

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: May 14, 2024

Power Efficient Design of Parallel/Serial FIR Filters in RNS

Petricca, Massimo; Albicocco, Pietro; Cardarilli, Gian Carlo ; Nannarelli, Alberto; Re, Marco

Published in:
2012 Conference Record of the Forty Sixth Asilomar Conference on Signals, Systems and Computers
(ASILOMAR)

Link to article, DOI:
10.1109/ACSSC.2012.6489171

Publication date:
2012

Link back to DTU Orbit

Citation (APA):
Petricca, M., Albicocco, P., Cardarilli, G. C., Nannarelli, A., & Re, M. (2012). Power Efficient Design of
Parallel/Serial FIR Filters in RNS. In 2012 Conference Record of the Forty Sixth Asilomar Conference on
Signals, Systems and Computers (ASILOMAR) (pp. 1015-1019). IEEE.
https://doi.org/10.1109/ACSSC.2012.6489171

https://doi.org/10.1109/ACSSC.2012.6489171
https://orbit.dtu.dk/en/publications/c5210a21-6708-4f99-8eb0-388396331e94
https://doi.org/10.1109/ACSSC.2012.6489171

Power Efficient Design of Parallel/Serial
FIR Filters in RNS

Massimo Petricca, Pietro Albicocco, Gian Carlo Cardarilli, Alberto Nannarelli∗ and Marco Re
Department of Electrical Engineering, University of Rome ”Tor Vergata”, Rome, Italy

∗ Dept. of Informatics & Mathematical Modeling, Technical University, Denmark

Abstract—It is well known that the Residue Number System
(RNS) provides an efficient implementation of parallel FIR filters
especially when the filter order and the dynamic range are
high. The two main drawbacks of RNS, need of converters
and coding overhead, make a serialized implementation of the
FIR filter potentially disadvantageous with respect to filters
implemented in the conventional number systems. In this work,
we show a number of solutions which demonstrate that the power
efficiency of RNS FIR filters implemented serially is maintained
in ASIC technology, while in modern FPGA technology RNS
implementations are less efficient.

I. I NTRODUCTION

In [1], we presented a comparison in terms of delay, area and
power dissipation of parallel Finite Impulse Response (FIR)
filters implemented in the Residue Number System (RNS)
and in the traditional Two’s Complement System (TCS). The
results of [1] show that for programmable FIR filters of high
order the RNS implementation is more power efficient than
the TCS one.
One drawback of RNS is the need for input/output converters
necessary to interface the filter to the rest of the system (A/D
converter, DSPs, etc.) normally in TCS.
Another drawback, is the coding overhead introduced by the
representation of the RNS base [2], which affects the parts of
the data-paths (e.g. registers and multiplexers) not performing
arithmetic operations (e.g. addition and multiplication).
For these reasons, the advantages of RNS in the imple-
mentation of serial, or partly parallel, FIR filters are not
evident, and the objective of this work is to investigate the
impact of serialization on delay, area and power dissipation of
programmable FIR filters.
As reference filter we consider a 128-tap FIR filter with high
dynamic range (24-36 bit) and sampling frequency of 20 MHz.
These types of filters are normally used to extract narrow
band signals from a broader band signal. For example, some
applications are:

• Reflected radar signal when signals of different amplitude
are overlapped.

• Low power signals originating from sensors in a noisy
(electromagnetic) environment.

• Receivers of signals from deep-space probes when the
incoming signal (to Earth) is weak.

The results of the implementation of this reference filter ina
partly serial architecture show that in ASIC (standard cells)
technology the RNS implementation is more power efficient

than the TCS one, especially if clock gating is used. On the
other hand, for FPGA implementations, the TCS filters are
more power efficient than RNS filters.

II. BACKGROUND ON RNS

A Residue Number System (RNS) is defined by a set ofP

relatively prime integers{m1, m2, . . . , mP } which identify
the RNS base. Its dynamic range is given by the product
M = m1 · m2 · . . . · mP .
Any integerX ∈ {0, 1, 2, . . .M − 1} has a unique RNS rep-
resentation given by:

X
RNS
→ (〈X〉m1

, 〈X〉m2
, . . . , 〈X〉mP

)

where 〈X〉mi
denotes the operationX mod mi [3]. Opera-

tions on differentmi (moduli) are done in parallel

Z = X op Y
RNS
→















Zm1
= 〈Xm1

op Ym1
〉m1

Zm2
= 〈Xm2

op Ym2
〉m2

.

ZmP
= 〈XmP

op YmP
〉mP

(1)

As a consequence, operations on large wordlengths can be
split into several modular operations executed in paralleland
with reduced wordlength [3].
The main advantage in using several moduli of small dynamic
range is that the carry-chains in addition are very short (faster
hardware) and that table based methods can be used to simplify
some operations, as explained for modular multiplication in
Sec. II-A.

A. Modular Multiplication

One of the advantages of the use of moduli of small dynamic
range which are prime numbers, is that we can transform mod-
ular multiplication into a modular addition by the isomorphism
technique [4].
The isomorphic transformation is based on the concept of
indices that are similar to logarithms, and primitive rootsr

which are similar to logarithm bases. Ifm is a prime number,
there exists some primitive root for which the following
property holds:

Every element in the fieldF (m) = {0, 1, . . . , m − 1}, ex-
cluding the zero, can be generated by using the equation

F (m) =
〈

rk
〉

m
(2)

wherek is an integer.

F (11) k

〈rk〉11 r = 2 r = 6 r = 7 r = 8
1 0 0 0 0
2 1 9 3 7
3 8 2 4 6
4 2 8 6 4
5 4 6 2 8
6 9 1 7 3
7 7 3 1 9
8 3 7 9 1
9 6 4 8 2
10 5 5 5 5

TABLE I
THE ISOMORPHISM TABLE FORm = 11.

As an example, the generation of the elements forF (11) is
shown in Table I. In this case, the four primitive roots are:
{2, 6, 7, 8}.
By property (2), the product of two elementsa andb belonging
to the field is implemented by

1) Forward transformation ofa andb in the corresponding
indices.

2) Addition modulom − 1 of the two indices.
3) Reverse conversion of the result of the addition to obtain

the final result of the modular product.

If the modulus is small (its binary representation is six or
seven bits), the forward and reverse transformations can be
implemented by look-up tables of reasonable size.
Therefore, the product ofa andb modulom is obtained as:

〈a · b〉m = 〈rk〉m

where

k = 〈ka + kb〉m−1 with a = 〈rka 〉m andb = 〈rkb 〉m

Summarizing, to implement the modular multiplication the
following operations are performed:

1) Two Direct Isomorphic Transformations (DIT) to obtain
ka andkb;

2) One modulom − 1 addition〈ka + kb〉m−1;
3) One Inverse Isomorphic Transformation (IIT) to obtain

the product.

The architecture of the isomorphic multiplier is shown in
Fig. 1. The scheme is completed by a few gates to detect when
one of the two operands is zero (no corresponding index in
the isomorphism). On zero detected, the product is set to zero.
An alternative for isomorphic multiplication was proposed
in [5]. Because isomorphic multipliers use modular adders
in combination with tables, the modular adder in Fig. 1
is replaced by a binary adder and the modulus operation
is incorporated in the IIT table1 Moreover, addition of the
constant−mi is incorporated in one of DIT tables (called
DIT∗), as well. The resulting scheme, shown in Fig. 2, is faster
and consumes less power, as detailed in [5].

1Entries in the table are doubled (IIT+ IIT∗), but the delay in the adder
is reduced.

ka

|ab|m

n

n n

|+|m-1det 0 det 0

IIT
(ROM)

n

kb

kp

DIT
(ROM)

a

n

DIT
(ROM)

b

n

Fig. 1. Structure of basic isomorphic multiplier.

ka

|ab|m

n

DIT
(ROM)

DIT*
(ROM)

n n

n-bit CPAdet 0 det 0

kb-(m-1)

IIT
(ROM)

IIT*
(ROM)

n

kp-(m-1)

a

n

b

n

Cout

Fig. 2. Structure of modified isomorphic multiplier [5].

a

n

|+|q1

IISIT
(ROM)

|ab|m

n

|ka|q1

DISIT
(ROM)

n n

|+|qNn

nq1 nq1 nqN nqN

n

|ka|qN |kb|q1 |kb|qN

|kp|q1 |kp|qN

b

n

det 0

DISIT
(ROM)

det 0

Fig. 3. Structure of isomorphic multiplier from [6].

A different alternative was proposed in [6]. Its architecture is
sketched in Fig. 3. In this case, the isomorphic transformation
is achieved by a RNS decomposition of the mod(m − 1)
index computation (m−1 is not a prime number anymore for
m > 3) in a subset of moduliqi to obtain reduced delay.
For example, form = 11

ISO
→ m−1 = 10 = 2×5 the indices

ka andkb can be decomposed as

ka
RNS
→ {〈ka〉2, 〈ka〉5} andkb

RNS
→ {〈kb〉2, 〈kb〉5}.

The steps for modular multiplication based on the residues of
the isomorphic indices are:

1) n Direct Isomorphic Submodular Indexes Trans-
formations (DISIT) to obtain the two n-tuples
{〈k〉q1

, . . . , 〈k〉qN
} from the indexeska andkb;

2) n modular additions of the n-tuples element by element;
3) One Inverse Isomorphic Submodular Indexes Transfor-

mation (IISIT) to obtain the modular product.

B. Coding Overhead

In [2], we introduced the”coding overhead”(OH) defined as
the amount of extra bits required in the RNS representation of
an integer compared to its TCS representation.
If the dynamic range of the TCS isD = 2d, for the RNS
representation the base must be chosen such that

P
∏

i=1

mi = M ≥ D = 2d .

Each modulusmi is encoded in binary for a total number of
bits

b =

P
∑

i=1

⌈log2 mi⌉.

The coding overhead is defined as

OH = b − d .

The coding overhead has a significant impact on the parts of
the datapath which do not perform arithmetic computations,
such as registers and multiplexers.

C. RNS: Summary

Summarizing, the RNS is attractive because:

• It allows the parallelization of addition and multiplication
as shown by (1).

• The shortened carry-chain length, due to the decomposi-
tion of (1), results in faster addition.

• If the moduli are prime numbers, the multiplication is
simplified to an addition plus accesses to tables.

The main drawbacks of RNS are:

• The overhead of input/output conversions.
• Operations such as truncation, division and sign detection

are hard to implement.
• The coding overhead can heavily limit the benefits of

the RNS in some cases. One of those is described in
Sec. IV-A.

III. F ILTER ARCHITECTURE

The starting point of our design is a programmable 128-tap
FIR filter working at a frequency of 20 MHz

y(n) =

127
∑

k=0

akx(n − k) (3)

with a 36 bit dynamic range, 18-bit input samplesx and 18-bit
coefficientsak.

Z
−1

+

+ Z
−1

+

+Z
−1 +

++
a

0
a

1
a

n
a

n−1

y(t)

x(t)

buffer

Fig. 4. Parallel implementation of (3) in transposed form.

We consider the following architectures:

1) A parallel implementation of (3) in transposed form,
shown in Fig. 4. It requires 128 18x18 multipliers.

2) A serial/parallel implementation in which (3) is decom-
posed in

y(n) =

15
∑

i=0





7
∑

j=0

a8i+jx(n − 8i + j)



 (4)

and executed serially on a 16-tap filter (direct form) as
depicted in Fig. 5. In this case, 16 18x18 multipliers are
required.
Each tap (Fig. 5 bottom) implements the inner convolu-
tion of (4) by 8 multiply-add operations executed serially
in one multiply-accumulate (MACC) unit.
Consequently, the serial/parallel filter of Fig. 5 is clocked
at a frequencyf = 8 × 20 MHz = 160 MHz.

The two architectures are implemented in the conventional
two’s complement representation (TCS) and in the Residue
Number System (RNS).
Because of (1), in RNS, a FIR filter (3) is decomposed into
P filters working in parallel [7]. In this specific case, the 36-
bit dynamic range can be parallelized in RNS by utilizing the
RNS base ofP = 10 co-prime moduli:

RNS base= {3, 5, 7, 11, 13, 17, 19, 23, 31, 32}

The RNS coding overhead is

OH = b − d =

(

P
∑

i=1

⌈log2 mi⌉

)

− d = 41 − 36 = 5

The coding overhead has a large impact on the RNS filter’s
area, as explained in Sec. IV-A.
The multiplication in RNS is implemented by the isomorphic
transformation by selecting the suitable architecture, among
the ones presented in Sec. II-A, depending on the specific
modulus and the design constraints.

IV. ASIC (STANDARD CELLS) IMPLEMENTATION

The two architectures (parallel and serial/parallel) are imple-
mented in both TCS and RNS in a 90 nm library of standard
cells. The units are synthesized by Synopsys Design Compiler.
Table II reports the results for the four implementations. In the
table, we introduceEpc (average) energy-per-cycle defined as:

Epc =
PAV E

fC

= PAV E · TC

TAP_0IN
n

D
E

M
U

X

TAP_15

TREE OF ADDERS

16

ak0

x0

n

n

n

ak7

x7

n

2n 2n

CTRL

2nOUT

ak120

xen

ak-en

Y0 Y1516

x120

M
U

X

M
U

X

ak0

ak n

MACC

n

n

R
E
G

F
I

E
L

R
E
G

F
I

E
L

ak-en

n x

n

x-en

x0

n

2n

ak7 x7Y0

Fig. 5. Serial implementation of 128-tap filter by one 16-tapparallel filter.
Top-level (top), serial implementation of the inner convolution of (4) in one
TAP i (bottom).

to have a common metric for units clocked at different
frequencies. The termtMAX indicates the delay of the critical
path in the filter.
Table II confirms that for high-order parallel filters the RNS
implementation is advantageous in all metrics (tMAX , area,
and power dissipation) and that the overhead of conversions
(input/output) does not offset the benefits obtained by RNS
implementation of the operations (multiplication and addition).
On the other hand, for the serial/parallel architecture, the TCS
implementation is smaller (area) than the RNS one, and it
consumes about the same power.

A. Clock Gating and Voltage Scaling

In TCS, the dynamic range of 36 bits at the output of the
multipliers is obtained as the product of two 18-bit operands.
On the other hand, in RNS, all the parts of the modular
datapaths require a constant number of bits that adds up to
41 bits. The RNS coding overhead (OH) in the different parts
of the datapath is:

• OH input samples: OHx = 41 − 18 = 23
• OH coefficients : OHak

= 41 − 18 = 23
• OH output : OHy = 41 − 36 = 5

ASIC IMPLEMENTATION
128-TAP PARALLEL FILTER fC = 20 MHz

tMAX Area PAV E@fC Epc

[ns] [mm2] [mW] [pJ]
TCS 6.63 1.15 23.9 1196
RNS 4.05 0.71 16.9 844
ratio 1.63 1.61 1.42 1.42

ASIC IMPLEMENTATION

SERIAL /PARALLEL FILTER fC = 160 MHz
tMAX Area PAV E@fC Epc

[ns] [mm2] [mW] [pJ]
TCS 5.90 0.28 73.8 461
RNS 3.95 0.40 70.6 441
ratio 1.50 0.69 1.04 1.04

TABLE II
IMPLEMENTATION OF FILTER ARCHITECTURES INTCSAND RNS.

M
U

X

M
U

X

ak0

ak n

MACC

n

n

R
E
G

F
I

E
L

R
E
G

F
I

E
L

CLK

ak-en

G
C

L
K

1

n x

n

CLK
x-en

G
C

L
K

2 x0

n

2n

ak7 x7Y0

Fig. 6. Implementation of TAPi with clock-gating.

Consequently, the register files of Fig. 5 (bottom) holding the
filter coefficients and input samples have sizes:

TCS: 2 × (8 × 18 bit) = 288 bits
RNS: 2 × (8 × 41 bit) = 656 bits.

These extra flip-flops offset the power savings obtained in the
RNS multiply-add units.
However, because the coefficients register file is only loaded
when the filter mask is changed (initialization), and the sam-
plesx(n) in the other register file are loaded every 8 cycles,
by implementing clock-gating the power can be reduced.
This simple modification, applied to both TCS and RNS
serial/parallel filters, can be implemented as in Fig. 6.
The results of the implementation of the serial/parallel filter
by clock-gating the register files of the serial filter are reported
in Table III.
From the table, we see that by clock gating the serial filter, we
obtain a power dissipation reduction of about 40% in the RNS
filter with respect to the TCS filter (the reduction is about 30%
for the parallel architecture).
Moreover, as the RNS serial/parallel filter hastMAX ≪ TC ,
we could reduce the supply voltageVDD until tMAX = TC .
In our library, a delay increase of6.25

3.89
= 1.6 can be sustained

ASIC IMPLEMENTATION
SERIAL /PARALLEL FILTER fC = 160 MHz

(clock-gated)
tMAX Area PAV E@fC Epc

[ns] [mm2] [mW] [pJ]
TCS 5.90 0.27 58.3 364
RNS 3.89 0.36 36.0 225
ratio 1.51 0.72 1.61 1.61

TABLE III
IMPLEMENTATION OF CLOCK-GATED SERIAL/PARALLEL TCSAND RNS

FILTERS.

if the supply voltage is reduced fromVDD = 1.0 V to
VSV = 0.8 V .
The reduction in power dissipation for this Scaled Voltage
(SV) implementation can be estimated2 by

PAV E(VSV) = PAV E(VDD) ·
V

2

SV

V 2

DD

≃ 23 mW

corresponding to less than half the power dissipated by the
TCS filter of Table III.

V. FPGA IMPLEMENTATION

We implemented the serial/parallel filter on a FPGA (Xilinx
Virtex-5) equipped with 48 DSP blocks3 to see if the results
obtained for ASIC can be extended to FPGAs as well. The
results of the evaluation are reported in Table IV.
The FPGA board is equipped with a power monitor and
the power readings include all static, dynamic and FPGA
configuration contributions.
As somewhat expected, the full-custom multiplier blocks used
in the TCS implementation are more power efficient than the
distributed logic used in the RNS filter.
Moreover, clock gating cannot be implemented in the family
of FPGAs we used.
This result contrasts with previous experiments [8] done for
parallel FIR filters, when FPGA chips did not have full-custom
multiplication cores. Added functionalities on modern FPGAs
make the RNS implementation of FIR filters in these platforms
less attractive.

VI. CONCLUSIONS

In this paper we have explored the effect of different number
systems (TCS and RNS) on the power dissipation of high
order and large dynamic range FIR filters implemented on
resource constrained (area) platforms for which a partially
serial implementation of the filter is required.

2We assume the switching activity is constant.
3DSP blocks include a25 × 18 multiplier

FPGA Implementation
SERIAL /PARALLEL FILTER fC = 160 MHz

AREA
slices (%) LUTs (%) FFs (%) DSPs

TCS 20 9 14 16
RNS 59 38 29 0

POWER atfC = 160 MHz
TCS 2010 mW
RNS 3144 mW (+36%)

TABLE IV
RESULTS OFFPGA IMPLEMENTATION OF SERIAL/PARALLEL TCSAND

RNSFILTERS.

The results show that for an ASIC (standard cells) plat-
form, serial/parallel FIR filters implemented in RNS consumes
significantly less power if clock gating is applied, although
their area is larger than TCS filters. Moreover, as the slack
TC−tMAX is larger in RNS, if voltage scaling can be applied,
the RNS filter can further reduce the power dissipation.
On the other hand, for modern FPGA platforms, filters im-
plemented in TCS take a big advantage by the available full-
custom multipliers that makes the RNS implementation less
efficient.

REFERENCES

[1] A. Nannarelli, M. Re, and G. C. Cardarilli, “Tradeoffs between Residue
Number System and Traditional FIR Filters,”Proc. of IEEE International
Symposium on Circuits and Systems, vol. II, pp. 305–308, May 2001.

[2] G. C. Cardarilli, A. Del Re, A. Nannarelli, and M. Re, “Impact of RNS
Coding Overhead on FIR Filters Performance,”Proc. of 41st Asilomar
Conference on Signals, Systems, and Computers, pp. 1426–1429, Nov.
2007.

[3] N. Szabo and R. Tanaka,Residue Arithmetic and its Applications in
Computer Technology. New York: McGraw-Hill, 1967.

[4] I. Vinogradov, An Introduction to the Theory of Numbers. New York:
Pergamon Press, 1955.

[5] A. Nannarelli, G. C. Cardarilli, and M. Re, “Power-delaytradeoffs in
Residue Number System,”Proc. of IEEE International Symposium on
Circuits and Systems (ISCAS), vol. V, pp. 413–416, May 2003.

[6] D. Radhakrishnan and Y. Yuan, “Novel Approaches to the Design of VLSI
RNS Multipliers,” IEEE Transaction on Circuits and Systems-II: Analog
and Digital Signal Processing, vol. 39, no. 1, pp. 52–57, Jan. 1992.

[7] M. Sodestrand, W. Jenkins, G. A. Jullien, and F. J. Taylor, Residue Num-
ber System Arithmetic: Modern Applications in Digital Signal Processing.
New York: IEEE Press, 1986.

[8] G. C. Cardarilli, A. Del Re, A. Nannarelli, and M. Re, “Power Char-
acterization of Digital Filters Implemented on FPGA,”Proc. of IEEE
International Symposium on Circuits and Systems (ISCAS), vol. V, pp.
801–804, May 2002.

