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Abstract—Accurate modeling of the correlation between the widely used in the compression of continuous-valued s@urce
sources plays a crucial role in the efficiency of distributedsource \where Slepian-Wolf codind [6] is employed to compress the
coding (DSC) systems. This correlation is commonly modeleth g ,rces after quantization. Nevertheless, it is known thet

Egesgl)n%rgtﬁ ?g?%?n;{, :ﬂg gcgnﬁlnnugcljis?:/l?%(f irgmggslc V?/Taasr:t?/\‘/a l correlation between continuous-valued sources can belawde

that “one” BSC cannot accurately capture the correlation be ~More ?CCUF_&\te.'y i'f‘ the Co_ntinUO_US. domain. Specifically, the
tween continuous-valued sources; a more accurate model reges  Gaussian distribution and its variations such as the Ganissi

‘multiple” BSCs, as many as the number of bits used to represet  Bernoulli-Gaussian (GBG) and the Gaussian-Erasure (GE)

each sample. We incorporate this new model into the DSC syste  jigiripytions are used for this purpose, particularly when
that uses low-density parity-check (LDPC) codes for comprssion. . )
evaluating theoretical bounds [7]+[9].

The standard Slepian-Wolf LDPC decoder requires a slight - ) )
modification so that the parameters of all BSCs are integrate in In this paper, we first show that a “single” BSC cannot
the log-likelihood ratios (LLRs). Further, using an interl eaver the accurately model the correlation between continuousedhlu
data belonging to different bit-planes are shuffled to intrauce sources, and we propose a new correlation model that ex-

randomness in the binary domain. The new system has the same | .. « " .
complexity and delay as the standard one. Simulation resudt ploits “multiple” BSCs for this purpose. The number of these

prove the effectiveness of the proposed model and system. channels is equal to the number of bits used in the binary
representation of one sample. Each channel models the bits
|. INTRODUCTION with the same significance, i.e., from the most significant bi

Distributed compression of spatially correlated signalg,, (MSB) to the least significant bit (LSB), which is denoted as
the observations of neighboring sensors in high densitg@ena bit-plane [10].
networks, can drastically reduce the amount of data to beWe next focus on the implementation of the new model in
transmitted. The efficiency of compression, however, lgrgethe LDPC-based compression of continuous-valued sources.
depends on the accuracy of the estimation of the correlatidfe modify the existing decoding algorithm for this specific
between the sources. The correlation is required at thedemcomodel extracted from continuous-valued input sources and
to determine the encoding rate; it is also required to iliga investigate its impact on the coding efficiency. Further, by
the decoding algorithm in the Slepian-Wolf coding schemesing an interleaver before feeding data into the Slepian-
that use channel codes with iterative decoding, e.g., LDRE8olf encoder, the successive bits belonging to one sample ar
codes|[[1]. shuffled to introduce randomness to the errors in the binary

The correlation is unknown at the encoder and is modelddmain. Numerical results, both in the binary and contirsuou
by a “virtual” channel. The estimation of thértual corre- domains, demonstrate the efficiency of the proposed scheme.
lation channel involves modeling it and estimating the model The rest of the paper is organized as follows. The existing
parameter [2]--[4]. Therefore, if this virtual correlationannel correlation models are discussed in Secfidn Il. In Sedfdn |
is not modeled accurately, even perfect estimation of théehowe introduce a new correlation model for continuous-valued
parameter cannot guarantee an efficient compression.  sources. Sectidn 1V is devoted to integration of the new rhode

The correlation between the two binary sequencesand to the LDPC-based Slepian-Wolf coding. Simulation results
y™ is commonly modeled by using a binary symmetric channgte presented in Sectiénl V. This is followed by conclusions
(BSC) with a crossover probability in SectionV].

p=Pr(y # ilz = 1), i€ {0,1}. Q)

The parametep is either assumed to be known at the encoder _ _
[1] or needs to be estimated][2]-[5]. This model is also Lossless compression of correlated sources (Slepian-Wolf
coding) is performed through the use of channel codes where
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II. EXISTING CORRELATION MODELS
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A. Correlation Between Binary Sources X[ o BB Bscop) o]0 P

The correlation and virtual communication channel between
the binary sequencasandy are the same [11] and are usually
modeled by a BSC with crossover probabilityThe parameter
of this channel is defined b{/](1). Equivalently, one can abtai
p by averaging the Hamming weight ef® y for a long run — Q
of input data and side information, i.e.,

1
= lim —wg(z" & y"). 2
p= lm ~wg(a" ®y") (2) @)
Then, using binary channel coding, near-lossless comipress
with a vanishing probability of error can be achieved predd Fig- 1.  Virtual correlation channel models for continuatyed sources

P (X andY’) in the binary domaifi () Current modEl-](b) New model #dvit
that the Iength of the channel code goes to Infmlty [1]’ [1215calar quantizerz! to z® areb subsequences af that contain data belonging

. to the different bit-planes.
B. Correlation Between Analog Sources

In general, the correlation between the two analog sources

X andY can be defined by 012
Y=X+E, 3 01f
whereF is a real-valued random variable. Specifically, for the & 4l A
Gaussian sources we usually have g:f e
g 0.06 5: :
2 5 3
N(O, U;) , w.p. q, g A S [ ==tz use)
E~{N(0,62+07F) W.p. g, 4) Lol | T
w.op. 1-— — s =A= bit 4
0 p q1 — g2, vosl e bit 5 |
. . . . A 1M bit 6 (LSB)
in which ¢ > 02 and¢; + g2 < 1. This model contains / —8— average
several well-known models which are suited for video coding o= - - - - " -
and sensor networks. For example, for= 1 or ¢» = 1 the channel efor to quantization noise (dB)

Gaussian correlation is obtained, which is broadly usedhén t

literature whenX andY are Gaussian. Further, for+¢, =1  Fig. Ei-t | gnrgsztt)vi;f erlrl'eont;aé)}ilgi::nselot;ii;feigenh ai?g;m ;ascéhrrﬁgogg/in% )to
the GBG and forg, + g2 < 1, q1g2 = 0 the GE models are g(”ew ero,l)' Y s Nefnog by[IB),[:(]4)(3Nherql s and g 7a)
realized. The latter two models are more suitable for videfuantization is done using @bit scalar uniform quantizer.
applications [[8]. These models are also used for evaluating

theoretical bounds and performance limits [7], [8].

Although the correlation between continuous-valued semirc  We observe that this model is not very accurate. This is
can be modeled more accurately in the continuous domagcause the bits resulting from quantization of a sample and
practically it is usually modeled in the binary domain. Thi§s corresponding side information are not independent. Fo
is due to the fact that, even for continuous-valued sourc&ample, if X; (a sample ofX) and its counterpark; are
compression is mostly done through the use of binary chan#fe¢ same, then all bits resulted from those samples will be
coded] To do so, the two sources are quantized and théglentical. That is, the correlation between these bits oainn
correlation is modeled by a virtual BSC in the binary domaie modeled independently. A more quantitative example is
as shown in Figl I(a). In the next section, however, we shdtained by considering the model [ (3) ahdl (4) wjth= 1.
that this assumption is not very accurate, and we proposergnce, E ~ N(0,0%) and Pr(|E| > 20.) < 5%. Now

alternative, more accurate model. if oo = A/2, where A is the quantization step size, we
will have Pr(|E| > A) < 5%. This means that iry (the

1. AN Ew CORRELATION CHANNEL MODEL binary representation df), most probably only the first two

A. Evaluating the Single BSC Model lower significant bits will be affected. In other words, high

. . significant bits ofz andy are similar with high probability.
Let.X andY” be two continuous-valued sources. When USINQumerical results in Fid.]2 verifies this observation.

binary channel codes for compressioti,and ¥” need to be The above discussion indicates that at low channel-error-

quantized before compressibrthen, as shown in Fig. I{a), o . . 2 9 A2 .
the correlation between andy (the binary representation oftO quantization noise rauos;i/aw 0, = A”/12) the higher

) . . X . ignificant bits ofx @ y (error in the binary domain) are 0,
X andY) is defined in the binary domain by means of a BSév(/ith high probability. Therefore, correlation parametdiffer

1t is possible to do compression before quantization; teiguires real- deper)ding on the bit pos?tion (bit-plane); e, an indet&m
number channel codes and brings about a different paracigrd$C [9]. error in the sample (continuous) domain cannot be trarislate



to an i.i.d. error in the binary domain. Conversely, a bigviscorresponding to the MSB, for example, will have the highest
correlation with a same parameter for all bit positions i$ noate, as it has the smallegpt On the other hand, given a
suited for continuous-valued sources. same code for all channels the MSB will be decoded with

In the remaining of this paper, a novel approach is proposte lowest BER. Given a same LDPC code for all channels,
to deal with this problem. The key is to find a way to effecthe complexity increases times, in the new approach; the
tively model and implement the aforementioned dependenagelay is the same assuming that the input of all decoders are
B. Proposed Mode available at the reciever.

It is clear that the bits generated from different samples Bf Sequential Decoding

a source (sayX; and X;) are independent as long as these By ysingsequential decoding, the number of decoders can
samples are generated independently. Also, considerieg Bt reduced to one at the cost of increased delay. To do so,
correlation in continuous domain, it can be seen that theesae |et the decoder decode different sub-streams sequgntial
argument is valid for the binary representation’6fandY. Note that each time the LDPC decoder is initialized with
That is,z; andy; are independent if they are generated frofhe correspondingy. It can be seen that, compared to the
different samples. This is becausg is related toY; (through parallel decoding, the complexity reducksimes while the

E;) but it is independent frony; for any j # i. delay increases times. The latter is due to the fact that in

This indicates that, using &-bit quantizer,b BSCs are order for decoder to reconstruct one sampleofit must wait
enough to efficiently model the correlation between the twgy the output ofb LDPC blocks.

correlated continuous-valued sources; each of these elsann
is used to model the correlation between bits corresportdingC. Hybrid Decoding

one bit-plane. For one thing, B%() is used to model the cor- A yet more efficient integration of the new correlation model
relation between the MSB's of andY” in the binary domain. into the LDPC-based DSC can be achieved just by using a
This is shown in Fig[ I(h). Numerical results, presented ¥ngle LDPC encoder/decoder. This is done in two steps, as
Fig.[d, confirm that these channels have different paramieteyplained in the following.

Mqreover, with high probability, at low and moderate chdnne 1) Manipulating the LLRs: The parameters of the multiple-
noises we have BSC correlation model can be incorporated into the LDPC-
based DSC by judiciously setting the LLR sent from (to) the
variable nodes. The idea is to take into account the biteglan
where the indiced to b, respectively, represent the channeb which each bit belongs. This requires a slight change in
corresponding to the LSB to MSB. This is intuitively appegli the standard LDPC decoding algorithm. Specifically, usieg t
because even a small error in continuous domdif) €an notation in [1], we just need to adjust the LLR sent from (to)

invert the LSB while the MSB is affected only with largethe variable nodes. That is, equation (1)ih [1] will be metifi
errors. Note that the parameter of the conventional Sin§I€ B 55

model is obtained by

P1=D2 2 2 Db, %)

Prlz; = 0|y, 1-— )
] g0 =log b =0y g0 L2 )
1 ’ Prlz; = 1y Pk[d]
P=1 Y P ®
b~ in whichi =1,....n, p[i] € {p1,...,pv}, andk represents

We next discuss the incorporation of this new model into ¢ffe bit-plane to whichy; (or ;) belongs. This is illustrated

DSC framework that uses LDPC codes for compression. in Fig.[3. For example, ift; is the LSB, in its corresponding
sample, therk = 1. Note that if b|n, wheren is the code

IV. DECODING USING LDPC CoDES length, thenk = (i mod b).
In this section, we present three different implementation Since the initial LLR's become more accurate in this

of the introduced correlation model in the Slepian-Wolfiogd Method, the number of iterations required to achieve a same
based on LDPC codes. These are named parallel, sequenp@fformance reduces. However, the performance gap is still

and hybrid decoding. noticeable. To bridge this gap, we propose to interleave the
. input data (and side information) in the binary domain.
A. Parallel Decoding 2) Interleaving: As we discussed in Sectidnllll, the bits

A first idea is to divide the input sequence inkosub- correspondingto each error sample, which are located iwa ro
streams each of which contains only the bits with the samaee correlated. By interleaving and y before feeding them
significance. Now each channel can be modeled by one B8t the Slepian-Wolf encoder and decoder, these suceessiv
with its own parameter. Hence, we can implememarallel  bits can be shuffled to introduce randomness to the errors.
LDPC decoders each corresponding to one correlation chanfiden, it makes better sense to encode data belonging td-all bi
This impliesb LDPC decoders at the decoding center, whichplanes altogether as in the conventional approach. Thestong
increases the complexity. Particularly, effective comspiren the permutation block input, the more accurate the model and
requires codes with different rates, as the parameter of BE® better the performance. Interleaving, however, carease
channel for different bit-planes is different. Then, thedeo the delay at the receiver side since we need deinterleaving
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Fig. 3. Variable nodes and their correspondjngn the hybrid LDPC-based decoding for the block length= 10* andb = 6.

after the Slepian-Wolf decoder. To avoid excessive delay, wnodel for correlation between continuous-valued sourCes.
set the length of interleaving block equal to the length &f ththe contrary, the BER resulted from hybrid decoding with
LDPC code. The improvement in the BER and MSE, onlgctual side information is significantly better than thatod
due to interleaving, is remarkably high. Obviously, we caconventional approach which shows the suitability of thes ne
use interleaving and LLR’s manipulation simultaneoushyst model. Figurg 4() represents the corresponding MSE. From
requires applying interleaving to the crossover probtéd] these figures, it can be seen that the new scheme (hybrid
depicted in Fig[B, as well. decoding) greatly outperforms the existing method, foualct
Another important advantage of this approach is that it calata. Furthermore, as shown is F[g. #(c), the number of
be used to combat the bursty correlation channels, as acperfeerations required to achieve such a performance is much
interleaver transforms a bursty channel into an indepethdersmaller than the existing method, owing to more accurate
distributed channel. The bursty correlation channel maslelinitial LLRs.
capable of addressing the bursty nature of the correlationThe performance of parallel and sequential decoding, for
between sources in applications such as sensor networks arghme code, are the same. These schemes benefit from the
video coding, since it takes the memory of the correlatida inadvantage of working over data belonging to separate bit-
account|[[13]. planes. Hence, one BSC can effectively approximate the cor-
responding correlation for each bit-plane. Simulatiorultss
verify that separate compression of data belonging to reiffe
bit-planes that uses actual data is as effective as the base t
In this section, we numerically compare the new decodinges artificial side information. Moreover, there is no need
algorithm with the conventional approach which considess j for interleaving. However, an efficient compression, ingtlat
one BSC for the correlation model. We use irregular LDP&nd sequential decoding, requires codes with differeasrir
code of ratel /2 with the degree distribution [1] each bit-plane. Alternatively, this can be implementedtigh
the use of rate-adaptive LDPC codesl[14].

V. SIMULATION RESULTS AND PERFORMANCE
EVALUATION

Az) = 0.234029z + 0.21242522 + 0.1468982°
+0.102840z° + 0.303808z 7, VI. CONCLUSIONS
7 8

pla) = 0.T18752" +0.281252". We have introduced an improved model for the virtual cor-
The frame length isl0* and the bit error rate (BER) andrelation between the continuous-valued sources in therpina
corresponding mean-squared error (MSE) are measured aftemain. This model exploits multiple BSCs rather than the
50 itinerations in both schemes. The souftés a zero mean, conventional single-BSC model so that it can deal with the
unit variance Gaussian. Also the correlation betwéerand dependency among the bits resulting from quantization cifiea
Y is defined by GE channel withy = 1/5, g2 = 0 in (@), error sample by converting the error sequence into multiple
and channel-error-to-quantization-noise ratig (o) varies as i.i.d. sequences. An efficient implementation of the new elod
shown in Fig[4(H). Both sources are quantized with a 6-hg realized just by using a single LDPC decoder but judidipus
scalar uniform quantizer. setting the LLR sent from (to) the variable nodes. The number

Simulation results are presented in Hig. #(a)-fFig.]4(c). Wf iterations required to achieve the same performancecesdu

these figures, the “actual data” refers to the case whereybinaoticeably as a result of this prudent setting of initial 14.R
sequences andy are obtained from quantizin§ andY. We Besides, by interleaving the data and side information tte b
also compute the BER for the case that side informatiags belonging to one error sample are shuffled which increases th
generated by passingthrough a virtual BSC with parameterperformance of the decoding to a great extent. This sigmifica
p, which is conventional in practical Slepian-Wolf codingHf1 improvement in the BER and MSE is achieved without any
[5]. This is labeled as “artificial data.” The fact that “aati increase in the complexity or delay. The new scheme can also
and “artificial” side information result in very differentEBRs, be used to combat the bursty nature of the correlation chhanne
by itself, indicates that a single BSC is not an appropriabe practical applications.
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“standard decoding 1] which is based on single BSC and ftayblecoding” (proposed in this paper) based on multiple 8S8Bctual data” is generated
by quantizing real-valued andY to x andy, whereas in “artificial data% is generated artificially by passing through a BSGf) which is the common
approach in the literaturg. {a) The BER performaficd. (b) &t to end distortion (MSE]). (c) Average number of iteratizised to achieve the BER and the
corresponding MSE in Fig. 4{a) and Fjg. 4(b).
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