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Abstract—Accurate modeling of the correlation between the
sources plays a crucial role in the efficiency of distributedsource
coding (DSC) systems. This correlation is commonly modeledin
the binary domain by using a single binary symmetric channel
(BSC), both for binary and continuous-valued sources. We show
that “one” BSC cannot accurately capture the correlation be-
tween continuous-valued sources; a more accurate model requires
“multiple” BSCs, as many as the number of bits used to represent
each sample. We incorporate this new model into the DSC system
that uses low-density parity-check (LDPC) codes for compression.
The standard Slepian-Wolf LDPC decoder requires a slight
modification so that the parameters of all BSCs are integrated in
the log-likelihood ratios (LLRs). Further, using an interl eaver the
data belonging to different bit-planes are shuffled to introduce
randomness in the binary domain. The new system has the same
complexity and delay as the standard one. Simulation results
prove the effectiveness of the proposed model and system.

I. I NTRODUCTION

Distributed compression of spatially correlated signals,e.g.,
the observations of neighboring sensors in high density sensor
networks, can drastically reduce the amount of data to be
transmitted. The efficiency of compression, however, largely
depends on the accuracy of the estimation of the correlation
between the sources. The correlation is required at the encoder
to determine the encoding rate; it is also required to initialize
the decoding algorithm in the Slepian-Wolf coding schemes
that use channel codes with iterative decoding, e.g., LDPC
codes [1].

The correlation is unknown at the encoder and is modeled
by a “virtual” channel. The estimation of thevirtual corre-
lation channel involves modeling it and estimating the model
parameter [2]–[4]. Therefore, if this virtual correlationchannel
is not modeled accurately, even perfect estimation of the model
parameter cannot guarantee an efficient compression.

The correlation between the two binary sequencesxn and
yn is commonly modeled by using a binary symmetric channel
(BSC) with a crossover probability

p = Pr(y 6= i|x = i), i ∈ {0, 1}. (1)

The parameterp is either assumed to be known at the encoder
[1] or needs to be estimated [2]–[5]. This model is also
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widely used in the compression of continuous-valued sources
where Slepian-Wolf coding [6] is employed to compress the
sources after quantization. Nevertheless, it is known thatthe
correlation between continuous-valued sources can be modeled
more accurately in the continuous domain. Specifically, the
Gaussian distribution and its variations such as the Gaussian
Bernoulli-Gaussian (GBG) and the Gaussian-Erasure (GE)
distributions are used for this purpose, particularly when
evaluating theoretical bounds [7]–[9].

In this paper, we first show that a “single” BSC cannot
accurately model the correlation between continuous-valued
sources, and we propose a new correlation model that ex-
ploits “multiple” BSCs for this purpose. The number of these
channels is equal to the number of bits used in the binary
representation of one sample. Each channel models the bits
with the same significance, i.e., from the most significant bit
(MSB) to the least significant bit (LSB), which is denoted as
a bit-plane [10].

We next focus on the implementation of the new model in
the LDPC-based compression of continuous-valued sources.
We modify the existing decoding algorithm for this specific
model extracted from continuous-valued input sources and
investigate its impact on the coding efficiency. Further, by
using an interleaver before feeding data into the Slepian-
Wolf encoder, the successive bits belonging to one sample are
shuffled to introduce randomness to the errors in the binary
domain. Numerical results, both in the binary and continuous
domains, demonstrate the efficiency of the proposed scheme.

The rest of the paper is organized as follows. The existing
correlation models are discussed in Section II. In Section III
we introduce a new correlation model for continuous-valued
sources. Section IV is devoted to integration of the new model
to the LDPC-based Slepian-Wolf coding. Simulation results
are presented in Section V. This is followed by conclusions
in Section VI.

II. EXISTING CORRELATION MODELS

Lossless compression of correlated sources (Slepian-Wolf
coding) is performed through the use of channel codes where
one source is considered as a noisy version of the other one.
This requires knowing the correlation between the sources at
the decoder.
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A. Correlation Between Binary Sources

The correlation and virtual communication channel between
the binary sequencesx andy are the same [11] and are usually
modeled by a BSC with crossover probabilityp. The parameter
of this channel is defined by (1). Equivalently, one can obtain
p by averaging the Hamming weight ofx⊕ y for a long run
of input data and side information, i.e.,

p = lim
n→∞

1

n
wH(xn ⊕ yn). (2)

Then, using binary channel coding, near-lossless compression
with a vanishing probability of error can be achieved provided
that the length of the channel code goes to infinity [1], [12].

B. Correlation Between Analog Sources

In general, the correlation between the two analog sources
X andY can be defined by

Y = X + E, (3)

whereE is a real-valued random variable. Specifically, for the
Gaussian sources we usually have

E ∼











N (0, σ2
e) w.p. q1,

N (0, σ2

e + σ2

i ) w.p. q2,

0 w.p. 1− q1 − q2,

(4)

in which σ2

i ≫ σ2
e and q1 + q2 ≤ 1. This model contains

several well-known models which are suited for video coding
and sensor networks. For example, forq1 = 1 or q2 = 1 the
Gaussian correlation is obtained, which is broadly used in the
literature whenX andY are Gaussian. Further, forq1+q2 = 1
the GBG and forq1 + q2 < 1, q1q2 = 0 the GE models are
realized. The latter two models are more suitable for video
applications [8]. These models are also used for evaluating
theoretical bounds and performance limits [7], [8].

Although the correlation between continuous-valued sources
can be modeled more accurately in the continuous domain,
practically it is usually modeled in the binary domain. This
is due to the fact that, even for continuous-valued sources,
compression is mostly done through the use of binary channel
codes.1 To do so, the two sources are quantized and their
correlation is modeled by a virtual BSC in the binary domain,
as shown in Fig. 1(a). In the next section, however, we show
that this assumption is not very accurate, and we propose an
alternative, more accurate model.

III. A N EW CORRELATION CHANNEL MODEL

A. Evaluating the Single BSC Model

LetX andY be two continuous-valued sources. When using
binary channel codes for compression,X and Y need to be
quantized before compression.1 Then, as shown in Fig. 1(a),
the correlation betweenx andy (the binary representation of
X andY ) is defined in the binary domain by means of a BSC.

1It is possible to do compression before quantization; this requires real-
number channel codes and brings about a different paradigm for DSC [9].
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Fig. 1. Virtual correlation channel models for continuous-valued sources
(X andY ) in the binary domain (a) Current model. (b) New model forb-bit
scalar quantizer.x1 to xb areb subsequences ofx that contain data belonging
to the different bit-planes.
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Fig. 2. Crossover probabilities of different BSCs, each corresponding to
one bit-plane, at different channel-error-to-quantization-noise ratio (σ2

e/σ
2
q ).

X ∼ N (0, 1) and Y is defined by (3), (4) whereq1 = 1/5 and q2 = 0.
Quantization is done using a6-bit scalar uniform quantizer.

We observe that this model is not very accurate. This is
because the bits resulting from quantization of a sample and
its corresponding side information are not independent. For
example, ifXi (a sample ofX) and its counterpartYi are
the same, then all bits resulted from those samples will be
identical. That is, the correlation between these bits cannot
be modeled independently. A more quantitative example is
obtained by considering the model in (3) and (4) withq1 = 1.
Hence,E ∼ N (0, σ2

e) and Pr(|E| ≥ 2σe) ≤ 5%. Now
if σe = ∆/2, where ∆ is the quantization step size, we
will have Pr(|E| ≥ ∆) ≤ 5%. This means that iny (the
binary representation ofY ), most probably only the first two
lower significant bits will be affected. In other words, higher
significant bits ofx and y are similar with high probability.
Numerical results in Fig. 2 verifies this observation.

The above discussion indicates that at low channel-error-
to-quantization noise ratios (σ2

e/σ
2

q , σ
2

q = ∆2/12) the higher
significant bits ofx ⊕ y (error in the binary domain) are 0,
with high probability. Therefore, correlation parametersdiffer
depending on the bit position (bit-plane); i.e., an independent
error in the sample (continuous) domain cannot be translated



to an i.i.d. error in the binary domain. Conversely, a bitwise
correlation with a same parameter for all bit positions is not
suited for continuous-valued sources.

In the remaining of this paper, a novel approach is proposed
to deal with this problem. The key is to find a way to effec-
tively model and implement the aforementioned dependency.

B. Proposed Model

It is clear that the bits generated from different samples of
a source (sayXi andXj) are independent as long as these
samples are generated independently. Also, considering the
correlation in continuous domain, it can be seen that the same
argument is valid for the binary representation ofX andY .
That is,xi andyj are independent if they are generated from
different samples. This is becauseXi is related toYi (through
Ei) but it is independent fromYj for any j 6= i.

This indicates that, using ab-bit quantizer,b BSCs are
enough to efficiently model the correlation between the two
correlated continuous-valued sources; each of these channels
is used to model the correlation between bits correspondingto
one bit-plane. For one thing, BSC(pb) is used to model the cor-
relation between the MSB’s ofX andY in the binary domain.
This is shown in Fig. 1(b). Numerical results, presented in
Fig. 2, confirm that these channels have different parameters.
Moreover, with high probability, at low and moderate channel
noises we have

p1 ≥ p2 ≥ · · · ≥ pb, (5)

where the indices1 to b, respectively, represent the channel
corresponding to the LSB to MSB. This is intuitively appealing
because even a small error in continuous domain (Ei) can
invert the LSB while the MSB is affected only with large
errors. Note that the parameter of the conventional single BSC
model is obtained by

p =
1

b

b
∑

k=1

pk. (6)

We next discuss the incorporation of this new model into the
DSC framework that uses LDPC codes for compression.

IV. D ECODING USING LDPC CODES

In this section, we present three different implementations
of the introduced correlation model in the Slepian-Wolf coding
based on LDPC codes. These are named parallel, sequential,
and hybrid decoding.

A. Parallel Decoding

A first idea is to divide the input sequence intob sub-
streams each of which contains only the bits with the same
significance. Now each channel can be modeled by one BSC
with its own parameter. Hence, we can implementb parallel
LDPC decoders each corresponding to one correlation channel.
This impliesb LDPC decoders at the decoding center, which
increases the complexity. Particularly, effective compression
requires codes with different rates, as the parameter of BSC
channel for different bit-planes is different. Then, the code

corresponding to the MSB, for example, will have the highest
rate, as it has the smallestp. On the other hand, given a
same code for all channels the MSB will be decoded with
the lowest BER. Given a same LDPC code for all channels,
the complexity increasesb times, in the new approach; the
delay is the same assuming that the input of all decoders are
available at the reciever.

B. Sequential Decoding

By usingsequential decoding, the number of decoders can
be reduced to one at the cost of increased delay. To do so,
we let the decoder decode different sub-streams sequentially.
Note that each time the LDPC decoder is initialized with
the correspondingpk. It can be seen that, compared to the
parallel decoding, the complexity reducesb times while the
delay increasesb times. The latter is due to the fact that in
order for decoder to reconstruct one sample ofX , it must wait
for the output ofb LDPC blocks.

C. Hybrid Decoding

A yet more efficient integration of the new correlation model
into the LDPC-based DSC can be achieved just by using a
single LDPC encoder/decoder. This is done in two steps, as
explained in the following.

1) Manipulating the LLRs: The parameters of the multiple-
BSC correlation model can be incorporated into the LDPC-
based DSC by judiciously setting the LLR sent from (to) the
variable nodes. The idea is to take into account the bit-plane
to which each bit belongs. This requires a slight change in
the standard LDPC decoding algorithm. Specifically, using the
notation in [1], we just need to adjust the LLR sent from (to)
the variable nodes. That is, equation (1) in [1] will be modified
as

qi,0 = log
Pr[xi = 0|yi]

Pr[xi = 1|yi]
= (1− 2yi) log

1− pk[i]

pk[i]
, (7)

in which i = 1, . . . , n, pk[i] ∈ {p1, . . . , pb}, andk represents
the bit-plane to whichyi (or xi) belongs. This is illustrated
in Fig. 3. For example, ifxi is the LSB, in its corresponding
sample, thenk = 1. Note that if b|n, wheren is the code
length, thenk = (i mod b).

Since the initial LLR’s become more accurate in this
method, the number of iterations required to achieve a same
performance reduces. However, the performance gap is still
noticeable. To bridge this gap, we propose to interleave the
input data (and side information) in the binary domain.

2) Interleaving: As we discussed in Section III, the bits
corresponding to each error sample, which are located in a row,
are correlated. By interleavingx and y before feeding them
into the Slepian-Wolf encoder and decoder, these successive
bits can be shuffled to introduce randomness to the errors.
Then, it makes better sense to encode data belonging to all bit-
planes altogether as in the conventional approach. The longer
the permutation block input, the more accurate the model and
the better the performance. Interleaving, however, can increase
the delay at the receiver side since we need deinterleaving
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Fig. 3. Variable nodes and their correspondingp in the hybrid LDPC-based decoding for the block lengthn = 104 and b = 6.

after the Slepian-Wolf decoder. To avoid excessive delay, we
set the length of interleaving block equal to the length of the
LDPC code. The improvement in the BER and MSE, only
due to interleaving, is remarkably high. Obviously, we can
use interleaving and LLR’s manipulation simultaneously; this
requires applying interleaving to the crossover probabilities,
depicted in Fig. 3, as well.

Another important advantage of this approach is that it can
be used to combat the bursty correlation channels, as a perfect
interleaver transforms a bursty channel into an independently
distributed channel. The bursty correlation channel modelis
capable of addressing the bursty nature of the correlation
between sources in applications such as sensor networks and
video coding, since it takes the memory of the correlation into
account [13].

V. SIMULATION RESULTS AND PERFORMANCE

EVALUATION

In this section, we numerically compare the new decoding
algorithm with the conventional approach which considers just
one BSC for the correlation model. We use irregular LDPC
code of rate1/2 with the degree distribution [1]

λ(x) = 0.234029x+ 0.212425x2 + 0.146898x5

+0.102840x6 + 0.303808x19,

ρ(x) = 0.71875x7 + 0.28125x8.

The frame length is104 and the bit error rate (BER) and
corresponding mean-squared error (MSE) are measured after
50 itinerations in both schemes. The sourceX is a zero mean,
unit variance Gaussian. Also the correlation betweenX and
Y is defined by GE channel withq1 = 1/5, q2 = 0 in (4),
and channel-error-to-quantization-noise ratio (σ2

e/σ
2
q ) varies as

shown in Fig. 4(b). Both sources are quantized with a 6-bit
scalar uniform quantizer.

Simulation results are presented in Fig. 4(a)-Fig. 4(c). In
these figures, the “actual data” refers to the case where binary
sequencesx andy are obtained from quantizingX andY . We
also compute the BER for the case that side informationy is
generated by passingx through a virtual BSC with parameter
p, which is conventional in practical Slepian-Wolf coding [1]–
[5]. This is labeled as “artificial data.” The fact that “actual”
and “artificial” side information result in very different BERs,
by itself, indicates that a single BSC is not an appropriate

model for correlation between continuous-valued sources.On
the contrary, the BER resulted from hybrid decoding with
actual side information is significantly better than that ofthe
conventional approach which shows the suitability of the new
model. Figure 4(b) represents the corresponding MSE. From
these figures, it can be seen that the new scheme (hybrid
decoding) greatly outperforms the existing method, for actual
data. Furthermore, as shown is Fig. 4(c), the number of
iterations required to achieve such a performance is much
smaller than the existing method, owing to more accurate
initial LLRs.

The performance of parallel and sequential decoding, for
a same code, are the same. These schemes benefit from the
advantage of working over data belonging to separate bit-
planes. Hence, one BSC can effectively approximate the cor-
responding correlation for each bit-plane. Simulation results
verify that separate compression of data belonging to different
bit-planes that uses actual data is as effective as the case that
uses artificial side information. Moreover, there is no need
for interleaving. However, an efficient compression, in parallel
and sequential decoding, requires codes with different rates for
each bit-plane. Alternatively, this can be implemented through
the use of rate-adaptive LDPC codes [14].

VI. CONCLUSIONS

We have introduced an improved model for the virtual cor-
relation between the continuous-valued sources in the binary
domain. This model exploits multiple BSCs rather than the
conventional single-BSC model so that it can deal with the
dependency among the bits resulting from quantization of each
error sample by converting the error sequence into multiple
i.i.d. sequences. An efficient implementation of the new model
is realized just by using a single LDPC decoder but judiciously
setting the LLR sent from (to) the variable nodes. The number
of iterations required to achieve the same performance reduces
noticeably as a result of this prudent setting of initial LLRs.
Besides, by interleaving the data and side information the bits
belonging to one error sample are shuffled which increases the
performance of the decoding to a great extent. This significant
improvement in the BER and MSE is achieved without any
increase in the complexity or delay. The new scheme can also
be used to combat the bursty nature of the correlation channel
in practical applications.
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Fig. 4. Performance evaluation for irregular rate 1/2 LDPC codes of lengthn = 104 for maximum iterations of 50. SD and HD, respectively, referto
“standard decoding” [1] which is based on single BSC and “hybrid decoding” (proposed in this paper) based on multiple BSCs. “Actual data” is generated
by quantizing real-valuedX andY to x andy, whereas in “artificial data”y is generated artificially by passingx through a BSC(p) which is the common
approach in the literature. (a) The BER performance. (b) Theend to end distortion (MSE). (c) Average number of iterations used to achieve the BER and the
corresponding MSE in Fig. 4(a) and Fig. 4(b).
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