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Abstract—In cellular networks, admission control and beam-
forming optimization are intertwined problems. While beam-
forming optimization aims at satisfying users’ quality-of-service
(QoS) requirements or improving the QoS levels, admission
control looks at how a subset of users should be selected so that
the beamforming optimization problem can yield a reasonable
solution in terms of the QoS levels provided. However, in order
to simplify the design, the two problems are usually seen as
separate problems. This paper considers joint admission control
and beamforming (JACoB) under a coordinated multicell MISO
downlink scenario. We formulate JACoB as a user number
maximization problem, where selected users are guaranteedto
receive the QoS levels they requested. The formulated problem is
combinatorial and hard, and we derive a convex approximation
to the problem. A merit of our convex approximation formulat ion
is that it can be easily decomposed for per-base-station decen-
tralized optimization, namely, via block coordinate decent. The
efficacy of the proposed decentralized method is demonstrated
by simulation results.

Index Terms—admission control, distributed optimization,
downlink beamforming

I. I NTRODUCTION

Coordinated beamforming (CoBF) [1], [2] is a recently
studied technique to mitigate intercell interference (ICI) in
the downlink of multicell cooperative systems. In CoBF, the
neighboring BSs share the same frequency band and employ
beamforming for data transmission. The transmit beamformers
at different BSs are coordinately designed according to the
channel conditions and certain design formulation, e.g., maxi-
mum system throughput, minimum transmit power, to name a
few. Compared to fully multicell cooperative techniques such
as network MIMO [1], CoBF has an advantage that the BS
cooperation overheads are not as significant, and yet appealing
performance may be achieved.

Meanwhile, admission control also plays an important role
in cellular systems. As cellular systems are usually congested,
with lots of users awaiting service, it is necessary for the BSs
to decide which user is served or not. Admission control refers
to methods of selecting users. While admission control and
beamforming are commonly seen as two separate problems,
they are fundamentally dependent on each other. Recent work
has demonstrated that by considering admission control and
beamforming jointly, promising system performance can be
achieved [3], [4]. However, joint admission control and beam-
forming (JACoB) is a challenging problem. It has been shown
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that JACoB is NP-hard even under a single-cell scenario [3].
Hence, as a compromise, one may consider approximation
approaches.

This paper describes a JACoB approach to CoBF in multi-
cell MISO downlink. A distinguishing part of the present work
is that our proposed JACoB formulation can be easily decom-
posed for decentralized implementation, and the decentralized
process is considered even more straightforward than thosein
CoBF (without admission control), e.g. [2], [5]. A key idea of
our approach is to use the now popularizedℓ1 approximation
method. We very recently note that in a concurrent work [4],
the authors have studiedℓ1 approximation for joint admission
control and power control (i.e., no beamforming). Neverthe-
less, the work [4] does not investigate the multicell CoBF
scenario and, more importantly, decentralized optimization
considered here. It is also worthwhile to mention [3], which
considers JACoB under a single cell scenario. The formulation
used there is based on a mixed-integer program formulation,
and is processed by semidefinite relaxation (SDR). While it
is not difficult to see that the idea of [3] can be extended
to the multicell scenario, one needs to assume centralized
optimization and presently there is no reported work on how
the method in [3] can be decentralized. In our simulations, we
will show that our decentralized method yields a performance
quite on a par with the centralized method in [3].

II. SYSTEM MODEL

Consider a cellular system withM coordinating BSs. Each
BS is equipped withN transmit antennas. In each cell, there
are K single-antenna user terminals; thus the total number
of users in the system isKM . The set of users associated
with the ith cell, or theith BS, is denoted byKi ⊂ K =
{1, 2, ...,KM}. We assume thatK = K1∪· · ·∪KM andKi∩
Kj = ∅ wheneveri 6= j, i.e., each user is served only by one
BS. The scenario of interest is downlink, with an emphasis on
CoBF. Assuming that the BS-to-user channels are frequency-
flat and slow, and that the linear unicast transmit beamforming
scheme is employed, we can characterize the CoBF system
performance by the received signal-to-interference-and-noise
ratios (SINRs) (for more complete system model descriptions,
see the literature, such as [2]):

SINRq=
|hH

i(q),qwq|2

σ2
q +

∑

m∈Ki(q)\{q}

|hH
i(q),qwm|2 +

∑

j 6=i(q)

∑

m∈Kj

|hH
j,qwm|2

, (1)
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where q ∈ {1, 2, . . . ,KM} is the user index,i(q) ∈
{1, ...,M} denotes the BS with which theqth user is asso-
ciated (i.e.,i(q) is such thatq ∈ Ki(q)), hj,q ∈ CN is the
channel response from thejth BS to theqth user,σ2

q is the
noise variance, andwq ∈ CN is the beamforming vector for
the qth user.

The difference between the SINR model in (1) and a single-
cell-based SINR model is that the former explicitly models the
ICI, which is given by the third term in the denominator of
(1). On the contrary, in the single-cell case, the ICI is usually
treated as a constant, and is absorbed byσ2

q . The idea of CoBF
is therefore to ask the BSs to coordinately design{wq}KM

q=1 ,
so that ICI may be jointly mitigated.

To motivate the study of JACoB, let us quickly review a
CoBF design problem, specifically, the design proposed in [2].
In that design, the BSs jointly design the beamforming vectors
{wq}KM

q=1 such that the SINR of each user is no less than a
user-requested thresholdγq. Moreover, the design objective
aims at minimizing the total transmit power. This amounts to
the following design optimization problem:

min
{wq}KM

q=1

∑KM
q=1 ‖wq‖22

s.t. SINRq ≥ γq, q = 1, 2, ...,KM,
∑

q∈Ki
‖wq‖22 ≤ Pmax,i, i = 1, ...,M,

(2)

where the last constraints in (2) are per-BS power budget
constraints, withPmax,i specifying the maximum transmit
power of the ith BS1, and ‖ · ‖2 is the ℓ2 norm. At first
glance problem (2) seems to be nonconvex, since the SINR
constraints are nonconvex in{wq}KM

q=1 . Actually, problem (2)
can be solved in a convex and tractable fashion, using ei-
ther the second-order cone programming formulation or the
semidefinite relaxation (SDR) formulation; see [2] and [6] for
more detail.

Cellular systems are usually congested, with lots of users
awaiting service. A subsequent issue relevant to the CoBF
problem (2) is that we may be unable to find a beamforming
solution{wq}KM

q=1 that satisfies all the users’ SINR requests.
In other words,problem(2) may be infeasible. To illustrate this
issue, we simulated the feasibility rate of problem (2) against
the total number of usersKM . The simulation result is plotted
in Figure 1. The feasibility rate was evaluated by counting the
number of instances for which (2) is feasible, under randomly
generated channels. We observe that problem (2) has a low
feasibility rate when the number of users is large.

III. JOINT ADMISSION CONTROL AND BEAMFORMING

This work considers joint admission control and beamform-
ing (JACoB). The problem is stated as follows:

Joint admission control and beamforming (JACoB):

Select a maximum number of users, such that there exists
a beamforming solution{wq} that satisfies all the selected
users’ SINR requests.

1As a minor point to note, the previous study [2] does not incorporate the
per-BS power budget constraints.
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Fig. 1: The feasibility rate of the CoBF problem (2).M = 3,
N = 8, γq = 6 dB, andPmax,i = 46 dBm.

In the following, we will first provide an optimization
formulation for JACoB, and derive a convex approximation to
the formulated problem. Then, a decentralized method based
on the convex approximation will be developed.

A. Centralized method for JACoB

Our endeavor starts with formulating JACoB in a mathe-
matically convenient form. First of all, let

Wq = wqw
H
q , q = 1, . . . ,KM,

and observe the following equivalence (cf. (1)):

SINRq ≥ γq ⇐⇒ 0 ≥ fq({Wm}KM
m=1), (3)

where we define

fq({Wm}KM
m=1) , 1 +

∑

j 6=i(q)

Tr
(

Hj,q

(

∑

m∈Kj

Wm

))

+Tr
(

Hi(q),q

(

∑

m∈Ki(q)\{q}

Wm −
1

γq
Wq

))

,

and Hj,q , hj,qh
H
j,q/σ

2
q . We claim that JACoB can be

formulated as the followingℓ0 minimization problem:

min
t,{Wq}KM

q=1

‖t‖0 + ǫ
∑KM

q=1 Tr(Wq) (4a)

s.t.
∑

q∈Ki
Tr(Wq) ≤ Pmax,i, i = 1, ...,M, (4b)

Wq � 0, ∀ q, (4c)

tq = max{0, fq({Wm}KM
m=1)}, ∀ q, (4d)

rank(Wq) = 1, ∀ q, (4e)

where0 < ǫ < 1/
∑M

i=1 Pmax,i is a penalty parameter,Wq �
0 means thatWq is positive semidefinite, and‖t‖0 is the ℓ0
norm, which counts the number of nonzero elements int.

Let us describe why problem (4) delivers the above defined
JACoB goal. Firstly, constraints (4c) and (4e) are equivalent
to Wq = wqw

H
q . Secondly, by substituting (4d) into the first

term of (4a), i.e.,‖t‖0, and observing (3), we can see that
‖t‖0 is counting the number of unserved or unadmitted users.
Hence, if we ignore the second term of (4a), then problem (4)
minimizes the number of unadmitted users. Thirdly, the second
term of (4a), i.e,ǫ

∑KM
q=1 Tr(Wq), is a penalty term. It is used

to encourage more power-efficient beamforming solutions. It
can be shown that problem (4) withǫ = 0 (i.e., direct



unadmitted user minimization) achieves the same number of
unadmitted users as problem (4) withǫ < 1/

∑M
i=1 Pmax,i.

Problem (4) is difficult to solve. As a remedy, we adopt a
convex approximation approach. Our approximation involves
two steps. First, we replace the hardℓ0 norm function by theℓ1
norm, which is now a popularized trick in compressive sens-
ing. Second, we remove the rank-one constraints (4e), which
is well known as SDR [6]. The above two approximations lead
us to the followingℓ1 approximate JACoB problem:

min
t,{Wq}KM

q=1

‖t‖1 + ǫ
∑KM

q=1 Tr(Wq) (5a)

s.t.
∑

q∈Ki
Tr(Wq) ≤ Pmax,i, i = 1, ...,M, (5b)

tq ≥ 0, tq ≥ fq({Wm}KM
m=1), (5c)

Wq � 0, ∀ q, (5d)

where‖ · ‖1 is theℓ1 norm. Note that in (5), we replace (4d)
by (5c), which can be easily verified to be equivalent.

The ℓ1 approximate JACoB problem (5) is convex. In fact,
problem (5) can be written as an SDP. Hence, for centralized
implementation, we can solve problem (5) by using a readily
available SDP solver. Moreover, we show that the second
approximation, i.e., SDR, is a tight relaxation:

Proposition 1 For ǫ > 0, any optimal solution{W ⋆
q }

KM
q=1 of

problem(5) must satisfyrank(W ⋆
q ) ≤ 1 for all q.

The proof of Proposition 1 is skipped here owing to the limit
of space. The idea behind the proof is to examine the KKT
conditions and exploit the rank-one structure ofHi(q),q. We
should also note that Proposition 1 is different from the SDR
tightness results in [7], which may be seemingly similar at
first look. Simply speaking, [7] studies more generalHj,q

(which may take any rank), but may not solve the problem in
Proposition 1. Proposition 1 means that solving problem (5)
automatically leads to a set of beamforming solutions (recall
Wq = wqw

H
q for rank-one positive semidefiniteWq), and

there is no loss in applying SDR.

B. Decentralized method for JACoB

A significant advantage of theℓ1 approximate JACoB
formulation in (5) is that it can be easily decomposed for
decentralized optimization. To see this, let

Wi , {Wm}m∈Ki
, i = 1, ...,M.

Notice that Wi corresponds to the beamforming vectors
controlled by theith BS. Now, by substituting (5c) into (5a),
we can reformulate (5) as

min
{Wq}KM

q=1

KM
∑

q=1

(

max{0, fq(W1, ...,WM )}+ ǫTr(Wq)
)

s.t.
∑

q∈Ki
Tr(Wq) ≤ Pmax,i, i = 1, ...,M,

Wq � 0, q = 1, ...,KM.

(6)

A unique feature with problem (6) is that the constraints are
per-BS decoupled (note that this is not the case with the
CoBF problem in (2)). As a result, we can directly apply

per-BS alternating optimization. To be specific, we employ
block coordinate descent (BCD). In BCD, we update only one
beamforming blockWi, while holding the other blocks fixed.
This BCD update is done cyclically with respect to the BSs,
until some stopping rule is satisfied.

A curious question is whether the above-described BCD
method would converge to the optimum of problem (6). Unfor-
tunately, this may not be guaranteed—BCD may not converge
to the optimum for problems whose objective functions arenot
continuously differentiable, even if the problem is convex[8].
The functionmax{0, x} seen in problem (6) exactly falls into
this case. To remedy this, we apply a smooth approximation
to (6) using the one-sided Huber function

h(x) =











0 , if x ≤ 0,

0.5x2 , if 0 < x ≤ 1,

x− 0.5 , if x > 1.

The Huber functionh(x) is continuously differentiable inx.
Applying the approximationmax{0, x} ≈ h(x), we obtain the
Huber approximate JACoB problem:

min
{Wq}KM

q=1

KM
∑

q=1

(

h(fq(W1, ...,WM )) + ǫTr(Wq)
)

s.t.
∑

q∈Ki
Tr(Wq) ≤ Pmax,i, i = 1, ...,M,

Wq � 0, q = 1, ...,KM.

(7)

From this point on, we will concentrate on the BCD of
problem (7).

Let us consider the BCD update of problem (7) with respect
to the ith block Wi, holding the other blocks{Ŵj}j 6=i ,

{Ŵm}m/∈Ki
fixed. The respective problem is

min
{Wm}m∈Ki

KM
∑

q=1

h(fq(W i, {Ŵj}j 6=i)) +
∑

m∈Ki

ǫTr(Wm)

s.t.
∑

m∈Ki
Tr(Wm) ≤ Pmax,i, Wm � 0, m ∈ Ki,

which can be expressed as a convex problem (see, e.g., [9]):

min

KM
∑

q=1

(

1

2
u2
q + vq

)

+
∑

m∈Ki

ǫTr(Wm) (8a)

s.t. uq + vq ≥ fq(Wi, {Ŵj}j 6=i), ∀ q, (8b)

uq, vq ≥ 0, ∀ q, (8c)
∑

m∈Ki

Tr(Wm) ≤ Pmax,i, Wm � 0, m ∈ Ki. (8d)

Constraints (8b) seems to indicate that full knowledge of
{Ŵj}j 6=i is required, in order to solve the BCD update (8).
Actually, this may be not necessary. Notice that forq ∈ Ki,
constraint (8b) can be expressed as:

uq + vq ≥ 1 +
∑

j 6=i

Ω̂j,q +Tr
(

Hi,q

(

∑

m∈Ki\{q}

Wm −
Wq

γq

))

,

and forq /∈ Ki,

uq + vq ≥ 1 +
∑

j 6=i

Ω̂j,q +Tr
(

Hi,q

(

∑

m∈Ki

Wm

))

,



whereΩ̂j,q are scalar constants defined as:

Ω̂j,q =



















Tr
(

Hj,q

(

∑

m∈Kj\{q}

Ŵm −
Ŵq

γq

))

, q ∈ Kj ,

Tr
(

Hj,q

(

∑

m∈Kj

Ŵm

))

, q /∈ Kj .

Hence, if theith BS knows i) the matrices{Hi,q}KM
q=1 , i.e., the

channel response from theith BS to the users in the system;
and ii) the scalar constants{Ω̂j,q}j 6=i,q∈K, then problem (8)
can be solved independently at theith BS. In fact, the first
premise can be satisfied automatically as it can be assumed
that each BS knows the channel response from itself to the
users in the system [2]. To satisfy the second premise, we
can utilize the backhaul link between the BSs. Specifically,
the scalars{Ω̂i,q}q∈K can be computed and broadcast to the
other BSs after theith BCD update is solved. There areKM
real numbers to be broadcast at each iteration. This justifies
our claim that theith BS can solve (8) alone. The BCD method
for (7) is summarized in Algorithm 1.

Recall that the reason for employing the Huber function in
(7) is to provide a smooth approximation to JACoB, avoiding
the original nondifferentiable objective function which may
result in BCD non-convergence problems. But can the smooth
approximation guarantee convergence to the optimum? By
invoking an available BCD convergence analysis result [10],
we have the following claim:

Fact 1 [10] The sequence{{W (k)
q }KM

q=1 }k generated by
Algorithm 1 has limit points and every limit point of the
sequence{{W (k)

q }KM
q=1 }k is an optimal solution to(7).

Readers are referred to Proposition 6 in [10] for more detail.
We should note that the important premises for us to use this
available result are that the objective function of (7) is convex,
continuously differentiable in{Wi}Mi=1 and the constraint
set for eachWi is convex and compact. Furthermore, by
extending Proposition 1, we can prove that the intermediate
solutions{W (k)

q }q∈Ki
in Algorithm 1 at theith BCD update

are always of rank-one:

Proposition 2 For ǫ > 0 and for eachi, any optimal solution
{W

(k)
q }q∈Ki

of the ith BCD update in Algorithm 1 must
satisfyrank(W (k)

q ) ≤ 1 for all q in Ki.

IV. D EFLATION HEURISTIC

Both ℓ1 and Huber approximate JACoB problems (cf. prob-
lems (5) and (7), respectively) can be seen as some kind of
“soft decision” formulations for handling admission control.
In order to select more users for service, we can apply a hard
decision using the deflation heuristic. Similar to [3], [4],the
heuristic is initialized by considering all users in the system,
then the users are dropped one-by-one. At first the BSs solve
(5) or (7) either centrally or using the BCD method. Our user
dropping rule is based on the value oft⋆q , max{0, fq(·)}

Algorithm 1 Block coordinate descent method for (7)

Require: initialization - {W (0)
q }q∈K.

1: k = 1;
2: For eachi = 1, 2, ...,M , the ith BS computes{Ω̂i,q}q∈K

and broadcasts them to the other BSs;
3: repeat
4: for i = 1 to M do
5: The ith BS solves (8) given{Ω̂j,q}j 6=i,q∈K to obtain

{W
(k)
q }q∈Ki

. The scalars{Ω̂i,q}q∈K are computed
and broadcast to the other BSs;

6: end for
7: k = k + 1;
8: until convergence.
9: return an optimal solution to (7) -{W (k)

q }q∈K.

which relates directly to the satisfiability of the SINR threshold
for userq. The user with the largestt⋆q will be dropped.

When the number of users in the system is too large, we
may encounter cases where the optimal solution to (5) or (7) is
trivial, i.e., Wq = 0 for all q. Here we state an easy-to-check
condition for identifying such cases.
Fact 2 (Prescreening condition)2 If

Φq({Hi(q),m}m∈K)) � 0, ∀ q ∈ K, (9)

then solving (5) or (7) gives a trivial solution, i.e.,Wq = 0

for all q in K, where

Φq({Hi(q),m}m∈K)) , ǫI +
∑

m 6=q

Hi(q),m −
1

γq
Hi(q),q.

The proof is omitted due to space limitation. Inspired by
fact 2, we now adopt aprescreening procedurewhere we
drop the users gradually until condition (9) gets violated.
Specifically, at each time, we remove userq with Φq(·) that
gives the largest minimum eigenvalue As condition (9) can
be checked in closed-form, the prescreening procedure can be
run at a low complexity. The deflation heuristic, together with
prescreening, are summarized as follows3:

Deflation heuristic:
• Initialize : a set of users requesting service -K =
{1, 2, ...,KM}.

1) (Prescreening) Check condition (9). If it holds,
then remove userm from K according tom =
argmaxq λmin(Φq(·)) and repeat 1). Otherwise, go
to 2).

2) (Deflation) Solve (5) or (7) for{t⋆q,W
⋆
q }q∈K. If t⋆q =

0 for all q ∈ K, terminate. Otherwise remove userm
from K according tom = argmaxq t

⋆
q , repeat 2).

• Return: a set of selected usersK and rank-one ma-
trices {W ⋆

q }q∈K that decomposes into beamforming
vectors satisfying the SINR requirements.

2A similar condition has been discovered recently in [4] for the joint power
and admission control problem. Our results applies to the case with CoBF.

3Note that both the deflation heuristic and prescreening procedure can be
operated in a decentralized manner.
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Fig. 2: Total no. of users admitted,M = 3, N = 8, K = 15.

V. NUMERICAL RESULTS

This section presents numerical results for the proposed
JACoB methods. The simulation environment is similar to [2].
We focus on a multicell scenario with 3 coordinating BSs
where each BS is separated from the others by 2.8 km. For
each simulation trial, the users’ positions and their respective
channels are randomly generated. The users are separated from
their respective BS by at least 0.7 km and are assigned to the
nearest BS. The channel is assumed to experience both small-
scale and large-scale fading. The noise varianceσ2

q is -92 dBm
and the receive antenna gain is 5 dBi. There are 8 transmit
antennas and 15 users are assigned to each BS (i.e., 45 users
awaiting service in total).

Here, the centralized method and the decentralized method
refer to the deflation heuristic which uses a centralized solver
for (5) and the decentralized BCD method for (7), respectively.
The scalarǫ is chosen as10−5 and the BCD method terminates
when the relative change in objective value is less than10−2.

Figure 2 shows the performance of different JACoB methods
in terms of the total number of users selected for service. Here,
two benchmarking methods are compared. The “SDR deflation
method” is adopted from [3] and modified to operate in the
multicell scenario. Note that it is a centralized method which
may not be decomposed straightforwardly. The “single cell
deflation method” is a modified algorithm from [11], which is
originally proposed as a suboptimal alternative to the CoBF
problem (2). The main feature of [11] is that the ICI levels are
always constrained below a fixed threshold, and therefore the
beamforming design can be done independently at each BS.
The subsequent single-cell beamforming design is processed
by our JACoB method. Note that the resultant method can be
implemented in a per-BS decentralized mannerwithout any
BS coordination.

Turning back to Figure 2, we compare the performance
of [3] with the proposed centralized method. We observe
that there are some performance gains with the proposed
method in the high SINR regime. Furthermore, the proposed
decentralized method achieves a performance on a par with

TABLE I: Total no. of iterations,M = 3, N = 8,K = 15.

Threshold (γ) With prescreening Without prescreening

12 dB 53.080 61.790

20 dB 31.030 59.290

its centralized counterpart. The decentralized method should
also be compared to the single cell deflation method, where
the numerical results has clearly demonstrated the benefitsof
allowing BSs coordination.

Table I demonstrates the efficacies of the proposed decen-
tralized BCD method with prescreening procedure in terms of
the total number of iterations. The total number of iterations
is defined as the total number of BCD iterations consumed
throughout the deflation heuristic, where multiple instances
of (7) are solved. Note that the load on the backhaul link is
directly proportional to the iteration count. The iteration counts
reported in Table I confirms that significant reduction in the
number of iterations can be achievedwith the prescreening
procedure.

VI. CONCLUSION

The contributions of this paper are twofold. First, we have
developed a formulation of joint admission control and beam-
forming (JACoB) for coordinated multicell downlink, wherein
an efficient convex approach is proposed. Second, we have
built a decentralized JACoB method via a simple BCD pro-
cedure. Simulation results have shown that the decentralized
method achieves a performance on a par with the centralized
method with fast convergence.
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