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Abstract—This paper proposes a simple adaptive sensing and
group testing algorithm for sparse signal recovery. The algorithm,
termed Compressive Adaptive Sense and Search (CASS), is
shown to be near-optimal in that it succeeds at the lowest possible
signal-to-noise-ratio (SNR) levels. Like traditional compressed
sensing based on random non-adaptive design matrices, the CASS
algorithm requires only k log n measurements to recover a k-
sparse signal of dimension n. However, CASS succeeds at SNR
levels that are a factor log n less than required by standard
compressed sensing. From the point of view of constructing
and implementing the sensing operation as well as computing
the reconstruction, the proposed algorithm is substantially less
computationally intensive than standard compressed sensing.
CASS is also demonstrated to perform considerably better in
practice through simulation. To the best of our knowledge, this
is the first demonstration of an adaptive compressed sensing
algorithm with near-optimal theoretical guarantees and excellent
practical performance. This paper also shows that methods like
compressed sensing, group testing, and pooling have an advantage
beyond simply reducing the number of measurements or tests –
adaptive versions of such methods can also improve detection and
estimation performance when compared to non-adaptive direct
(uncompressed) sensing.

I. INTRODUCTION

Compressed sensing (CS) has had a tremendous impact on
signal processing, machine learning, and statistics, fundamen-
tally changing the way we think about sensing and data acqui-
sition. Beyond the standard compressed sensing methods that
gave birth to the field, the compressive framework naturally
suggests an ability to make measurements in an on-line and
adaptive manner. Adaptive sensing uses previously collected
measurements to guide the design and selection of the next
measurement in order to optimize the gain of new information.

There is now a reasonably complete understanding of the
potential advantages of adaptive sensing over non-adaptive
sensing, the main one being that adaptive sensing can reli-
ably recover sparse signals at lower SNRs than non-adaptive
sensing. Roughly speaking, to recover a k-sparse signal of
length n, standard (non-adaptive) sensing requires the SNR to
grow like logn. Adaptive sensing, on the other hand, succeeds
as long as the SNR scales like log k. This is a significant
improvement, especially in high-dimensional regimes. In terms
of the number of measurements, both standard compressed
sensing and adaptive compressed sensing require about k logn
measurements.

This work was presented in part at the Asilomar Conference on Signals,
Systems and Computers, Pacific Grove, CA [1]

This paper makes two main contributions in adaptive sens-
ing. First, we propose a simple adaptive sensing algorithm,
termed Compressive Adaptive Sense and Search (CASS) that
is proved to be near-optimal in that it succeeds if the SNR
scales like log k. From the point of view of constructing and
implementing the sensing operation as well as computing the
reconstruction, the CASS algorithm is comparatively less com-
putationally intensive than standard compressed sensing. The
algorithm could be easily realized in a number of existing com-
pressive systems, including those based on digital micromirror
devices [2], [3]. Second, CASS is demonstrated in simulation
to perform considerably better than 1) compressed sensing
based on random Gaussian sensing matrices and 2) non-
adaptive direct sensing (which requires m = n measurements).
To the best of our knowledge, this is the first demonstration
of an adaptive sensing algorithm with near-optimal theoretical
guarantees and excellent practical performance.

The results presented in this paper answer the following
important question. Can sensing systems that make adaptive
measurements significantly outperform non-adaptive systems
in practice? Perhaps not surprisingly, the answer is yes, contra-
dictory to the theme of [4]. This is for two reasons; first, while
the required SNR for success of adaptive procedures is at best
a logarithmic factor in dimension smaller than non-adaptive
procedures, this factor is significant for problems of even
modest size. On test signals (natural and synthetic images, see
Figs. 4 and 5) the CASS procedure consistently outperforms
standard compressed sensing by 2-8 dB. Second, in terms of
computational complexity, adaptive sensing algorithms such as
CASS require little or no computation after the measurement
stage of the procedure is completed; in general, non-adaptive
algorithms involve computation and memory intense optimiza-
tion routines after measurements are gathered.

This work also sheds light on another relevant question.
Can compressive sensing systems with an SNR budget ever
hope to outperform direct non-compressive systems which
measure each element of an unknown vector directly? The
answer to this question is somewhat surprising. For the task
of support recovery, when the measurements are collected non-
adaptively, compressive techniques are always less reliable
than direct sensing with n measurements. However, adaptive
compressed sensing with just k logn measurements can be
more reliable than non-adaptive direct sensing, provided the
signal is sufficiently sparse. This means that methods like
compressed sensing, group testing, and pooling may have an
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advantage beyond simply reducing the number of measure-
ments – adaptive versions of such methods can also improve
detection and estimation performance.

A. Problem Setup and Background
Sparse support recovery in compressed sensing refers to the

following problem. Let x ∈ Rn be an unknown signal with
k " n non-zero entries. The unknown signal is measured
through m linear projections of the form:

yi = 〈ai,x〉+ zi i = 1, ...,m (1)

where zi are i.i.d. N (0, 1), and ai ∈ Rn are sensing vectors
with a total sensing energy constraint

m
∑

i=1

||ai||22 ≤ M . (2)

The goal of the support recovery problem is to identify the
locations of the non-zero entries of x. Roughly speaking, the
paramount result of compressed sensing states this is possible
if 1) m is greater than a constant times k logn (which can
be much less than n), and 2) the amplitude of the non-zero
entries of x, and the total sensing energy M , aren’t too small.

This paper is concerned with relaxing the second require-
ment through adaptivity. If the sensing vectors a1, ...,am are
fixed prior to making any measurements (the non-adaptive
setting), then a necessary condition for exact support recovery
is that the smallest non-zero entry of x be greater than a
constant times

√

n
M logn [5], [6]. The factor of M/n is best

interpreted as the sensing energy per dimension, and logn is
required to control the error rate across the n dimensions.
Standard compressed sensing approaches based on random
sensing matrices are known to achieve this lower bound while
requiring on the order of k logn measurements [7].

In adaptive sensing, ai can be a function of y1, ..., yi−1.
The sensing vectors a1, ...,am are not fixed prior to making
observations, but instead depend on previous measurements.
In this adaptive scenario, a necessary condition for sparse
recovery is that the smallest non-zero entry exceed a constant
times

√

n
M log k [8]. To the best of our knowledge, no

proposed algorithms achieve this lower bound while also using
only order k logn measurements.

A handful of adaptive sensing procedures have been pro-
posed, some coming close to meeting the lower bound while
requiring only order k log n measurements. Most recently,
in [9], the authors propose an algorithm that guarantees
exact recovery provided the smallest non-zero entry exceeds
an unspecified constant times

√

n
M (log k + log log2 logn),

coming within a triply logarithmic factor of the lower bound.
While this triply logarithmic factor is not of practical concern,
removing the suboptimal dependence on n is of theoretical
interest. Reducing the leading constant, on the other hand, is
of great practical concern.

1Sufficient for exact support recovery with Alg. 1 if xi ≥ 0, i = 1, . . . , n
or if k ≤ logn; sufficient to recover any fixed fraction of support for any x,
k. See Theorems 1 and 2.

TABLE I
ASYMPTOTIC REQUIREMENTS FOR SUPPORT RECOVERY

SUBLINEAR SPARSITY
(

k

n
→ 0

)

non-adaptive adaptive

di
re
ct

1) m ≥ n

2) xmin >
√

2 n

M
logn

necessary and sufficient
traditional detection problem

1) m > n

2) xmin >
√

2 n

M
log k

necessary [10]
sufficient [11]

co
m
pr
es
siv
e

1) m ≥ k logn

2) xmin >
√

C n

M
logn

necessary [5], [6]
sufficient [7]

1) m ≥ k logn

2) xmin >
√

C n

M
log k

necessary [4], [8]
sufficient using CASS1

Table I summarizes the necessary and sufficient conditions
for exact support recovery in the compressive, direct, non-
adaptive and adaptive settings. Direct or un-compressed refers
to the setting where individual measurement are made of each
component – specifically, each sensing vector is supported
on only one index. Here, support recovery is a traditional
detection problem, and the non-adaptive SNR requirement
becomes apparent by considering the following. If we measure
each element of x once using sensing vectors that form an
identity matrix when stacked together, then M = n, and the
requirement implies the smallest non-zero entry be greater
than

√
2 logn. It is well known that the maximum of n i.i.d.

Gaussians grows as
√
2 logn; the smallest signal must exceed

this value.
Adaptive direct sensing has recently received a fair amount

of attention in the context of sparse recovery [11]–[16], and
is closely related to traditional work in sequential statistical
analysis. In this non-compressive setting, the number of mea-
surements must be at least on the order of the dimension –
i.e, m ≥ n, as testing procedures must at a minimum measure
each index once. In this setting, a number of works have shown
that scaling of the SNR as log k is necessary and sufficient for
exact recovery [11], [15].

To summarize, Table I highlights the potential gains from
compressive and adaptive measurements. Allowing for com-
pressive measurements can reduce the total number of mea-
surements from n to k logn, but does not relax the SNR
requirement. Allowing for adaptive measurements does not
reduce the total number of measurements required; instead, it
can reduce the required SNR scaling from logn to log k. Prior
to this work, in the adaptive compressive case, it was unknown
if log k scaling of the SNR was sufficient for support recovery.

B. Main Results and Contributions

The main theoretical contribution of this work is to complete
Table I by introducing a simple adaptive compressed sensing
procedure that 1) requires only order k logn measurements,
and 2) succeeds provided the minimum non-zero entry is
greater than a constant times

√

n
M log k, showing this scaling

is sufficient. To the best of our knowledge, this is the first



demonstration of a procedure that is optimal in terms of
dependence on SNR and dimension.

Specifically, we propose a procedure termed Compressive
Adaptive Sense and Search (CASS). For recovery of non-
negative signals, the procedure succeeds in exact support
recovery with probability greater than 1 − δ provided the
minimum non-zero entry of x is greater than

√

20
n

M

(

log k + log

(

8

δ

))

,

requires exactly m = 2k log2(n/k) measurements, and has
total sensing energy

∑m
i=1 ||ai||22 = M . This result implies

that as n grows large, if the minimum non-zero entry exceeds
√

20 n
M log k, the procedure succeeds in exact support recov-

ery.
When the signal contains both positive and negative entries,

the CASS procedure guarantees the following. On average, the
procedure succeeds in recovery of at least a fraction 1− ε of
the non-zero components provided their magnitude is at least

√

20
n

M

(

log k + 2 log

(

8

ε

))

.

In this setting the procedure requires approximately
2k log2 (n/k) + 4k/ε measurements and has total sensing
energy

∑m
i=1 ||ai||22 = M .

In addition to these theoretical developments, we present a
series of numerical results that show CASS outperforms stan-
dard compressed sensing for problems of even modest size.
The numerical experiments reinforce the theoretical results –
as the dimension of the problem grows, performance of the
CASS algorithm does not deteriorate, confirming the logarith-
mic dependence on dimension has been removed. We also
show side-by-side comparisons between standard compressed
sensing, direct sensing, and CASS on approximately sparse
signals.

C. Prior Work in Adaptive Compressed Sensing
A number of adaptive compressed sensing procedures have

been proposed (see [9], [17]–[22] and references therein),
some coming close to meeting the lower bound while requiring
only order k logn measurements.

Most closely related to the CASS procedure proposed here,
from an algorithmic perspective, are the procedures of Iwen
[17], Iwen and Tewfik [19], [21], and the Compressive Binary
Search of Davenport and Arias-Castro [20]. Much like CASS,
these procedures rely on repeated bisection of the support of
the signal. The first proposal of a bisecting search procedure
applied to the adaptive compressed sensing problem, to the
best of our knowledge, was [17]. The theoretical guarantees
of this work when translated to the setting studied here ensure
exact support recovery provided the non-zero entries of x are
greater than a constant times

√

n
M (log2 k + log2 logn) (see

[21, Theorem 2] and more succinctly, [19, Theorem 2]).
Most recently, in [9], the authors propose an algorithm

termed Sequential Compressed Sensing. The procedure is

based on random sensing vectors with sequentially masked
support, allowing the procedure to focus sensing energy on
the suspected non-zero components. The procedure guarantees
exact recovery provided the smallest non-zero entry exceeds
an unspecified constant times

√

n
M (log k + log log2 logn),

coming within in a triply logarithmic factor of the theoretical
bound lower bound.

While the bisection approach used by CASS is suggested
in a number of other works, the distinguishing feature of the
procedure is the allocation of the sensing energy. Roughly
speaking, both procedures in [17], and later in [20], suggest
an allocation of sensing energy across the bisecting steps of
the procedure that ensure the probability a mistake is made at
any step is the same. The CASS procedure instead uses less
sensing energy for initial steps, and more sensing energy at
later steps, reducing the the probability the procedure makes
an error from step to step. This allocation of the sensing energy
removes any sub-optimal dependence on dimension from the
SNR requirement; the CASS procedure succeeds provided the
minimum non-zero entry exceeds

√

20 n
M log k.

D. Notation
Notation adopted throughout, in general, follows conven-

tion. Bold face letters, x, denote vectors (both random and
deterministic), matrices are denoted with capitol letters, for
example, A, while calligraphic font, such as S, denotes a set
or an event. The indicator function I{E} is equal to one if
the event E occurs, and equals zero otherwise. The vector
1{S}, for any support set S, is a vector of ones over S, and 0
elsewhere. Expectation is denoted E[·] and the probability of
an event P(·).

II. PROBLEM DETAILS

Consider the canonical compressed sensing setup in which
a sparse signal x ∈ Rn supported on S ⊂ {1, . . . , n}, |S| = k,
is measured through m linear projections as in (1). In matrix-
vector form,

y = Ax+ z

where z ∈ Rm ∼ N (0, I) and A ∈ Rm×n is the sensing
matrix with total sensing energy constraint

||A||2fro ≤ M. (3)

The total sensing energy constraint reflects a limit on the total
amount of energy or time available to the sensing device, as
in [9], [20]. Importantly, it results in a decoupling between the
energy constraint and the number of measurements, allowing
for fair comparison between procedures that take a different
number of measurements. In adaptive sensing the rows of A,
denoted a

T
i , are designed sequentially and adaptively based

on prior observations, y1, . . . , yi−1, as opposed to the non-
adaptive setting in which ai, i = 1, . . . ,m are fixed a-priori.

The error metrics considered are the probability of exact
support recovery, or the family wise error rate,

P

(

Ŝ += S
)



and the symmetric set difference

d(Ŝ, S) =
∣

∣

∣
{S \ Ŝ} ∪ {Ŝ \ S}

∣

∣

∣

where Ŝ is an estimate of S. Both depend on the procedure,
n, k, M and the amplitude of the non-zero entries of x. In
particular, we quantify performance in terms of the minimum
non-zero amplitude of x, denoted xmin, defined as

xmin = min
i∈S

|xi|.

In general, no assumption is made on the support set S other
than |S| = k. Theorem 2 requires the sparse support be chosen
uniformly at random over all possible cardinality k support
sets, which can be avoided by randomly permuting the support
before running the algorithm.

Lastly, throughout the paper we assume that both n and k
are powers of two for simplicity of presentation. This can of
course be relaxed, at the cost of increased constants.

III. COMPRESSIVE ADAPTIVE SENSE AND SEARCH

Conceptually, the CASS procedure operates by initially
dividing the signal into a number of partitions, and then
using compressive measurements to test for the presence
of one or more non-zero elements in each partition. The
procedure continues its search by bisecting the most promising
partitions, with the goal of returning the k largest components
of the vector. This compressive sensing and bisecting search
approach inspired the name of the algorithm.

A. The CASS Procedure
The CASS procedure is detailed in Alg. 1. The procedure

requires three inputs: 1) k, the number of non-zero coefficients
to be returned by the procedure, 2) M , the total budget, and
3) and an initial scale parameter ε, which is in most practical
scenarios is set to ε = 1.

Since the procedure is based on repeated bisections of
the signal, it is helpful to define the dyadic subintervals of
{1, . . . , n}. The dyadic subintervals, Jj,! ⊂ {1, . . . , n}, are
given by

Jj,! =

{

(# − 1)n

2j
+ 1, . . . ,

#n

2j

}

,

j = 0, 1, . . . , log2 n, # = 1, . . . , 2j

where j indicates the scale and # the location of the dyadic
partition.

The procedure consists of a series of s0 steps. Conceptually,
on the first step, s = 1, the procedure begins by dividing the
signal into #0 partitions, where #0 is the smaller of n or the
next power of two greater than 4k/ε. These initial partitions
are given by the dyadic sub-intervals of {1, . . . , n} at scale
log2(#0):

Jlog2(!0),!
# = 1, . . . , #0.

The procedure measures the signal with #0 sensing vectors,
each with support over a single dyadic sub-interval. The
procedure then selects the largest k measurements in absolute

value. These k measurements are used to define the support of
the sensing vectors used on step two of the procedure. More
specifically, the supports of the sensing vectors corresponding
to the k largest measurements are bisected, giving 2k support
sets. These 2k support sets define the support of the sensing
vectors on step s = 2.

The procedure continues in the fashion, taking 2k mea-
surements on each step (after the initial step, which requires
#0 measurements) and bisecting the support of the k largest
measurements to define the support of the sensing vectors on
the next step. On the final step, s = s0, where s0 = log2

n
!0
+1,

the support of the sensing vectors consists of a single index;
the procedure returns the support of the sensing vectors
corresponding to the k largest measurements as the estimate of
S and terminates. Additionally, estimates of the values of the
non-zero coefficients are returned based on the measurements
made on the last step.

One of the key aspects of the CASS algorithm is the
allocation of the measurement budget across the steps of the
procedure. On step s, the amplitude of the non-zero entries of
the sensing vectors is given as

√

Ms

γn
(4)

where γ is an internal parameter of the procedure used to
ensure the total sensing energy constraint in (3) is satisfied
with equality. Specifically,

γ = 1 +
4k

#0

s0
∑

s=1

s2−s.

This particular allocation of the sensing energy gives the CASS
procedure its optimal theoretical guarantees. While the ampli-
tude of each sensing vector grows in a polynomial manner
with each step, the support of the sensing vectors decreases
geometrically; this results in a decrease in the sensing energy
across steps, but an increase in reliably.

Details of the CASS procedure are found in Alg. 1, and
performance is quantified in the following section.

B. Theoretical Guarantees
The theoretical guarantees of CASS are presented in The-

orems 1 and 2. Theorem 1 presents theoretical guarantees for
non-negative signals, while Theorem 2 quantifies performance
when the signal is both positive and negative.

Theorem 1. Assume xi ≥ 0 for all i = 1, . . . , n. Set ε = 1.
For δ ∈ (0, 1], Alg. 1 has P(Ŝ += S) ≤ δ provided

xmin ≥

√

20
n

M

(

log k + log

(

8

δ

))

,

has total sensing energy ||A||2fro = M and usesm = 2k log2
n
k

measurements.

Proof: See Appendix A.
The theoretical guaranties of Theorem 1 do not apply to

recovery of signals with positive and negative entries, as



Algorithm 1 CASS
input: number of terms in approximation k,

budget M ,
initial scale parameter ε ∈ (0, 1] – (default ε = 1)

initialize: #0 = min
{

4 · 2$log2(k/ε)%, n
}

partitions
s0 = log2

n
!0

+ 1 steps
γ = 1 + 4k/#0

∑s0
s=2 s2

−s

L = {1, 2, . . . , #0}
for s = 1, . . . , s0 do
for # ∈ L do
as,! =

√

Ms
γn 1{Jlog2(!0)−1+s,!}

measure: ys,! = 〈as,!,x〉+ zs,! zs,!
iid∼ N (0, 1)

end for
let #1, #2, . . . , #|L| be such that

|ys,!1 | ≥ |ys,!2 | ≥ · · · ≥ |ys,!|L|
|

if s += s0 then
L = {2#1 − 1, 2#1, 2#2 − 1, 2#2, . . . , 2#k − 1, 2#k}

else
Ŝ = {#1, #2, . . . , #k}
x̂i = ys,i ·

√ γn
Ms for all i ∈ Ŝ

end if
end for
output: Ŝ (k indices), estimates x̂i for i ∈ Ŝ

scenarios can arise where two non-zero components can cancel
when measured by the same sensing vector. In order to avoid
this effect, the initial scale parameter, ε, can be set to a value
less than one. Doing so increases the number of partitions
that are created on the first step, but reduces the occurrence of
positive and negative signal cancellation. Theorem 2 bounds
the expected fraction of the components that are recovered
when the signal contains positive and negative entries.

Theorem 2. Assume S is chosen uniformly at random. For
any ε ∈ (0, 1] Alg. 1 has E[d(Ŝ ,S)] ≤ kε provided

xmin ≥

√

20
n

M

(

log k + 2 log

(

8

ε

))

,

has total sensing energy ||A||2F = M and has

m ≤ 8k

ε
+ 2k log2

(n

k

)

measurements.

Proof: See Appendix B.

C. Discussion
Theorem 2 implies conditions under which a fraction 1− ε

of the support can be recovered in expectation. Provided ε ≥
1/ logn, the procedure requires order k logn measurements.
In scenarios where one wishes to control P(Ŝ += S), ε can be
set to satisfy ε < 1/k. In this case, while the SNR requirement
remains essentially unchanged, the procedure would require on
the order of k2 measurements. In this sense, the compressive
case with positive and negative non-zero values is more

difficult, a phenomena noted in other work [23]. Note that
when k ≥ logn, the theoretical guarantee of Theorem 2
adapted to control the family wise error rate requires more
than order k logn measurements.

The minimax lower bound of [8, Proposition 4.2] states the
following (over a slightly larger class of signals with sparsity
k, k − 1, and k + 1, with k < n/2): if E[d(Ŝ,S)] ≤ ε then
necessarily

xmin ≥

√

2
n

M

(

log k + log
1

2ε
− 1

)

.

Since the condition P(Ŝ += S) ≤ δ in Theorem 1 implies
E[d(Ŝ,S)] ≤ 2kδ, the upper and lower bounds can be
compared directly by setting δ = ε/2k. In the same manner,
Theorem 2 can be directly compared. Doing so shows the
theorems are tight to within constant factors.

The splitting or bisecting approach in CASS is a common
technique for a number search problems, including adaptive
sensing. As discussed in Sec. I-C, to the best of our knowledge,
the first work to propose a bisecting search for the compressed
sensing problem was [17]. When translated to the framework
studied here, the authors in essence allocate the sensing vectors
on each bisecting step to be proportional to

√

M/n, as
opposed to increasing with the index of the step as in (4).
Likewise, the compressive binary search (CBS) algorithm
[20] also employs sensing vectors that are proportional to
√

M/n. The CBS procedure finds a single non-zero entry
with vanishing probability of error as n gets large provided
xmin ≥

√

8 n
M log log2 n, where xmin is the amplitude of the

non-zero entry. The authors of [20] rightly question whether
the log log2 n term is needed. Thm. 1 answers this question,
removing the doubly logarithmic term and coming within a
constant factor of the lower bound in [20]. A more direct
comparison to the work in [20] is found in [24].

Increasing the number of partitions to further isolate sparse
entries is an idea suggested in [17], [21]. In particular, the
authors suggest a procedure that creates a large random par-
titions based on primes, essentially decreasing the support of
the sensing vector such that each non-zero element is isolated
with arbitrarily high probability.

IV. NUMERICAL EXPERIMENTS

This section presents a series of numerical experiments
aimed at highlighting the performance gains of adaptive sens-
ing. In all experiments, the CASS procedure was implemented
according to Alg. 1 with inputs as specified. The signal to noise
ratio is defined as

SNR (dB) = 10 log10

(

x2
(k)M

n

)

where x(k) is the amplitude of the kth largest element of x.
This definition reflects the SNR of measuring the kth largest
element using a fraction 1/n of the total sensing energy. In
all experiments, Gaussian is noise of unit variance is added to
each measurement, as specified in (1).



Fig. 1 shows empirical performance of CASS for 1-sparse
recovery, and, for comparison, 1) traditional compressed sens-
ing with orthogonal matching pursuit (OMP) using a Gaussian
ensemble with normalized columns and 2) direct sensing.
As the dimension of the problem is increased, notice that
performance of CASS remains constant, while the error prob-
ability of both OMP and direct sensing increase. Note for non-
adaptive methods, in the one sparse case OMP is equivalent to
the maximum likelihood support estimator, and is thus optimal
amongst non-adaptive recovery algorithms. The total sensing
energy is the same in all cases, allowing for fair comparison.
For sufficiently large n, CASS outperforms direct sensing.

Figs. 2 and 3 show performance of CASS for k-sparse
signals with equal magnitude positive and negative non-zero
entries. Performance is in terms of empirical value of d(Ŝ,S)
averaged over the trials. The support of the test signals
was chosen uniformly at random from the set of k-sparse
signals, and the non-zero entries were assigned an amplitude
of +xmin or −xmin at random. The cancellation effect results
in an error floor of around d(Ŝ,S)/(2k) = 0.10; this is
greatly reduced when the scale parameter is set to ε = 1/8,
clearly visible in both Fig. 2 and Fig. 3. The procedure
is compared against traditional compressed sensing using a
random Gaussian ensemble, recovered with LASSO and a
regularizer tuned to return a k-sparse signal (using SpaRSA,
[25]). Performance of traditional compressed sensing with
m = 2k log(n/k), fairly compared against CASS with ε = 1,
is shown in both figures. Traditional compressed sensing with
m = 4k/ε+2k log2(nε/k) is also shown, which is more fairly
compared to CASS with ε = 1/8.

In Fig. 3 notice that performance of CASS remains con-
stant as n becomes large. For sufficiently large n, CASS
outperforms direct sensing, highlighting a major advantage
of adaptive sensing: for support recovery, while standard
compressed sensing does not outperform direct sensing in
terms of dependence on SNR, for sufficiently sparse problems,
CASS does. As solving LASSO with a dense sensing matrix
for large problem sizes becomes computationally prohibitive,
performance was only evaluated up to n = 218. For all
dimensions evaluated, compressed sensing using LASSO was
inferior to CASS and direct sensing.

Fig. 4 shows recovery of a test image from [26] for three
SNRs. The image is approximately sparse in the Daubechies
wavelet domain (‘db4’ in MATLAB). Alg. 1 was run with
k = 256 as input and compared against LASSO with a
random Gaussian ensemble, and the regularizer was tuned
to return k = 256 elements (again using SpaRSA, [25]).
Using traditional compressed sensing, at an SNR of −8 dB,
the reconstructed image is essentially un-recognizable; at the
same SNR, the image recovered with CASS is still very
much recognizable. The peak-signal-to-noise ratio (PSNR) for
images on [0, 1) is defined as

PSNR (dB) = −10 log10

(

||x− x̂||22
n

)

where x̂ is an estimate of the image.

TABLE II
HANDWRITTEN EIGHT, 10 TRIALS, n = 2562 , k = 256, ε = 1

CASS (Alg. 1) CS (LASSO) Direct
SNR = −2 dB

d(Ŝ,S) 120.0 153.2 131.0
PSNR (dB) 16.88 8.43 12.71
runtime (s) 0.11 118.3 0.04

SNR = −8 dB
d(Ŝ,S) 152.0 202.0 163.8

PSNR (dB) 12.91 4.40 6.15
runtime (s) 0.11 65.0 0.04

SNR = −14 dB
d(Ŝ,S) 236.4 379.6 301.6

PSNR (dB) 6.69 2.52 -1.76
runtime (s) 0.11 54.2 0.03

The experiments of Fig. 4 were repeated 10 times, and the
empirical results averaged over the 10 trials are shown in Table
II. In terms of PSNR, CASS outpeforms compressed sensing
by 4-8 dB. The runtime of the simulation, which consists
of the entire simulation time, including both measurement
and recovery, is included. While the compressed sensing
experiments were not optimized for speed, it seems unlikely
any recovery method using dense Gaussian matrices would
approach the runtime of CASS – standard compressed sensing
runtime was on the order of a minute, while runtime of CASS
was approximately 0.1 seconds.

Fig. 5 shows side-by-side performance of CASS, traditional
compressed sensing with a dense Gaussian sensing matrix
and LASSO tuned to return k = 2048 non-zero components,
and direct sensing on a natural image. In terms of PSNR,
CASS outperforms compressed sensing by 2-4 dB. In terms
of symmetric set difference, CASS substantially outperforms
compressed sensing on all SNRs evaluated.

Fig. 6 shows results of running CASS on the 20 image
classes in the Microsoft Research Object Class Recognition
database [27]. Each class consists of approximately 30 images
of size 128 × 128. Results were averaged over all images
in a particular class. Direct sensing, standard compressed
sensing using a Gaussian Ensemble and the group LASSO
(G-LASSO) of [28], [29] which exploits signal structure, are
included. G-LASSO is known to be one of the best non-
adaptive methods for recovery of natural images, making it a
natural benchmark for comparison (see [30, Fig. 5]). The total
sensing energy was the same in all cases, and all methods used
m = 5120 measurements (except direct sensing which requires
m = 16, 384 measurements). Each algorithm was tuned to
output a 512 coefficient approximation. CASS universally
outperforms both G-LASSO and standard CS on all image
sets and SNRs evaluated.

A. Discussion
The leading constant in the upper bound – a factor of 20

required by the CASS procedure – is significant in practice.
Roughly speaking, traditional direct sensing requires xmin ≥
√

2 n
M logn, while CASS requires xmin ≥

√

20 n
M log k. One

would then conclude that anytime the signal is sufficiently
sparse, specifically, if k ≤ n1/10, the CASS procedure should
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Fig. 1. Recovery of one sparse signal (k = 1). Empirical performance
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pursuit (OMP), and direct sensing as a function of n, for SNR(dB) =
10 log10(x

2
minM/n) = 9.5 dB and SNR = 15.5 dB. 10,000 trials for

each n.

outperform direct sensing. Notice that in simulation CASS
outperforms direct sensing on signals where k ≥ n1/10,
implying the leading constant of 20 is loose.

V. CONCLUSION

This work presented an adaptive compressed sensing and
group testing procedure for recovery of sparse signals in
additive Gaussian noise, termed CASS. The procedure was
shown to be near-optimal in that it comes within a constant
factor of the best possible dependence on SNR, while requiring
on the order of k logn measurements. Simulation showed
that the theoretical developments hold in practice, including
scenarios in which the signals is only approximately sparse.

While many of the questions regarding the gains of adap-
tivity for sparse support recovery have been settled, small
questions remain. First, it would be of practical interest to
further reduce the leading constant in the SNR requirement of
CASS. The question of whether or not exact support recovery
is possible in full generality (positive and negative non-zero
entries, any level of sparsity), with SNR scaling as log k,
and the number of measurements scaling as k logn, is still
outstanding.

APPENDIX A

Proof of Theorem 1: The total number of measurements is
given as

m = #0 + 2k(s0 − 1) = 2k log2

(n

k

)

since the first step requires #0 measurements, and the remain-
ing s0 − 1 steps each require 2k measurements. The equality
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Fig. 2. Empirical performance of CASS (Alg. 1) with non-zero entries of
x positive and negative of equal amplitude as a function of SNR compared
against traditional compressed sensing with Gaussian ensemble and recovery
using LASSO, k = 32, n = 2048. SNR = x2

minM/n. 100 trials for each
SNR (linear units).
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Fig. 3. Non-zero entries of equal magnitude, positive and negative, as a
function of n. k = 32. CASS Alg. 1 with ε = 1, m = 2k log2(n/k),
and ε = 1/8, m = 32k + 2k log2(

n

32k ). LASSO using Gaussian ensemble,
m = 2k log2(n/k), m = 32k+2k log2(

n

32k ). SNR = 15.5 dB. 1000 trials
for each n. LASSO was not evaluated for n ≥ 219 because of computational
intensity.

follows as #0 = 4k. The constraint in (3) is satisfied:

||A||2fro =
!0
∑

!=1

||a1,!||2 +
s0
∑

s=2

2k
∑

!=1

||as,!||2

= #0

(

n

#0

)(

M

γn

)

+ 2k
s0
∑

s=2

(

n

#02s−1

)(

Ms

γn

)

=
M

γ

(

1 +
4k

#0

s0
∑

s=2

s2−s

)

= M (5)
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d(Ŝ,S) = 198 PSNR = 4.6 dB
simulation time 71s

 

d(Ŝ,S) = 162 PSNR = 5.9 dB
simulation time 0.04s

S
N
R

=
−
14

dB
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Fig. 4. Handwritten eight [26], approximately sparse in ‘dB4’ wavelet basis, n = 2562. Recovery with CASS (Alg. 1), k = 256, ε = 1, as input,
m = 4608 (column 1). Traditional compressed sensing with Gaussian ensemble and LASSO (using SpaRSA [25]), tuned to return k = 2048 components,
m = 4608 (column 2). Direct sensing, m = n, using best k = 256 term approximation (column 3). Each method evaluated for three SNRs, SNR(dB) =
10 log10(x

2
(k)M/n), where x(k) is the amplitude of the kth largest component.

where the second equality follows as each sensing vector has
support n2−(s−1)/#0 and amplitude Ms/(γn) on step s.

A sufficient conditions for exact recovery of the support
set is that the procedure never incorrectly eliminate a mea-
surement corresponding to a non-zero entry on any of the s0
steps. Let ys,1, . . . , ys,ts be measurements corresponding to
sensing vectors with one or more non-zero entries in their
support, and ys,ts+1, . . . be measurements corresponding to
the zero entries on step s. Consider a series of thresholds
denoted τs, s = 1, . . . , s0. If |ys,1|, . . . , |ys,ts | are all greater
than τs, and |ys,ts+1|, . . . are all less then τs, for all s, the

sufficient condition is implied. Taking the complement of this
event, and from a union bound,

P(Ŝ += S) ≤ P





t1
⋃

j=1

{|y1,j| ≤ τ1} ∪
!0
⋃

j=t1+1

{|y1,j | ≥ τ1}





+
s0
∑

s=2

P





ts
⋃

j=1

{|ys,j | ≤ τs} ∪
2k
⋃

j=ts+1

{|ys,j | ≥ τs}





for any series of thresholds τs. As all non-zero elements are
positive by assumption, and the signals combine construc-
tively, it is straightforward to see ys,1, . . . , ys,ts are normally
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d(Ŝ ,S) = 316 PSNR = 26.2 dB
simulation time 0.06s

S
N
R

=
10

dB
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d(Ŝ,S) = 2304 PSNR = 20.5 dB
simulation time 232s
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Fig. 5. Cameraman, approximately sparse in Haar basis, n = 2562. Recovery with CASS, Alg. 1, k = 2048, ε = 1, as input, m = 20480 (column 1).
Traditional compressed sensing with Gaussian ensemble and recovery with LASSO (using SpaRSA [25]), regularizer tuned to return k = 2048 components,
m = 20480 (column 2). Direct sensing, m = n, using best k = 2048 term approximation (column 3). Each method evaluated for three SNRs, SNR(dB) =
10 log10(x

2
(k)M/n), where x(k) is the amplitude of the kth largest component.

distributed with mean greater than xminas and unit vari-
ance. On the other hand, ys,ts+1, . . . are normally distributed
with mean zero and unit variance. Setting the thresholds at
τs = xminas/2, where as is the amplitude of the non-zero
entries of the sensing vector on step s, gives the series of
equations in (6) - (8). Here, (6) follows from the union bound.
Equation (7) follows from a standard Gaussian tail bound:
1 − FN (x) ≤ 1

2 exp(−x2/2) for x ≥ 0, where FN (·) is the
Gaussian cumulative density function. Lastly, (8) follows as γ

is always less than 5/2:

γ = 1 + 4k/#0

s0
∑

s=2

s2−s ≤ 5

2
(8)

as the sum is arithmetico-geometric, and # = 4k. Setting

xmin ≥

√

20
n

M

(

log k + log

(

8

δ

))

gives P(Ŝ += S) ≤
∑s0

s=1 (2/δ)
−s ≤ δ, completing the proof.
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ts
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P
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≤ 4k exp

(

−x2
mina

2
1

8

)

+
s0
∑

s=2

2k exp

(

−x2
mina

2
s

8

)

(7)

≤
s0
∑

s=1

exp

(

−x2
minMs

8γn
+ log 4k

)

≤
s0
∑

s=1

exp

(

−x2
minMs

20n
+ log 4k

)

(8)

APPENDIX B
Proof of Theorem 2.
First, we confirm that the sensing budget is satisfied. In the

same manner as before

||A||2fro =
!0
∑

!=1

||a1,!||2 +
s0
∑

s=2

2k
∑

!=1

||as,!||2

=
M

γ

(

1 +
4k

#0

s0
∑

s=2

s2−s

)

= M.

The total number of measurement satisfies

m = #0 + 2k(s0 − 1) ≤ 8k/ε+ 2k log2(n/k)

where the inequality follows as min{n, 4k/ε} ≤ #0 ≤ 8k/ε.
We proceed by bounding the expected number of non-

zero components that are isolated when the signal is par-
titioned, and then show these indices are returned in Ŝ
with high probability. We assume the support of the signal
is chosen uniformly at random from all possible k-sparse
supports sets (note this is equivalent to randomly permut-
ing the labels of all indices). Conceptually, the algorithm
divides the signal support into #0 disjoint support sets, where
#0 = min{n, next power of 2 greater than 4k/ε}. Let the set
I ⊂ {1, . . . , #0} index the disjoint support sets that contain
exactly one index corresponding to a non-zero entry:

I :=
{

# ∈ {1, . . . , #0} : |Jlog2 !0,! ∩ S| = 1
}

.

Then

E[|I|] = E

[

!0
∑

!=1

I{!∈I}

]

=
!0
∑

!=1

E
[

I{!∈I}

]

=
!0
∑

!=1

P(# ∈ I) =
!0
∑

!=1

k

#0

(

#0 − 1

#0

)k−1

= k

(

#0 − 1

#0

)k−1

≥ k
#0 − k

#0

where I{·} is the indicator function. Since #0 ≥ min{4k/ε, n}
we have

E[|I|] ≥ k(1− ε/4). (9)

Let E be the event that the procedure fails to find at least as
many true non-zero elements as the number that were isolated
on the first partitioning, specifically,

E = {|Ŝ ∩ S| < |I|}.

Additionally, notice that since the procedure returns exactly k
indices,

Ec ⇒ d(Ŝ,S) ≤ 2(k − |I|). (10)

We can bound the probability of the event E in a fashion
similar to the previous proof. Consider a threshold at step
s given as τs = xminas/2. Assume that ys,1, ys,2, . . . , ys,t′s
are measurements corresponding to isolated components,
ys,t′s+1, . . . , ys,ts correspond to measurements that contain
more than one non-zero index, and ys,ts+1, . . . correspond
to noise only measurements. If all noise only measurements
(ys,ts+1, . . . ) are below the threshold in absolute value, and
all isolated non-zero components are above the threshold
(ys,1, . . . , ys,t′s), for all s, this implies E does not occur,
regardless of ys,t′s+1, . . . , ys,ts . As before, after applying a
union bound,

P (E) ≤
t′1
∑

j=1

P (|y1,j | ≤ τ1) +
!0
∑

j=t1+1

P (|y1,j | ≥ τ1)

+
s0
∑

s=2





t′s
∑

j=1

P (|ys,j | ≤ τs) +
2k
∑

j=ts+1

P (|ys,j | ≥ τs)





≤ #0 exp

(

−x2
mina

2
1

8

)

+
s0
∑

s=2

2k exp

(

−x2
mina

2
s

8

)

≤
s0
∑

s=1

exp

(

−x2
mina

2
s

8
+ log

(

8k

ε

))

where the inequality follows from a standard Gaussian tail
bound, and the last line follows as #0 ≤ 8k/ε. Setting as =
√

Ms/γn gives

P (E) ≤
s0
∑

s=1

exp

(

−x2
minMs

8γn
+ log

(

8k

ε

))

≤
s0
∑

s=1

exp

(

−x2
minMs

20n
+ log

(

8k

ε

))
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Fig. 6. Performance of CASS, standard compressed sensing with LASSO
and Gaussian ensemble, Group LASSO of [28] (G-LASSO) and Gaussian
ensemble, which exploits signal structure, and direct sensing on the Microsoft
Research Object Class Recognition database [27] for two SNRs. The database
consists of 20 image classes, with approximately 30 images per class. The
images are approximately sparse in the Haar basis. The total sensing energy
was the same for all methods. n = 1282 . The results are averaged over each
class. k = 512, ε = 1.

since, from (8), γ ≤ 5/2. Next, imposing the condition of the
Theorem,

xmin ≥

√

20
n

M

(

log k + 2 log

(

8

ε

))

=

√

20
n

M

(

log

(

8

ε

)

+ log

(

8k

ε

))

,

then

P (E) ≤
s0
∑

s=1

(

8

ε

)−s

≤ ε/4. (11)

By combining (9), (10), and (11), since E[d(Ŝ ,S)|E ] ≤ 2k,

E[d(Ŝ ,S)] = P(E)E[d(Ŝ ,S)|E ] + P(Ec)E[d(Ŝ,S)|Ec]

≤ kε,

completing the proof.

REFERENCES

[1] M. L. Malloy and R. D. Nowak, “Near-optimal adaptive compressed
sensing,” in Signals, Systems and Computers (ASILOMAR), 2012 Con-
ference Record of the Forty Sixth Asilomar Conference on. IEEE, 2012,
pp. 1124–1130.

[2] M. Duarte, M. Davenport, D. Takhar, J. Laska, T. Sun, K. Kelly, and
R. Baraniuk, “Single-pixel imaging via compressive sampling,” Signal
Processing Magazine, IEEE, vol. 25, no. 2, pp. 83–91, 2008.

[3] V. Studer, J. Bobin, M. Chahid, H. Mousavi, E. Candes, and M. Dahan,
“Compressive fluorescence microscopy for biological and hyperspectral
imaging,” Proceedings of the National Academy of Sciences, vol. 109,
no. 26, pp. E1679–E1687, 2012.

[4] E. Arias-Castro, E. J. Candes, and M. Davenport, “On the Fundamental
Limits of Adaptive Sensing,” ArXiv e-prints, Nov. 2011.

[5] M. Wainwright, “Information-theoretic limits on sparsity recovery in
the high-dimensional and noisy setting,” Information Theory, IEEE
Transactions on, vol. 55, no. 12, pp. 5728 –5741, dec. 2009.

[6] S. Aeron, V. Saligrama, and M. Zhao, “Information theoretic bounds
for compressed sensing,” Information Theory, IEEE Transactions on,
vol. 56, no. 10, pp. 5111 –5130, oct. 2010.

[7] M. J. Wainwright, “Sharp thresholds for high-dimensional and noisy
recovery of sparsity,” arXiv preprint math/0605740, 2006.

[8] R. M. Castro, “Adaptive Sensing Performance Lower Bounds for Sparse
Signal Estimation and Testing,” ArXiv e-prints, Jun. 2012.

[9] J. Haupt, R. Baraniuk, R. Castro, and R. Nowak, “Sequentially designed
compressed sensing,” in Statistical Signal Processing Workshop (SSP),
2012 IEEE. IEEE, 2012, pp. 401–404.

[10] M. L. Malloy and R. D. Nowak, “On the limits of sequential testing
in high dimensions,” in Signals, Systems and Computers (ASILOMAR),
2011 Conference Record of the Forty Fifth Asilomar Conference on.
IEEE, 2011, pp. 1245–1249.

[11] M. L. Malloy and R. Nowak, “Sequential testing for sparse recovery,”
arXiv preprint arXiv:1212.1801, 2012.

[12] D. Wei and A. O. Hero, “Multistage adaptive estimation of sparse
signals,” in Statistical Signal Processing Workshop (SSP), 2012 IEEE.
IEEE, 2012, pp. 153–156.

[13] G. Newstadt, E. Bashan, and A. Hero, “Adaptive search for sparse targets
with informative priors,” in Acoustics Speech and Signal Processing
(ICASSP), 2010 IEEE International Conference on. IEEE, 2010, pp.
3542–3545.

[14] J. Haupt, R. M. Castro, and R. Nowak, “Distilled sensing: Adaptive
sampling for sparse detection and estimation,” Information Theory, IEEE
Transactions on, vol. 57, no. 9, pp. 6222–6235, 2011.

[15] M. L. Malloy and R. D. Nowak, “Sequential analysis in high-
dimensional multiple testing and sparse recovery,” in Information Theory
Proceedings (ISIT), 2011 IEEE International Symposium on. IEEE,
2011.

[16] M. L. Malloy, G. Tang, and R. D. Nowak, “The sample complexity
of search over multiple populations,” arXiv preprint arXiv:1209.1380,
2012.

[17] M. Iwen, “Group testing strategies for recovery of sparse signals in
noise,” in Signals, Systems and Computers, 2009 Conference Record of
the Forty-Third Asilomar Conference on. IEEE, 2009, pp. 1561–1565.

[18] S. Ji, Y. Xue, and L. Carin, “Bayesian compressive sensing,” Signal
Processing, IEEE Transactions on, vol. 56, no. 6, pp. 2346–2356, 2008.

[19] M. Iwen and A. Tewfik, “Adaptive compressed sensing for sparse
signals in noise,” in Signals, Systems and Computers (ASILOMAR), 2011
Conference Record of the Forty Fifth Asilomar Conference on. IEEE,
2011.

[20] M. A. Davenport and E. Arias-Castro, “Compressive binary
search,” ArXiv e-prints, Feb. 2012. [Online]. Available:
http://arxiv.org/abs/1202.0937

[21] M. Iwen and A. Tewfik, “Adaptive strategies for target detection and lo-
calization in noisy environments,” Signal Processing, IEEE Transactions
on, vol. 60, no. 5, pp. 2344–2353, 2012.

http://arxiv.org/abs/1202.0937


[22] J. Haupt, R. Baraniuk, R. Castro, and R. Nowak, “Compressive distilled
sensing: Sparse recovery using adaptivity in compressive measure-
ments,” in Signals, Systems and Computers, 2009 Conference Record
of the Forty-Third Asilomar Conference on, nov. 2009, pp. 1551 –1555.

[23] E. Arias-Castro, “Detecting a vector based on linear measurements,”
Electronic Journal of Statistics, vol. 6, pp. 547–558, 2012.

[24] M. L. Malloy and R. D. Nowak, “Near-Optimal Compressive
Binary Search,” ArXiv e-prints, Mar. 2012. [Online]. Available:
http://arxiv.org/abs/1203.1804

[25] S. J. Wright, R. D. Nowak, and M. A. Figueiredo, “Sparse reconstruction
by separable approximation,” Signal Processing, IEEE Transactions on,
vol. 57, no. 7, pp. 2479–2493, 2009.

[26] A. Frank and A. Asuncion, “UCI machine learning repository,” 2010.
[Online]. Available: http://archive.ics.uci.edu/ml

[27] “Microsoft Research Cambridge Object Recognition Image Database,
http://research.microsoft.com/en-us/projects/objectclassrecognition/.”

[28] N. S. Rao, R. D. Nowak, S. J. Wright, and N. G. Kingsbury, “Convex
approaches to model wavelet sparsity patterns,” in Image Processing
(ICIP), 2011 18th IEEE International Conference on. IEEE, 2011, pp.
1917–1920.

[29] L. Jacob, G. Obozinski, and J.-P. Vert, “Group lasso with overlap
and graph lasso,” in Proceedings of the 26th Annual International
Conference on Machine Learning. ACM, 2009, pp. 433–440.

[30] N. S. Rao and R. D. Nowak, “Correlated Gaussian designs for com-
pressive imaging,” in Image Processing (ICIP), 2012 19th IEEE Inter-
national Conference on. IEEE, 2012, pp. 921–924.

http://arxiv.org/abs/1203.1804
http://archive.ics.uci.edu/ml

	I Introduction
	I-A Problem Setup and Background
	I-B Main Results and Contributions
	I-C Prior Work in Adaptive Compressed Sensing
	I-D Notation

	II Problem Details
	III Compressive Adaptive Sense and Search
	III-A The CASS Procedure
	III-B Theoretical Guarantees
	III-C Discussion

	IV Numerical Experiments
	IV-A Discussion

	V Conclusion
	References

