrier frequency, thus we classify BALUN cancellation as post-mixer cancellation. The functions

f(t) = δ(t); g(t) = −g1δ(t)− g2δ(t− τ), (2)

where g1 and g2 are gain coefficients and τ is a fixed delay. If the coefficients g1 and g2 are chosen such

that g1δ(t) + g2δ(t− τ) = hsi(t), then a null is created at the receiver.

Antenna cancellation: In [8], at the full-duplex node, two transmit antennas Tx1a and Tx1b are placed

at equal distance symmetrically away from the receive antenna. The transmit antennas transmit signals

which are negative of each other. Upon reception, the copies of self-interference signals negate each

other resulting in a smaller self-interference. Antenna cancellation is an example of post-mixer canceller

1BALUN is a balanced unbalanced transformer, a single input two output device which converts signal balanced about to
signal that is unbalanced
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because the processing occurs at RF as described by the functions

f(t) = δ(t); g(t) = −hb,si(t), (3)

where hb,si(t) is the over the air channel from antenna Tx1b to the receive antenna. If the channel from

Tx1a to the receiver, ha,si(t) = hb,si(t), then a perfect null is created at the receiver.

Note that, in all the mechanisms described above, while the cancellation is performed in RF-analog

domain, the input to f(.) can either be a digital or an analog signal, while the input to g(.) is necessarily

an analog signal.

b) Baseband analog canceller: An active analog canceller where the cancelling signal is generated

in baseband as well as the cancellation occurs in the analog baseband is called baseband analog canceller.

Figure 3(b) shows a representation of baseband analog canceller. In baseband analog cancellers the self-

interference signal xsi(t) is processed by a function s(.), either in baseband analog domain or in digital

domain before it is added to the received signal to perform the cancellation. If the function s(.) is such

that the self-interference signal is negative of the cancelling signal at the receiver, then a null is created

for the self-interference. Since the cancelling signal does not go through upconversion process, possibly

less RF hardware is required to implement a baseband analog canceller.

3) Digital cancellation: The active cancellation which occurs in the digital domain after the received

signal has been quantized by an analog to digital convertor is called active digital cancellation. Examples

of full-duplex systems where digital cancellation has been implemented are [3, 5]. From Figure 2, we

see that digital cancellation is the final step of reduction of self-interference. digital

III. FIRST ATTEMPT

In this section, we show that the conventional signal model for narrowband communication does not

satisfactorily explain the amount of active analog cancellation reported in [3, 5, 6, 8].

A. Narrowband Signal Model

Let N1 denote a full-duplex node which transmits the self-interference signal xsi(t), while N2 denote

the node from which N1 is receiving the signal of interest denoted by xsignal(t). The impulse response

of the self-interference channel is denoted by hsi(t), while the impulse response of channel from N2’s

7



transmitter to N1’s receiver be denoted by hsignal(t). Then, the received signal at N1 denoted by y1(t) is

given by

y1(t) = hsi(t) ∗ xsi(t) + hsignal(t) ∗ xsignal(t) + znoise(t), (4)

where ∗ denotes the convolution operation, znoise(t) is the AWGN thermal noise distributed as N(0, σ2
noise).

For a narrowband signal, the wireless channel can be modeled as single tap delay channel, hsi(t) =

hsiδ(t − ∆si), and hsignal(t) = hsignalδ(t − ∆signal). Note that hsi and hsignal are complex attenuations

which depend on channel conditions, while ∆si,∆signal ∈ R+ are delays with which the self-interference

signal and the signal of interest, respectively, arrive at the receiver. Note that, the signal model in (4)

describes a time-invariant system. The assumption of time-invariance is valid as long we assume that (4)

describes y1(t) within the coherence times of the channels hsi(t) and hsignal(t). The average power at

each of the transmitters is nominally limited to 1, which implies

E(|xsi(t)|2) ≤ 1, E(|xsignal(t)|2) ≤ 1. (5)

The digital baseband equivalent of (4) can be written by replacing t by iT where T is the sampling

period and i ∈ Z.

B. Amount of cancellation

Let ĥsi(t) = ĥsiδ(t− ∆̂si) be the estimate of the self-interference channel. With imperfect estimate of

the channel, the residual self-interference after active analog cancellation will be

y1,residual(t) = hsix(t−∆si)− ĥsix(t− ∆̂si) + znoise(t). (6)

Equation (6) implies that when ĥsi(t) = hsi(t), then the residual is only due to thermal noise. The strength

of the residual self-interference is given by

σ2
residual = E(|y1,residual(t)|2)

(a)
= E

(
|ĥsix(t− ∆̂si)− hsix(t−∆si)|2

)
+ σ2

noise

= E
(
|ĥsi(xsi(t− ∆̂si)− xsi(t−∆si)) + (ĥsi − hsi)xsi(t−∆si)|2

)
+ σ2

noise

(b)
= 2E

(
|ĥsi|2

)
(1−Rxsi

(∆̂si −∆si)) + E
(
|ĥsi − hsi|2

)
8



+2Re
{
E
(
ĥsi(hsi − ĥsi)(xsi(t− ∆̂si)− xsi(t−∆si))xsi(t−∆si)

)}
+ σ2

noise, (7)

where (a) holds because of independence of thermal noise with self-interference channel and the signal

itself, (b) is true due to assumption that the average power at the transmitter is unity. Estimating a channel

with single delay tap has been studied in [16], where it is shown that estimation error in the channel

attenuation behaves as

E
(
|ĥsi − hsi|2

)
=
σ2
noise

Ttrain
, (8)

where Ttrain is the length of the training sequence used to estimate the self-interference channel. Also,

let hsi,error denote the error in the estimate of the channel attenuation, then

E
(
ĥsi(hsi − ĥsi))

)
= E ((hsi,error + hsi)hsi,error) = E

(
(hsi,error)

2
)

+ hsiE (hsi,error) =
σ2
noise

Ttrain
. (9)

In [16], it has been shown that the variance in the estimate of the delay goes down as the inverse of

training length Ttrain. Moreover, it can be easily shown that for any bandlimited signal xsi(t) and small

enough ∆si − ∆̂si,

1−Rxsi
(∆si − ∆̂si) ≤ c(∆si − ∆̂si)

2, (10)

where Rxsi
(.) is the autocorrelation function of xsi(t) and c is a positive constant (see Appendix X-A

for details). Applying (8), (9), (10) and Equation (6) of [16] to (7), the residual self-interference for the

signal model in (4) is bounded above as

σ2
residual <

5σ2
noise

Ttrain
+ σ2

noise, (11)

i.e., it decays inversely to the training length Ttrain. Letting Ttrain → ∞ for (4), the residual self-

interference should only be composed of thermal noise. Since the channel estimation error decays inversely

to the length of the training, for the signal model described by (4), even with a very short training length,

say Ttrain = 5 the residual self-interference is no more than 3 dB above thermal noise. However, the

observed phenomenon in [10] is that the residual self-interference is 15 dB higher than the thermal noise

which is clearly not explained by the signal model in (4). In [3, 5, 6] too the residual self-interference

is reported to be much higher than 15 dB above thermal noise floor, thus we suspect that channel model

in (4) does not capture all dominant sources of radio impairments.
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IV. IDENTIFYING THE BOTTLENECK IN ACTIVE CANCELLATION

A. Possible sources of bottleneck

Transmitter phase noise, receiver phase noise, IQ imbalance, power amplifier non-linearity and quanti-

zation noise are some of the other impairments in the transmit-receive chain at the full-duplex node which

can possibly limit the amount of active analog cancellation. In [5], a 14-bit ADC is used, which delivers

a signal to quantization noise ratio of 84 dB, making quantization noise much smaller than the thermal

noise, thus ruling quantization noise out as a source of bottleneck in estimation of self-interference and

consequently active analog cancellation. IQ imbalance does not vary significantly with time and can be

easily calibrated, thus eliminating it as a source of bottleneck. Power amplifier shows significant non-

linearity only when it is operated in its non-linear regime. In this paper, we want to explain the bottlenecks

in current designs of full-duplex and since most of the designs to date have been designed in the linear

regime of power amplifier, they do not suffer from power amplifier non-linearity.

B. Experiment

In our related work [1], we presented an experiment through which we identify the bottleneck in

active cancellation in a full-duplex system. For the sake of completeness, we describe the steps of the

experiment and then explain how it is used to identify the source of bottleneck in active cancellation.

Following are the steps of the experiment, schematically shown in the Figure 4.

• A signal x(t) = ejωt is digitally generated, with ω/2π =1MHz, and is upconverted to the carrier

frequency of fc = ωc/2π. Let xup(t) denote the upconverted signal.

• The signal xup(t) is split using a 3-port power splitter [17]. Let xup,1(t) and xup,2(t) denote the two

signals output from the power splitter.

• Using a wired connection, the signals xup,1(t) and xup,2(t) are fed into two input ports of a vector

signal analyzer (VSA) [18]. Using the knowledge of ωc, the VSA downconverts the received signals

and digitizes them. Let the digitized signals, after downconversion be denoted by y1[iT ] and y2[iT ].

In the experiment T was chosen to be 21.7 ns.

The above experiment is conducted using two signal sources: an off-the-shelf radio chip [19] used in

WARP [20] and a high precision Vector Signal Generator [21]. For WARP fc = ωc/2π = 2.4 GHz and

for the Vector Signal Generator fc = ωc/2π = 2.2 GHz.
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C. Mimicking active cancellation

The received signal y1[iT ] and y2[iT ] are sequences of complex numbers. To analyse the amount of

cancellation, we treat y1[iT ] as the self-interference signal and use a processed version of y2[iT ] as the

cancelling signal. The transmitted signal is narrowband, therefore if the upconversion process does not

add any noise, then

y1[iT ] = h1e
−j(ωc+ω)∆1x[iT ] + z1[iT ], (12)

y2[iT ] = h2e
−j(ωc+ω)∆2x[iT ] + z2[iT ], (13)

where h1 and h2 are complex attenuations, and ∆1 and ∆2 are delays introduced by the wires, and z1[iT ]

and z2[iT ] denote the thermal noise at the receiver. Using wires to connect the source and receivers ensures

that the temporal variation in h1 and h2 is minimal. The wires are chosen of approximately the same

length so that ∆1 ≈ ∆2. To mimic active cancellation, we subtract a suitably scaled version of y2[iT ]

from y1[iT ], thereby leaving a residual self-interference which is given by

yresidual[iT ] = y1[iT ]− hcy2[iT ], (14)

where hc is a complex number computed as

hc =

∑N
i=1 y2[iT ]

′
y1[iT ]∑N

i=1 |y2[iT ]|2
. (15)

Now consider a delayed version of the signal y2[iT ],

y2[(i− d)T ] = h2e
−j(ωc+ω)∆2x[(i− d)T ] + z2[(i− d)T ]

= h2e
−j((ωc+ω)∆2+ωdT )x[iT ] + z2[(i− d)T ], (16)

where d is a non-negative integer. We can subtract a scaled version of y2[(i−d)T ] from y1[iT ] such that

the residual self-interference is

yresidual,d[iT ] = y1[iT ]− hc(d)y2[(i− d)T ], (17)

where the scaling hc(d) is computed as
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hc(d) =

∑N
i=1 y2[(i− d)T ]

′
y1[iT ]∑N

i=1 |y2[(i− d)T ]|2
. (18)

If (12) and (13) hold true and if we rewrite hc(d) = h1

h2
ej(ωc(∆2−∆1)+ωdT ) + ε, then the expected strength

of the residual signal is given by

E(|yresidual,d[iT ]|2) = E(|y1[iT ]− hc(d)y2[(i− d)T ]|2)

= |h2|2E(|ε|2) + E(|z1[iT ]|2 + |z2[(i− d)T ]|2) = |h2|2E(|ε|2) + 2σ2
noise. (19)

In Appendix X-B, we show that by letting N →∞ we have

E(|yresidual,d[iT ]|2) =
|h1|2

|h2|2
σ2
noise + 2σ2

noise. (20)

For the experiment conducted |h1|2
|h2|2 ≈ 1, thus the strength of the residual self-interference should be

approximately 3σ2
noise. The analysis reveals that if (12) and (13) hold true, then the amount of cancellation

should be independent of the delay d and dependent only on the thermal noise.

D. Experiment: Results and their explanation

In Figure 5, we plot the amount of cancellation as a function of delay d measured from the experiment

for both the signal sources. For WARP as the signal source, when d is small then the amount of

cancellation depends on the delay. As the delay increases the cancellation floors around 35 dB. The

measurement from the experiment shows that for WARP as a signal source, even for a delay d = 100,

the amount of cancellation is approximately 35 dB. On the other hand, the amount of cancellation when

the vector signal generator is used as a signal source is approximately 55 dB, independent of the delay.

a) Upper bound of cancellation: For both signal sources, the upper bound of cancellation is around

55 dB. The limitation on the cancellation can be explained by the dynamic range of the measurement

equipment. The data-sheet [18] of the VSA lists that it offers a dynamic range of anywhere between

55-60 dB. Thus, the received signals y1[iT ] and y2[iT ] themselves have an SNR of no more 55-60 dB,

thereby limiting the maximum cancellation in the range of 55-60 dB only.

b) Phase noise explains the trend of cancellation: Two observations from the experiment conducted,

when WARP is used as a signal source source, need an explanation. The first observation is that the amount
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of cancellation reduces by increasing the delay between self-interference signal and cancelling signal.

And the second observation is that the amount of cancellation has a lower bound of ≈35 dB. We claim

that both the observations can be explained if we consider the perturbations introduced by phase noise

in the upconverted signal.

Phase noise is the jitter in the local oscillator. If the baseband signal x(t) is upconverted to a carrier

frequency of ωc, then the upconverted signal xup(t) = x(t)ej(ωct+φ(t)), where φ(t) represents the phase

noise. While downconverting a signal, phase noise can be similarly defined. The variance of phase noise

is defined as σ2
φ = E(|φ(t)|2) and its autocorrelation function is denoted by Rφ(.). For a measurement

equipment like VSA, the phase noise at the receiver is small. Therefore the total phase noise in the

received signal, after downconversion, is dominated by phase noise at transmitter, i.e., the source of the

signal. In presence of phase noise, the equations (12) and (13) can be rewritten as

y1[iT ] = h1e
−j(ωc+ω)∆1ejφ[iT−∆1]x[iT ] + z1[iT ], (21)

y2[iT ] = h2e
−j(ωc+ω)∆2ejφ[iT−∆2]x[iT ] + z2[iT ]. (22)

For a delay d, suppose an oracle provides scaling h(d) = h1

h2
ej(ω(∆2−∆1)+ωdT ) to subtract a delayed

version of y2[iT ] from y1[iT ], then the residual self-interference will be given by

yresidual,d[iT ] = y1[iT ]− h(d)y2[(i− d)T ]

= h1x[iT ]e−j(ωc+ω)∆1(ejφ[iT−∆1] − ejφ[iT−∆2−dT ]) + z1[iT ]− z2[(i− d)T ]

(a)
≈ jh1x[iT ]e−j(ωc+ω)∆1(φ[iT −∆1]− φ[iT −∆2 − dT ]) + z1[iT ]− z2[(i− d)T ],

where (a) is valid if the phase noise is small. The resulting strength of the residual self-interference is

E(|yresidual,d[iT ]|2) ≈ |h1|2σ2
φ(1−Rφ(∆2 −∆1 + dT )) + 2σ2

noise

(a)
≈ |h1|2σ2

φ(1−Rφ(dT )) + 2σ2
noise. (23)

In (23), the approximation (a) is reasonable since ∆1 ≈ ∆2. In the absence of phase noise, using h(d)

as the scaling for cancellation leads to a residual self-interference dependent only on thermal noise. In

presence of phase noise, the strength of the residual self-interference is a function of the delay d. As the

delay increases, it is natural that the temporal correlation in phase noise reduces. Therefore the amount
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of cancellation, when WARP is used as a signal source, will reduce as the delay increases which explains

the trend of cancellation in Figure 5. Once the delay is sufficiently large, the residual self-interference

depends only on the variance of the phase noise and thermal noise. For the MAXIM 2829 transceiver

used in WARP, σφ ≈ 0.7◦ (see Appendix X-C for calculations), which is equivalent to 35 dB cancellation

for large delay d which explains lower bound of cancellation. Although the trend in cancellation when

signal generator is used as the source does not appear to be similar to WARP, it can be explained using

its phase noise figure. At 2.2 GHz, the vector signal generator [21] has a phase noise variance given by

σφ = 0.06◦. The corresponding lower bound of the cancellation is ≈55 dB. Thus, the lower bound due

to phase noise is close to upper bound of cancellation due to dynamic range limitations of the VSA,

thereby showing no apparent variation of cancellation with delay.

c) Impact of estimation error: To strengthen our argument that phase noise is the dominant source

of bottleneck in the cancellation in the experiment and not estimation error, we plot the amount of

cancellation measured as function of the number of training samples used to obtain hc = hc(0) in

Figure 6. Reducing the number of training samples will increase the error in estimation of hc(0). Figure

6 shows that in the controlled experiment, reducing the number of training samples to estimate hc(0)

reduces the amount of cancellation by no more than 6 dB for the WARP as the signal source. Phase noise

can explain the variation in cancellation of 20 dB observed and plotted in Figure 5 for varying delays,

while estimation error can explain at-most 6 dB of variation, therefore phase noise is the dominant source

of bottleneck in active cancellation.

V. ANSWER 1. IMPACT OF PHASE NOISE ON ACTIVE ANALOG CANCELLATION

In this section, we answer “What limits the amount of active analog cancellation in a full-duplex

system design?” We quantify the impact of transmitter and receiver phase noise on the amount of active

analog cancellation achieved by different types of active analog cancellers described in Section II-B2.

A quick note on the notation for the subsequent discussion. Phase noise and its corresponding variance

in the self-interference path and cancelling path are denoted by the pairs (φsi(t), σ
2
si) and (φcancel(t), σ

2
cancel)

respectively, while the phase noise at the receiver and its variance is denoted by the pair (φdown(t), σ2
down).

For simplicity of analysis, we assume that the phase noise at the transmitter, φsi(t) and φcancel(t), are

independent of the phase noise at the receiver, φdown(t).
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A. Impact of phase noise on pre-mixer cancellers

Result 1 [1]: The amount of active analog cancellation in pre-mixer cancellers is limited by the inverse of

the variance of phase noise. Moreover, matching local oscillators in the self-interference and cancelling

paths can increase the amount of active analog cancellation.

To highlight the impact of transmitter phase noise, we first analyse a special scenario for pre-mixer

analog cancellers when the self-interference channel, hsi(t), is perfectly known to the canceller. The

self-interference channel is hsi(t) = hsiδ(t−∆si), therefore the cancelling signal prior to upconversion,

designed by exploiting the knowledge of the self-interference is

xcancel(t) = −hsix(t−∆si)e
−jωc∆si . (24)

It is easy to verify that in the absence of any phase noise, the cancelling signal in (24) will null the

self-interference signal at the receiver. In presence of phase noise, the cancelling signal after upconversion

will be xcancel(t)ej(ωct+φcancel(t)). At the receiver, the self-interference and the cancelling signal add up,

which upon downconversion result in the following residual self-interference signal

yresidue−analog(t) =
(
hsixsi(t−∆si)e

−jωc∆siejφsi(t−∆si) − hsixsi(t−∆si)e
−jωc∆siejφcancel(t)

)
e−jφdown(t)

+znoise(t)

= hsix(t−∆si)e
−jωc∆si

(
ejφsi(t−∆si) − ejφcancel(t)

)
e−jφdown(t) + znoise(t). (25)

Equation (25) assumes that the upconverting and downconverting frequencies are identical, which is valid

since both the upconvertor and downconvertor are on the same node. Assuming that the magnitude of

phase noise is small, the residual self-interference can be approximated as

yresidue−analog(t) ≈ hsix(t−∆si)e
−jωc∆sie−jφdown(t) (jφsi(t−∆si)− jφcancel(t)) + znoise(t), (26)

and the power of the residual self-interference is computed as

E(|yresidue−analog(t)|2)
(a)
≈ |hsi|2E(|x(t−∆si)|2)|e−jωc∆sie−jφdown(t)|E(|φsi(t−∆si)− φcancel(t)|2) + σ2

noise

(b)
= |hsi|2E(|φsi(t−∆si)− φcancel(t)|2) + σ2

noise, (27)

where (a) holds since the thermal noise is independent of the self-interference and phase noise, (b) holds
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because of the unit power constraint at the transmitter. Now, we elaborate the observations on Result 1

based on (27) which were briefly highlighted in our related work [1].

Observation 1: If the local oscillators supplied to the self-interference path and the cancelling path are

different, as is the case in [5], then the correlation between the φsi(t) and φcancel(t) is zero. With the

assumption that σ2
si = σ2

cancel, the strength of the residual self-interference is

E(|yresidue−analog(t)|2) ≈ 2|hsi|2σ2
si + σ2

noise. (28)

Note that the strength of the self-interference before active analog cancellation is |hsi|2. Therefore (28)

implies that the strength of residual self-interference after active analog cancellation is dependent on

the strength of the self-interference before cancellation. The amount of active cancellation is given by
|hsi|2

2|hsi|2σ2
si+σ

2
noise
≤ 1

2σ2
si
. Thus, 1

2σ2
si

is an upper bound for the amount of cancellation in pre-mixer cancellers

where the local oscillators in self-interference path and cancelling path are independent, which we plot in

Figure 7. Since [5] is a pre-mixer canceller and is designed on WARP platform, where local oscillators in

the cancelling and self-interference path are not matched, Figure 7 predicts the amount of active analog

cancellation to be 35 dB which is very close to the amount of cancellation reported by [5].

Observation 2: If the local oscillators in the self-interference path and the cancelling path are matched,

φsi(t) = φcancel(t), then we have

E(|yresidue−analog(t)|2) ≈ 2|hsi|2σ2
si(1−Rφsi

(∆si)) + σ2
noise. (29)

Equation (29) indicates that for a small delay ∆si, the measure of the time of flight of the self-interference

signal, the temporal correlation of phase noise aids in reducing the residual self-interference in pre-mixer

cancellers. In Section IV-D, we measured and plotted in Figure 5, the amount of active analog cancellation

as a function of the delay ∆si, for a narrowband signal source. For ∆si ≈ 42ns, the time of flight of

self-interference signal for 12 meters, the measurements in Figure 5 tell us that matching local oscillators

in the self-interference and cancelling path will yield an active analog cancellation of 45 dB. Thus,

matching local oscillators, when WARP is used as a signal source, results in 10 dB higher active analog

cancellation compared to when local oscillators are not matched. In [5], ergodic rate of full-duplex beats

half-duplex only upto 3.5 meters (indoor). However, in [10], an additional 10 dB passive suppression
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results in higher ergodic rates for half-duplex upto 6 meters. Matching local oscillators in [10] will give

another 10 dB increase in overall reduction making full-duplex attractive at reasonable WiFi ranges.

From (28) and (29), we know that the phase noise dependent residual scales linearly in strength with

self-interference. Therefore at higher received self-interference powers, phase noise becomes the dominant

source of residual self-interference after active analog cancellation in pre-mixer cancellers.

B. Performance of different active analog cancellers with imperfect channel estimates

Now we analyze and compare the impact of phase noise on active analog cancellation in pre-mixer,

post-mixer and baseband analog cancellers. In order to draw the comparison, we analyse the amount of

active analog cancellation when the estimate of self-interference channel is imperfect for which we show

the following:

Result 2: For pre-mixer, post-mixer, as well as baseband analog canceller, the amount of active cancel-

lation is inversely proportional to the variance of phase noise. However, the constant of proportionality

is different for each canceller leading to different amounts of active analog cancellation.

To model imperfection, we let ĥsi(t) = ρhsiδ(t− τ) denote the imperfect channel estimate of the self-

interference channel, where (1− ρ) and (τ −∆si) represent the error in estimate of channel attenuation

and delay respectively. Setting ρ = 1 and τ = ∆si, we obtain the special case of perfect channel estimates.

The objective of each of the cancellers is to create a perfect null for the self-interference signal.

However, in presence of phase noise each canceller adds a slightly different cancelling signal to the self-

interference signal. Based on the imperfect channel estimate, the canceller generates −ρhsixsi(t−τ)e−jωcτ

as the cancelling signal. The cancelling signal after downconversion at the receiver will appear in analog

baseband as

xcancel,pre(t) = −ρhsiej(−ωcτ+φcancel(t)−φdown(t))hsixsi(t− τ). (30)

Note that the cancelling signal in pre-mixer analog cancellers is actually added to the received signal at

RF, and then the combined signal is downconverted. However, in (30) we explicitly show the contribution

of the cancelling signal in the residual self-interference signal after downconversion.

For the post-mixer analog canceller, the equivalent of (30) can be written as

xcancel,post(t) = −ρej(−ωcτ+φcancel(t−τ)−φdown(t))hsixsi(t− τ). (31)
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Note that (30) and (31) differ in the amount of delay the transmitter phase noise encounters. We remind

the reader that in post-mixer analog cancellers, the cancelling signal is identical to the transmitted signal

until after upconversion and therefore the phase noise φcancel(t) = φsi(t).

Finally, in baseband analog cancellers the cancelling signal has the following contribution to the residual

self-interference

xcancel,bb(t) = −ρe−jωcτhsixsi(t− τ). (32)

The cancelling signal in (32) is not perturbed by any phase noise because the cancelling signal does not

go through the RF chain itself.

Having described the cancelling signal, we can now write the residual self-interference for pre-mixer,

post-mixer and baseband analog cancellers by adding the cancelling signal to the self-interference signal

at the receiver. The residual self-interference for pre-mixer cancellers is

yresidual−analog(t) = e−j(ωc∆si+φsi(t−∆si)−φdown(t))hsixsi(t−∆si) + xcancel,pre(t) + znoise(t). (33)

The residual self-interference for post-mixer and baseband analog cancellers is defined similar to (33),

by substituting the appropriate cancelling signal from (31) and (32).

We are interested in the strength of the residual self-interference after analog cancellation, and a close

approximation can be found making use of the assumption that φsi(t) << 1, φcancel(t) << 1, φdown(t) <<

1. The computation is shown in the Appendix X-D and the resulting strength of the residual self-

interference is listed in Table I. From Table I, we make the following important observations.

Observation 3: Due to imperfect channel estimates, the strength of the residual self-interference in

all the cancellers is composed of two types of residuals. The first type of residual self-interference is

dependent only on the self-interference signal and the second type is dependent on phase noise. For all

cancellers, the first type of residual self-interference dependent only on the self-interference signal is

|hsi|2(1 + |ρ|2 − 2|ρ|Rxsi
(∆si − τ)) which vanishes if ρ = 1 and τ = ∆si, i.e., when perfect channel

estimate is available. The second type of residual self-interference, dependent upon phase noise, scales

with the variance of phase noise, as well as the strength of the self-interference channel |hsi|2, for all

the cancellers. Due to the second type of residual self-interference linearly scaling with the variance of

phase noise, the amount of active analog cancellation in the pre-mixer, post-mixer and baseband analog
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cancellers depend on the inverse of the variance of phase noise.

Observation 4: In post-mixer cancellers, the strength of residual self-interference due to phase noise

is scaled by (1 − Rφsi
(∆si − τ)). The autocorrelation function Rφsi

(.) approaches unity as the error in

estimating the delay of the channel, (∆si− τ), is reduced, thereby reducing the residual self-interference.

Unlike pre-mixer cancellers, where the delay ∆si determines the amount of residual self-interference,

post-mixer cancellers can reduce residual self-interference by reducing the error in estimate of self-

interference channel. Figure 7 shows the representative amount of cancellation of a post-mixer canceller

for a narrowband signal source where |∆si − τ | ≈ 10ns and ρ = 1. In principle, higher cancellation in

post-mixer cancellers, as observed in [6, 8] is possible, because unlike pre-mixer cancellers, the residual

self-interference continues to decrease as the error in the estimate of self-interference channel improves.

In [3] USRP radios are used, whose phase noise variance (although not reported) is likely to be higher

than WARP radios, thus explaining low, 20 dB, active analog cancellation.

Observation 5: In baseband analog cancellers, the residual self-interference scales as the sum of the

variance of phase noise at the transmitter and the receiver. Due the asummption that phase noise in

the local oscillator in the upconverting and downconverting circuit are independent, baseband analog

cancellers have a phase noise dependent residual self-interference which does not depend on the delay

∆si. Even when ρ = 1,∆si = τ , amount of cancellation is upper bounded by 1
σ2
si+σ

2
down

, which is similar

to the performance of pre-mixer cancellers with independent mixers in cancelling and self-interference

path as shown in Figure 7.

VI. ANSWER 2. BENEFIT OF DIGITAL CANCELLATION AFTER ACTIVE ANALOG CANCELLATION

In this section, we answer “How do the amounts of cancellations by active analog and digital cancelers

depend on each other in a cascaded system?”

A. Digital cancellation when active analog cancellation uses perfect channel estimate

Result 3: If active analog cancellation is performed with perfect channel estimates, then

• Digital cancellation does not reduce the strength of the residual self-interference at all, if φsi(t) and

φcancel(t) are identically distributed in pre- and post-mixer cancellers, and φsi(t) and φdown(t) are

identically distributed in baseband analog cancellers.
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• If φsi(t) and φcancel(t) are not identically distributed, then under the assumption that φsi(t) << 1,

φcancel(t) << 1, φdown(t) << 1, digital cancellation does not help.

For pre-mixer cancellers, the above result was already shown in our related work [1]. Digital can-

cellation can reduce the residual only if yresdiue−analog[iT ] is correlated with the self-interference sig-

nal xsi[iT ]. When yresdiue−analog[iT ] is correlated with xsi[iT ], then digital cancellation can reduce the

strength of the residual self-interference by subtracting a function of xsi[iT ] from yresidue−analog[iT ]. We

consider the residual after active analog cancellation in a pre-mixer canceller, as an example to show that

yresdiue−analog[iT ] is not correlated with xsi[iT ]. The correlation of the residual signal with xsi[iT ] yields

E(yresidue−analog[iT ]xsi[iT ])

= E(yresidual−si[iT ]xsi[iT ]) + E(znoise[iT ]xsi[iT ])

(a)
= E (yresidual−si[iT ]xsi[iT ])

(b)
= hsiE

(
xsi[iT ]xsi[iT −∆si](e

jφsi[iT ] − ejφcancel[iT−∆si])e−jφdown[iT ]
)
e−jωc∆si

(c)
= hsiRxsi

(∆si)E
(
ejφsi[iT ] − ejφcancel[iT−∆si]

)
E
(
e−jφdown[iT ]

)
(34)

where yresidual−si[iT ] denotes the residual self-interference, in a pre-mixer canceller, minus thermal noise.

In equation (34), equality (a) is true because the thermal noise is zero mean and independent of the

self-interference, (b) is due to (25), (c) holds because phase noise is independent of the self-interference

signal. Suppose that φsi(t) and φcancel(t) are identically distributed, then E
(
ejφsi[iT ] − ejφcancel[iT−∆si]

)
= 0

letting us extend (34) to

E(yresidue−analog[iT ]xsi[iT ]) = 0. (35)

Under the approximation φsi(t) << 1, φcancel(t) << 1, the residual self-interference signal in pre-

radio cancellers is given by (26). From (26), we know that the residual self-interference has a component

where the signal, xsi(t−∆si), is multiplied by j(φsi(t−∆si)− φsi(t)). The difference of phase noises,

j(φsi(t−∆si)−φsi(t)), is zero mean, independent of the signal, xsi(t−∆si), and changes every sample.

Thus, the residual self-interference in (26) can be considered as the sum of a fast-fading signal and

thermal noise, where the fade is given by j(φsi(t−∆si)−φsi(t)). Since the fade, j(φsi(t−∆si)−φsi(t)),

is zero mean and changes every sample, it cannot be estimated and thus digital cancellation cannot reduce
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the residual self-interference any further. More precisely,

E(yresidue−analog[iT ]xsi[iT ]) ≈ hsiRxsi
(∆si)E (jφsi[iT ]− jφcancel[iT −∆si])E

(
e−jφdown[iT ]

)
(a)
= 0 (36)

where (a) is true because phase noise is assumed to be zero mean. From (36), it is clear that the residual

self-interference after active analog cancellation is uncorrelated to the self-interference signal and thus

digital cancellation does not cancel self-interference any further.

The result that the residual self-interference after active analog cancellation not correlated to xsi[iT ]

when perfect channel estimates are available is not limited to pre-mixer cancellers. In post-mixer can-

cellers, perfect estimates for active analog cancellation imply that the residual is only thermal noise,

which is naturally uncorrelated to the self-interference. In baseband cancellers, the correlation of the

residual and self-interference signal can be written as

E(yresidue−analog[iT ]xsi[iT ])

= hsiE
(
xsi[iT ]xsi[iT −∆si](e

jφsi[iT ] − ejφdown[iT−∆si])
)
e−jωc∆si + E(xsi[iT ]znoise[iT ])

(a)
= 0,

where (a) holds when φsi(t) and φdown(t) are identically distributed. If φsi(t) and φdown(t) are not

distributed identically, then correlation of the self-interference signal with the residual self-interference

is approximately zero if φsi[iT ] << 1, φdown[iT ] << 1. Digital cancellation is form of active cancel-

lation, much like active analog cancellation. When perfect channel estimates are available, successively

performing active cancellation is equivalent to actively cancelling in analog domain once.

B. Digital cancellation when active analog cancellation uses imperfect channel estimate

Result 4: If active analog cancellation uses imperfect channel estimates, then digital cancellation follow-

ing it can cancel the residual correlated with the self-interference signal, thereby reducing its strength.

However, the sum of the cascaded stages of active cancellation is limited by the phase noise properties

and the error in channel estimate used for active analog cancellation

1) Pre-mixer canceller: As an example, let us consider the residual self-interference in pre-mixer

canceller. Let us define the residual self-interference channel as

hresidual−si[iT ] = hsi(δ[iT −∆si]e
−jωc∆si − ρδ[iT − τ ]e−jωcτ ). (37)
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Then, the residual self-interference signal in the digital domain can be written as

hresidual−si[iT ] ∗ xsi[iT ]ej(φcancel[iT ]−φdown[iT ]) + rphase−noise,pre[iT ] + znoise[iT ], (38)

where

rphase−noise,pre[iT ] = jhsie
−jωc∆sixsi[iT −∆si](φsi[iT −∆si]− φcancel[iT ])ej(φcancel[iT ]−φdown[iT ]) (39)

is the residual which is dependent on phase noise and uncorrelated with the self-interference signal

xsi[iT ]. The digital canceller can use an estimate of the residual self-interference channel, ĥresidual−si[iT ],

to generate a cancelling signal,−ĥresidual−si[iT ] ∗ xsi[iT ], which will result in a residual self-interference

given by

yresidue−digital[iT ] = (hresidual−si[iT ]) ∗ xsi[iT ])ej(φcancel[iT ]−φdown[iT ]) − ĥresidual−si[iT ] ∗ xsi[iT ]

+rphase−noise,pre[iT ] + znoise[iT ]

≈ (hresidual−si[iT ]− ĥresidual−si[iT ]) ∗ xsi[iT ] + rphase−noise,pre[iT ]

+jhresidual−si[iT ] ∗ xsi[iT ](φcancel[iT ]− φdown[iT ]) + znoise[iT ]. (40)

The strength of the residual self-interference after digital cancellation is

E(|yresidue−digital[iT ]|2)

≈ E(|(hresidual−si[iT ]− ĥresidual−si[iT ]) ∗ xsi[iT ]|2) + E(|rphase−noise[iT ]|2)

+ E(|(hresidual−si[iT ] ∗ xsi[iT ])(φcancel[iT ]− φdown[iT ])|2) + E(|znoise[iT ]|2)

= E(|(hresidual−si[iT ]− ĥresidual−si[iT ]) ∗ xsi[iT ]|2)︸ ︷︷ ︸
imperfect estimate in digital domain

+ 2|hsi|2σ2
si(1−Rφsi

(∆si))︸ ︷︷ ︸
phase noise

+σ2
noise

+E(|(hresidual−si[iT ] ∗ xsi[iT ])|2)︸ ︷︷ ︸
imperfect estimate in analog domain

(σ2
si + σ2

down). (41)

We make the following two observations from (41).

Observation 6: The amount of residual self-interference after digital cancellation stage is lower bounded

by 2|hsi|2σ2
si(1−Rsi(∆si)) + σ2

noise, which, we recall from Section V-A, is the strength of residual self-

interference after active analog cancellation that uses perfect estimate of self-interference channel. If
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the digital canceller uses perfect estimate of the residual self-interference channel, ĥresidual−si[iT ] =

hresidual−si[iT ], then it can eliminate the residual that depends only on self-interference signal entirely.

Figure 8 shows the amount of digital cancellation possible as a function of active analog cancellation for a

pre-mixer canceller where the local oscillators in the cancelling and self-interference path are independent

which implies that Rφsi
(∆si) = 0. Figure 8 explains the trend of active analog vs. digital cancellation

reported in [10], that the sum total active cancellation of active analog and digital stages is no more than

35 dB, which is the amount of cancellation achieved when the analog stage uses perfect estimates.

Observation 7: If σ2
down >> σ2

si, then the receiver phase noise will be a dominant source of bottleneck

in digital cancellation. In computing the contribution of receiver phase noise to residual self-interference

signal, we note that the variance of receiver phase noise is scaled by strength of the residual self-

interference channel. Poor active analog cancellation implies that E(|(hresidual−si[iT ] ∗ xsi[iT ]|2) is large.

Therefore, as depicted in Figure 8, poor active analog cancellation results in less overall cancellation,

even when digital cancellation uses perfect estimate of self-interference channel.

2) Post-mixer cancellers: In post-mixer cancellers too, the digital cancellation when cascaded with

active analog cancellation can only cancel the portion of residual self-interference that is correlated with

the self-interference signal itself.

For post-mixer cancellers, the residual self-interference channel is defined as in (37) and the phase

noise dependent residual self-interference is given by

rphase−noise,post = jhsie
−jωc∆sixsi[iT −∆si](φsi[iT −∆si]− φsi[iT − τ ])ej(φsi[iT−τ ]−φdown[iT ]). (42)

The residual self-interference before digital cancellation will be

hresidual−si[iT ] ∗ xsi[iT ]ej(φsi[iT−τ ]−φdown[iT ]) + rphase−noise,post[iT ] + znoise[iT ]. (43)

Note that the form of (43) is very similar to (38) and thus, without repeating the steps, we can write the

residual in post-mixer cancellers after digital cancellation with imperfect estimates as

E(|yresidual−digital[iT ]|2)

= E(|(hresidual−si[iT ]− ĥresidual−si[iT ]) ∗ xsi[iT ]|2) + 2|hsi|2σ2
si(1−Rφsi

(∆si − τ)) + σ2
noise

+E(|(hresidual−si[iT ] ∗ xsi[iT ])|2)(σ2
si + σ2

down) (44)
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Note that (44) is lower bounded by 2|hsi|2σ2
si(1−Rφsi

(∆si− τ)) +σ2
noise, which itself is the lower bound

on the strength of the residual when active analog cancellation uses imperfect estimate of the channel.

Thus, even in post-mixer cancellers, more digital cancellation is possible when active analog cancellation

cancels less. However, the sum of cancellation is no more than 1/(2σ2
si(1−Rφsi

(∆si− τ)), an expression

which is solely dependent on phase noise.

3) Baseband analog cancellers: For baseband analog cancellers, let the residual self-interference

channel be defined as in (37), and the residual dependent on phase noise be given by

rphase−noise,bb[iT ] = jhsie
−jωc∆sixsi[iT −∆si](φsi[iT −∆si]− φdown[iT ]). (45)

The residual self-interference before digital cancellation be written as

hresidual−si[iT ] ∗ xsi[iT ] + rphase−noise,bb[iT ] + znoise[iT ]. (46)

Using ĥresidual−si[iT ] ∗ xsi[iT ] as the cancelling signal, the strength of residual after imperfect digital

cancellation is given by

E(|yresidue−digital[iT ]|2)

= E(|(hresidual−si[iT ]− ĥresidual−si[iT ]) ∗ xsi[iT ]|2) + E(|rphase−noise,bb[iT ]|2) + E(|znoise[iT ]|2)

= E(|(hresidual−si[iT ]− ĥresidual−si[iT ]) ∗ xsi[iT ]|2) + |hsi|2(σ2
si + σ2

down) + σ2
noise

≥ |hsi|2(σ2
si + σ2

down) + σ2
noise. (47)

The lower bound in (47) is the strength of residual self-interference after active analog cancellation is

performed with perfect channel estimates in baseband cancellers. The lower bound in (47) is achievable

if the digital canceller has perfect estimate of the residual self-interference channel. Thus, serially

concatenated active analog cancellation and digital cancellation are interdependent in such way that their

sum is bounded by 1
σ2
si+σ

2
down

. One distinction in baseband analog cancellers is that unlike pre-mixer or

post-mixer cancellers, the residual does not depend explicitly on the quality of active analog cancellation,

i.e., hresidual−si[iT ], rather is dependent upon (hresidual−si[iT ] − ĥresidual−si[iT ]), the quality of digital

cancellation only.
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VII. ANSWER 3. INFLUENCE OF PASSIVE SUPPRESSION ON ACTIVE CANCELLATION

In this section, we answer “How and when does passive suppression impact the amount of analog

cancellation?” We show that the amount of passive suppression can impact the amount of active analog

cancellation in pre-mixer cancellers.

So far, we have considered a self-interference channel with only a single delay tap. Now, let us consider

a self-interference channel with two non-zero taps, which can be considered as taps representing line of

sight and the reflected components. Let the two-tap self-interference channel be hsi(t) = h1δ(t−∆1) +

h2δ(t−∆2), where ∆1 and ∆2 denote the delays of the line of sight and reflected component, therefore

∆1 < ∆2. The average strength of the line of sight and reflected component are captured by E(|h1|2)

and E(|h2|2). It is reasonable to assume that passive suppression can reduce the strength of the line of

sight component. Therefore, the amount of passive suppression determines the ratio E(|h1|2)/E(|h2|2).

Result 5: Higher passive suppression can result in lower active analog cancellation in pre-mixer can-

cellers. However, increasing passive suppression implies that sum of cascaded passive and active analog

cancellation increases.

Assume self-interference channel is perfectly known. Then the cancelling signal in baseband is

xcancel(t) = −h1xsi(t−∆1)e−jωc∆1 − h2xsi(t−∆2)e−jωc∆2 . (48)

In presence of phase noise, the residual self-interference is

yresidual(t)

= h1xsi(t−∆1)e−jωc∆1(ejφ(t−∆1) − ejφ(t)) + h2xsi(t−∆2)e−jωc∆2(ejφ(t−∆2) − ejφ(t)) + znoise(t)

≈ jh1xsi(t−∆1)e−jωc∆1(φ(t−∆1)− φ(t)) + jh2xsi(t−∆2)e−jωc∆2(φ(t−∆2)− φ(t)) + znoise(t).

The strength of the residual signal is

E(|yresidual(t)|2) ≈ 2E(|h1|2)(1−Rφsi
(∆1)) + 2E(|h2|2)(1−Rφsi

(∆2))

+2E
(

Re(h1h
′
2xsi(t−∆1)x′si(t−∆2)ejωc(∆2−∆1))

)
(1 +Rφsi

(∆1 −∆2)−Rφsi
(∆1)−Rφsi

(∆2))σ2
φ. (49)

The average residual self-interference can be estimated by assuming a distribution on the line of sight and
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the reflected component channel. From the experimental characterization of the self-interference channel

in [22], we know that when the line of sight component is sufficiently suppressed, the self-interference

channel is approximately a zero mean complex Gaussian random variable. Therefore, we have

E(|yresidual(t)|2) = E(|h1|2)(1−Rφsi
(∆1)) + E(|h2|2)(1−Rφsi

(∆2)), (50)

assuming the independence of h1 and h2. If either E(|h1|2) or E(|h2|2) is reduced, it amounts to increasing

the passive suppression. The design principle that increasing passive suppression reduces total residual

self-interference is confirmed by equation (50) and it is also depicted in Figure 9.

The amount of active analog cancellation is obtained by computing the ratio of the strength of self-

interference before and after active analog cancellation which is

E(|h1|2 + |h2|2)

E(|h1|2)(1−Rφsi
(∆1)) + E(|h2|2)(1−Rφsi

(∆2))
. (51)

The strength of the line of sight component, E(|h1|2), varies as the coupling between transmit and

receive antenna on the full-duplex node changes. At one extreme if passive suppression is low and line

of sight is dominant, E(|h1|2)/E(|h2|2) >> 1, then the amount of active analog cancellation possible is

1/(1 − Rφsi
(∆1)). At the other extreme, if passive suppression is very high and the strength of line of

sight component is negligible, then the amount of active analog cancellation possible is 1/(1−Rφsi
(∆2)).

Thus, amount of passive suppression influences the amount of active analog cancellation. Moreover, since

∆1 < ∆2 implies 1/(1−Rφsi
(∆1)) > 1/(1−Rφsi

(∆2)), thus more passive suppression implies less active

analog cancellation. In Figure 9 we plot the amount of active cancellation as a function of the strength

of the line of sight component. Note that the total cancellation is maximized when passive suppression

is maximum, however active analog cancellation reduces as passive suppression increases.

VIII. SIGNAL MODEL FOR FULL-DUPLEX

Using the analyses in Sections V and VI, we develop a signal model for SISO full-duplex communi-

cation, and then extend it to the MIMO and wideband cases.
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A. Narrowband signal model

We present a digital baseband signal model which captures the effect of phase noise and imperfection in

channel estimate by considering the residual self-interference after: (a) active analog cancellation and (b)

digital cancellation cascaded with active analog cancellation. For both (a) and (b), the channel estimates

are assumed to be imperfect.

a) Active analog cancellation with imperfect estimates: For pre-mixer cancellers the residual self-

interference is given by (59). Since phase noise is assumed to be zero mean Gaussian, the linear

combination of several phase noise terms is also Gaussian. Also, phase noise is assumed to be small,

therefore ej(φsi(t−∆si)−φcancel(t)) ≈ 1. Then the received signal at N1, which is a combination of residual

self-interference, signal of interest and thermal can be written as

y1[iT ] =
√
Psignalhsignal[iT ] ∗ xsignal[iT ] +

√
Psi|hsi|βφzphase−noise[iT ]

+
√
Psihresidual−si[iT ] ∗ xsi[iT ] + znoise[iT ], (52)

where zphase−noise[iT ] is a zero mean AWGN with unit variance independent of the thermal noise and

signal of interest. The signal xsignal[iT ] is of unit variance and Psi and Psignal are power constraints at

N1 and N2 respectively. The contribution of phase noise to the residual self-interference is captured by

βφ whose value is given in Table II.

For post-mixer cancellers, as well as baseband analog cancellers, the contribution of phase noise to

the residual is different than pre-mixer cancellers. However, the form of the residual self-interference

after active analog cancellation in post-mixer and baseband analog cancellers is given by (61) and (63)

respectively, which is similar to (59). Therefore the signal model (52) holds for post-mixer and baseband

analog cancellers too. The parameter βφ for each canceller can be obtained from Table II.

b) Imperfect estimates in active analog and digital cancellation: After digital cancellation, the

residual depends on the quality of the estimate of residual self-interference channel, in addition to phase

noise. For pre-mixer cancellers, the residual is given by (40) and the strength of the residual is given by

(41), which allows us to write the received signal at N1 as

y1[iT ] =
√
Psignalhsignal[iT ] ∗ xsignal[iT ] +

√
Psi|hsi|γφzphase−noise[iT ]

+
√
Psi(hresidual−si[iT ]− ĥresidual−si[iT ]) ∗ xsi[iT ]) + znoise[iT ], (53)
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where γφ is a parameter dependent on the phase noise and the quality of active analog cancellation.

For post-mixer and baseband analog cancellers, the signal model in (53) is modified appropriately by

changing the parameter γφ, which is computed in (44) and (47) respectively, and populated in Table II.

B. Wideband signal model

Wideband full-duplex is implemented in [6, 7]. In wideband full-duplex, the self-interference channel

need not be frequency flat [13, 22]. To derive a signal model for wideband full-duplex, we treat it as

a combination of several narrowband full-duplex systems. Let the overall bandwidth be W and the

coherence bandwidth of the self-interference channel be w, then wideband channel is composed of

K = dWw e narrowband channels. Let the kth narrowband channel be denoted by hsi,kδ(t − ∆si,k). If

the bandwidth is much smaller than the carrier frequency, W << ωc, then the phase jitter over the band

of interest can be assumed to be independent of the bandwidth [12].

The signal model for wideband full-duplex can be described by explicitly writing the expression for

received signal in each of K narrowband channels. After active analog cancellation with imperfect channel

estimate, the received signal in the kth narrrowband channel is given by

y1,k[iT ] = hsignal,k[iT ] ∗ xsignal,k[iT ] +
√
Psi,k|hsi,k|γφzphase−noise,k[iT ]

+hresidual−si,k[iT ] ∗ xsi,k[iT ] + znoise[iT ], (54)

where Psi,k is power constraint for each band. Note that, while the phase noise in each band scales

according to the transmit power in that band, the thermal noise floor remains constant. To compare

the bottleneck in narrowband vs. wideband let us assume the total power in both is the same, say

P . As a simplifying assumption, let |hsi,k| = |hsi|. In the narrowband system, the strength of residual

self-interference due to phase noise is P |hsi|2β2
φ, which is the same as the strength of the residual self-

interference due to phase noise is in wideband, i.e.,
∑K

i=1 Psi,k|hsi,k|2β2
φ = P |hsi|2γ2

φ. On the other hand,

if the thermal noise floor in narrowband is given by the variance σ2
noise, then the variance of the noise

over wideband is Kσ2
noise. The signal model after digital cancellation can be written by simply replacing

βφ by γφ, and hresidual−si,k[iT ] with ĥresidual−si,k[iT ] in (54).
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C. MIMO full-duplex signal model

To extend the narrowband SISO model (52), we assume a MIMO system with M transmit antenna and

N received antenna. The self-interference at each of the receivers is due to the sum of M transmissions,

one from each transmit antenna. If the transmit radio chain for each antenna has an independent local

oscillator, then the residual self-interference due to phase noise is the sum of M independent residuals

due to phase noise in a SISO system. Then, the received signal at the nth receiver of the full-duplex

node N1 is given as

y1,n[iT ] =

M∑
m=1

√
Psignal,mhsignal,mn[iT ] ∗ xsignal,m[iT ] + γφ

√√√√ M∑
m=1

|hsi,m|2Psi,mzphase−noise,n[iT ]

+

M∑
i=1

hresidual−si,mn[iT ] ∗ xsi,m[iT ] + znoise,n[iT ], (55)

where zphase−noise,n[iT ] is unit variance, while znoise,n[iT ] has a variance of σ2
noise. The hsignal,mn[iT ]

represents the channel for the signal of interest from mth transmitter to nth receiver. The self-interference

channel and the residual self-interference channel at N1 is represented by hsi,mn[iT ] and hresidual−si,mn[iT ]

respectively. Power constraints at the mth transmitter for the signal of interest and self-interference

is Psignal,m and Psi,m respectively. To qualitatively understand the MIMO model in (55), consider the

special case where all the self-interference channels have identical magnitude, the residual self-interference

is simply M times the residual self-interference for SISO. To describe the signal model after digital

cancellation, we can extend the signal model in (55) by following the steps used to extend (52) to (53).

IX. CONCLUSION

In this paper, we provided an analytical explanation of experimentally observed performance bottlenecks

in full-duplex systems. Our analysis clearly shows that phase noise is a major bottleneck today and thus

reducing the phase noise figure of radio mixers could lead to improved self-interference cancellation.

X. APPENDIX

A. Lower bound for autocorrelation function

Let S(f) be power spectral density of the bandlimited function x(t) such that S(f) = 0 outside

[−F/2, F/2]. Due to the power constraint, we have
F/2∫
−F/2

S(f)df = 1. To evaluate the autocorrelation
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function R(.) at τ

R(τ) =

∞∫
−∞

S(f)e−j2πfτdf =

F/2∫
−F/2

S(f)e−j2πfτdf = 2

F/2∫
0

S(f) cos (2πfτ)df

(a)
≈ 2

F/2∫
0

S(f)(1− c1f
2τ2)df = 1− c1τ

2

F/2∫
0

f2S(f)df ≥ 1− (c1F
2/4)τ2

2

F/2∫
0

S(f)df


= 1− cτ2, (56)

where (a) holds if τ is small, and c = c1F
2/4.

B. Estimating the suitable scaling for cancellation for delay d

Let us denote by a1 = h1e
−j(ωc+ω)∆1 and a2 = h2e

−j(ωc+ω)∆2 . If (12) and (13) is true, then

hc(d) =

∑N
i=1 y2[(i− d)T ]′y1[iT ]∑N
i=1 |y2[(i− d)T ]|2

=

∑N
i=1(a′2x[(i− d)T ]′ + z2[(i− d)T ]′)(a1x[iT ] + z1[iT ])∑N

i=1(a′2x[(i− d)T ]′ + z2[(i− d)T ]′)(a2x[(i− d)T ] + z2[(i− d)T ])

=

∑N
i=1(a′2e

jωdTx[iT ]′ + z2[(i− d)T ]′)(a1x[iT ] + z1[iT ])∑N
i=1(a′2x[(i− d)T ]′ + z2[(i− d)T ]′)(a2x[(i− d)T ] + z2[(i− d)T ])

=

∑N
i=1(a′2a1e

jωdT |x[iT ]|2 + a1x[iT ]z2[(i− d)T ]′ + a2e
−jωdTx[iT ]′z1[iT ] + z2[(i− d)T ]′z1[iT ])∑N

i=1(|a2|2|x2[iT ]|2 + |z2[iT ]|2 + 2Re{a2x2[iT ]z2[iT ]′})
(57)

Letting N →∞ we can replace the summations with expectations. Due to independence of thermal noise

and the signal, we have

hc =
a′2a1e

jωdT

|a2|2 + σ2
noise

=
a1

a2
ejωdT

 1

1 + σ2
noise

|a2|2

 ≈ h1

h2
ej((ωc+ω)(∆2−∆1)+ωdT )

(
1−

σ2
noise

|h2|2

)
(58)

C. Calculating variance of phase noise

We derive the jitter from the spectrum of the phase noise as follows. Let the carrier frequency be denoted

by fc and let the spectrum of the phase noise be specified as L(f) dBc/Hz where f is the frequency

offset from the carrier frequency. The phase jitter in radians is given by ∆θRMS =
√∫ f2

f1
10

L(f)

10 df , where

f2 − f1 would be bandwidth of the signal (f1 being the lower offset and f2 being the higher offset).
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Jitter in time is given by ∆tRMS = ∆θRMS

2πfc
and the corresponding jitter in phase can be calculated as

∆θRMS = 2πfc∆tRMS

π . For WARP radio, MAXIM 2829 [19], operating at a carrier frequency of 2.4GHz

results in a time jitter of 0.83 picoseconds which corresponds to σφ = 0.717◦, and for the signal generator

[21], operating at 2.2 GHz the phase noise variance is computed to be σφ = 0.066.

D. Residual computations after active analog cancellations

Pre-mixer canceller: The residual is given by (33), which can be written as

yresidue−analog(t) = hsie
j(φcancel(t)−φdown(t))

(
xsi(t−∆si)e

−jωc∆siej(φsi(t−∆si)−φcancel(t)) − ρxsi(t− τ)e−jωcτ
)

+znoise(t)

≈ hsie
j(φcancel(t)−φdown(t)) (xsi(t−∆si)e

−jωc∆si − ρxsi(t− τ)e−jωcτ )︸ ︷︷ ︸
imperfect estimate

+hsie
jφcancel(t)e−jωc∆sixsi(t−∆si) (φsi(t−∆si)− φcancel(t))︸ ︷︷ ︸

phase noise

+znoise(t). (59)

The strength of the residual is given by

E(|yresidue−analog(t)|2)

≈ |hsi|2(1 + ρ2 − 2Rxsi
(∆si − τ)Re{ρe−jωc(∆si−τ)}) + 2σ2

si(1−Rφsi
(∆si)) + σ2

noise

≥ |hsi|2(1 + ρ2 − 2|ρ|Rxsi
(∆si − τ)︸ ︷︷ ︸

imperfect estimate

+ 2σ2
si(1−Rφsi

(∆si))︸ ︷︷ ︸
phase noise

) + σ2
noise. (60)

Post-mixer canceller: The residual self-interference is given by

yresidue−analog(t) = hsi(xsi(t−∆si)e
−jωc∆siejφsi(t−∆si) − ρxsi(t− τ)e−jωcτejφsi(t−τ))e−jφdown(t)

+znoise(t)

≈ hsie
j(φsi(t−τ)−φdown(t)) (xsi(t−∆si)e

−jωc∆si − ρxsi(t− τ)e−jωcτ )︸ ︷︷ ︸
imperfect estimate

+hsie
jφsi(t−τ)e−jωc∆sixsi(t−∆si) (φsi(t−∆si)− φsi(t− τ))︸ ︷︷ ︸

phase noise

+znoise(t). (61)

and its strength is given by
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E(|yresidue−analog(t)|2) ≥ |hsi|2(1 + ρ2 − 2|ρ|Rxsi
(∆si − τ)︸ ︷︷ ︸

imperfect estimate

+ 2σ2
si(1−Rφsi

(∆si − τ))︸ ︷︷ ︸
phase noise

) + σ2
noise. (62)

Baseband analog canceller: In baseband analog canceller, the residual self-interference is given by

yresidue−analog(t) = hsie
−jωc∆sixsi(t−∆si)(e

j(φsi(t−∆si)−φdown(t)))− ρhsie−jωcτxsi(t− τ) + znoise(t)

≈ hsi(e
−jωc∆sixsi(t−∆si)− ρe−jωcτxsi(t− τ))

+hsie
−jωc∆sixsi(t−∆si)(j(φsi(t−∆si)− φdown(t))) + znoise(t). (63)

and it’s strength is given by

E(|yresidue−analog(t)|2) = |hsi|2(1 + ρ2 − 2|ρ|Rxsi
(τ −∆si)︸ ︷︷ ︸

imperfect estimate

+σ2
si + σ2

down︸ ︷︷ ︸
phase noise

) + σ2
noise. (64)
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Reduction of self−interference
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Active Analog 

At−Baseband canceller

Fig. 1. Classification of methods of reducing self-
interference
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Fig. 2. Block diagram representation of all the self-
interference reduction methods in concatenation.
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(b) At-Baseband active analog canceller.

Fig. 3. Two architectures of analog cancellers differentiated based on whether the cancellation occurs at RF or analog baseband.
The functions rup(.) and rdown(.) represent the process of upconversion to RF and downconversion from RF respectively.
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Fig. 4. Schematic representation of the experiment in Section IV to acquire copies of a signals using a vector signal analyzer.
WARP and Vector Signal Generator were two different signal sources considered in the experiment.
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Fig. 5. Amount of cancellation as a function of the delay
for different signal sources measured from the experiment
in Section IV. Also shown in our related work [1].
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Fig. 6. Amount of active cancellation as a function of the
training length for a delay d = 0 for WARP as the signal
source measured from the experiment in Section IV.
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Fig. 7. Amount of active analog cancellation possible in different types of cancellers as function of phase noise. The solid
curve is a plot of amount of cancellation possible in pre-mixer cancellers if LOs are not matched, as a function of the variance
of phase noise.
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in a pre-mixer canceller is shown. Also, we assume
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si = σ2

down.
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Fig. 9. Total cancellation represents the sum of passive
and active analog cancellation when operated in cascade
in a pre-mixer canceller.

Type of canceller Expected value of the strength of residual self-interference after active analog cancellation

Pre-mixer |hsi|2(1 + |ρ|2 − 2|ρ|Rxsi
(∆si − τ) + 2σ2

si(1−Rφsi
(∆si)) + σ2

noise

Post-mixer |hsi|2(1 + |ρ|2 − 2|ρ|Rxsi
(∆si − τ) + 2σ2

si(1−Rφsi
(∆si − τ)) + σ2

noise

Baseband analog |hsi|2(1 + |ρ|2 − 2|ρ|Rxsi
(∆si − τ) + (σ2

si + σ2
down)) + σ2

noise

TABLE I
EXPECTED VALUE OF THE STRENGTH OF THE RESIDUAL SELF-INTERFERENCE AFTER ACTIVE ANALOG CANCELLATION

WITH IMPERFECT ESTIMATE OF SELF-INTERFERENCE CHANNEL

β2
φ for active analog cancellation only γ2

φ for active analog + digital cancellation
(imperfect estimate) (both with imperfect estimates)

Pre-mixer 2σ2
si(1−Rφsi

(∆si)) (1 + |ρ|2 − 2|ρ|Rxsi
(τ −∆si))(σ

2
si + σ2

down)
+2σ2

si(1−Rφsi
(∆si))

Post-mixer 2σ2
si(1−Rφsi

(τ −∆si)) (1 + |ρ|2 − 2|ρ|Rxsi
(τ −∆si))(σ

2
si + σ2

down)
+2σ2

si(1−Rφsi
(τ −∆si))

Baseband canceller σ2
si + σ2

down σ2
si + σ2

down

TABLE II
PARAMETERS DEFINING THE SINGAL MODELS IN (52) AND (53) FOR SISO NARROWBAND, (54) FOR SISO WIDEBAND AND

(55) FOR MIMO FULL-DUPLEX FOR DIFFERENT TYPES OF CANCELLERS. WE ASSUME THAT σsi = σcancel
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