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SINR Constrained Beamforming for a MIMO

Multi-user Downlink System
Qingjiang Shi, Meisam Razaviyayn, Mingyi Hong and Zhi-QuanLuo

Abstract

Consider a multi-input multi-output (MIMO) downlink multi-user channel. A well-studied problem in

such system is the design of linear beamformers for power minimization with the quality of service (QoS)

constraints. The most representative algorithms for solving this class of problems are the so-called MMSE-

SOCP algorithm [11], [12] and the UDD algorithm [9]. The former is based on alternating optimization

of the transmit and receive beamformers; while the latter isbased on the well-known uplink-dowlink

duality theory. Despite their wide applicability, the convergence (to KKT solutions) of both algorithms is

still open in the literature. In this paper, we rigorously establish the convergence of these algorithms for

QoS-constrained power minimization (QCPM) problem with both single stream and multiple streams per

user cases. Key to our analysis is the development and analysis of a new MMSE-DUAL algorithm, which

connects the MMSE-SOCP and the UDD algorithm. Our numericalexperiments show that 1) all these

algorithms can almost always reach points with the same objective value irrespective of initialization;

2) the MMSE-SOCP/MMSE-DUAL algorithm works well while the UDD algorithm may fail with an

infeasible initialization.

I. INTRODUCTION

Multi-user MIMO (MU-MIMO) is a key building block of the nextgeneration wireless communication

system. In a MU-MIMO downlink system, a base station (BS) equipped with multiple antennas simultane-

ously transmits data to a group of multiple antenna users. The multi-user interference, which is the major

performance limiting factor of MU-MIMO systems, must be managed intelligently using the physical

layer techniques such as beamforming. In general, there aretwo major objectives in the beamformer
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design problem. One is to maximize a system utility (e.g., throughput) under some power constraint,

while the other one is to minimize the system transmission power subject to QoS requirements [1].

Although both formulations are justifiable and well-studied, the latter is more appropriate for scenarios

where the users need a guaranteed QoS level.

Although the QoS-constrained power minimization (QCPM) problem is globally solvable in polynomial

time for MISO system [16], [7], [2], this problem is highly non-convex and difficult to solve in MIMO

systems. In fact, it has been shown that when the BSs and the users are equipped with more than

two antennas, the problem becomes NP-hard [3]. Therefore, many algorithms have been proposed to

solve this problem approximately. For example, the references [4] and [5] propose algorithms based on

interference nulling, which can completely eliminate the inter-user interference. In these algorithms, the

search space of transmit and receive beamformers is limitedto zero forcing transceivers, leading to simple

but suboptimal solutions. In addition, such interference nulling based methods require that the number of

transmit antennas is no less than the total number of active users, which is impractical in many scenarios.

Another approach for solving the MU-MIMO downlink QCPM problem is based on the iterative

optimization methods [6], [9], [8], [12], [11]. References[6], [9], [8] provide iterative algorithms that

update the transmit beamformers, receive beamformers, andtransmit powers1 by switching between the

downlink and the dual uplink channels. Central to these methods is the notion of uplink-downlink duality

(UDD) theory [13], [14], [15], which guarantees that a set oftarget SINR levels is achievable in the

downlink channel if and only if the same set of SINR levels is achievable in the corresponding dual uplink

channel. We refer to such algorithms as UDD algorithms. The UDD algorithm was first proposed in [8]

for the multi-antenna case, where thereceive(resp. transmit) beamformer update is followed immediately

by the transmit (resp. receive) power update. The UDD algorithm of [9] differs from that of [8] in the

order of updating transmit/receive beamformers and powers. In the UDD algorithm of [9], thetransmit

(resp. receive) power is updated exactly after thetransmit (resp. receive) beamformer. Importantly, it

is shown in [9] that the UDD algorithm monotonically decreases the total power consumption while

satisfying the QoS constraints. However, the algorithms in[8], [9] can only apply to thesingle stream

case. In [6] the UDD algorithm has been generalized to the multiple stream case under the assumption

of no joint detection at the receivers (i.e.,inter-streaminterference is considered). Notice that, to the best

of our knowledge, it is still not known whether the UDD algorithm converges to a KKT solution.

Different from the previous works, the references [11] and [12] have proposed an iterative algorithm

1In [6], [9], [8], the power allocation and beamforming are separated and thus both need to be optimized.
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named MMSE-SOCP, which aims to solve the QCPM problem directly. The algorithm consists of the

following two key steps: 1) Fixing the transmit power, update the receive beamformers using MMSE

receiver, and 2) Fixing the receive beamformers, update thetransmit beamformers by solving the power

minimization problem with respect to the transmit beamformers. The authors show that the total transmit

power monotonically decreases and thus converges. However, the convergence of the MMSE-SOCP

iterates to a KKT solution is not known. Nevertheless, the authors of [8] and [12] observe that the

MMSE-SOCP algorithm always generates a sequence that converges to a unique solution, irrespective

of the initial point (or at least with high probability, see [8]). Hence, a conjecture has been made in

[12], stating that the MMSE-SOCP algorithm probably reaches a local optimum solution of the QCPM

problem2

In this paper, we settle the convergence issue related to theMMSE-SOCP and the UDD algorithm. We

show that both algorithms converge globally to the set of KKTsolutions, regardless of the number of

streams intended for each user. We start by analyzing the KKTconditions of the QCPM problem of the

single stream case. Based on the analysis, we propose a noveliterative algorithm called MMSE-DUAL

algorithm, which is essentially equivalent to the MMSE-SOCP algorithm, but with the added benefits

of having almost closed form updates and a lower complexity.Through the MMSE-DUAL algorithm,

we reveal some connections between the UDD algorithm[9] andthe MMSE-SOCP algorithm [11], [12].

More importantly we prove that both the MMSE-DUAL algorithmand the UDD algorithm monotonically

converge to the set of KKT solutions of the QCPM problem. In addition, we extend the algorithms to

the multiple stream case and prove that they can also reach a KKT point of the QCPM problem under

some mild conditions. As will be seen later, the MMSE-DUAL algorithm has a lower complexity than

the UDD algorithm if the number of streams is greater than thenumber of transmit antennas. Moreover,

although both algorithms require feasible initialization, it is easier for the MMSE-DUAL algorithm to

obtain a feasible initialization (see Remark 2 in Section IV).

The remainder of this paper is organized as follows. In Section II we give the formulation of the

QCPM problem and provide a brief review of the existing algorithms. In Section III we propose the

MMSE-DUAL algorithm which reveals the relation between theMMSE-SOCP and the UDD algorithm.

Then, we state the convergence results of the three algorithms in Section IV and extend the algorithms

to the multiple stream case in Section V. Finally, section VIpresents some simulation results and Section

2It is argued in [12] that, “Though the proposed algorithm always converges and seems to converge to a unique optima

irrespective of the starting point from the simulation results,it may be possible that the steadystate solution is alocal optimum.”
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VII concludes the paper.

Notations: Throughout this paper, we use uppercase bold letters for matrices, lowercase bold letters

for column vectors, and regular letters for scalars. The superscriptH is used to denote the Hermitian

transpose of a matrix. For a complex numbera, ∠(a) and Im(a) denote its phase angle and imaginary

part, respectively. For a functionf(·), ∇xf(·) denotes its gradient with respect to the variablex. For a

matrix A, A � 0 indicates thatA is a positive semidefinite matrix.I denotes the identity matrix of an

appropriate size. The circularly symmetric complex Gaussian distribution is represented byCN (µ, σ2),

whereµ is the mean andσ2 is the variance of the distribution. The notations Tr(·) anddet(·) represent

the trace and the determinant operator, respectively.

II. PROBLEM FORMULATION AND EXISTING ALGORITHMS

A. Problem Formulation

Consider a multi-user MIMO downlink system withK users, where the BS is equipped withM > 1

antennas and each userk is equipped withNk > 1 antennas. Let us useK = {1, 2, . . . ,K} to denote

the set of all users. Assume for now that the BS transmits the single streamsk to the intended receiverk

with no multiplexing (the multiple stream case will be considered in Section VI). Let us also assume

that the BS utilizes the transmit beamformervk ∈ CM×1 to send the data streamsk to userk. On the

other side, userk utilizes the receive beamformeruk ∈ CNk×1 to estimate its transmitted data stream.

The estimated data stream̂sk can be mathematically expressed as

ŝk = u
H
k



Hk

K
∑

j=1

vjsj + nk



 , ∀k ∈ K, (1)

whereHk ∈ CNk×M denotes the channel matrix from the BS to the receiverk; nk ∈ CNk×1 is the

additive white Gaussian noise (AWGN) with distributionCN (0, σ2
k). The data streamssk’s are i.i.d. and

independent of the noise level; and have distributionCN (0, 1).

We are interested in designing the transmit and receive beamformers to minimize the transmit power

while the users’ QoS requirements are satisfied. Let us consider the signal-to-interference-plus-noise ratio

(SINR) as the QoS measure. The SINR of userk is given by:

SINRk ,
|uH

k Hkvk|2
∑

j 6=k |uH
k Hkvj|2 + σ2

k‖uk‖2
. (2)
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Mathematically, the QCPM problem can be written as

(P1)

min
v,u

K
∑

k=1

‖vk‖2

s.t.
|uH

k Hkvk|2
∑

j 6=k |uH
k Hkvj|2+σ2

k‖uk‖2
≥γk, ∀k ∈ K,

whereγk > 0 is the intended SINR level of userk; the set of all transmit beamformers (resp. receive

beamformers) is denoted byv , {v1, . . . ,vK} (resp.u , {u1, . . . ,uK}). Throughout the paper, we

assume that problem (P1) is feasible andσ2
k > 0 for all k.

B. Existing Algorithms: A Brief Review

In this subsection, we briefly review the existing MMSE-SOCPalgorithm [12] and the UDD algorithm

[9].

1) MMSE-SOCP Algorithm [11], [12]:The MMSE-SOCP algorithm alternates between the following

two steps:

1. Fixing all the transmit beamformers, update the receive beamformers using the MMSE receiver, i.e.,

uk =





∑

j 6=k

Hkvjv
H
j H

H
k + σ2

kI





−1

Hkvk, ∀k ∈ K.

2. Fixing all the receive beamformers, update the transmit beamformers by solving

min
v

K
∑

k=1

‖vk‖2

s.t.
|uH

k Hkvk|2
∑

j 6=k |uH
k Hkvj|2+σ2

k‖uk‖2
≥γk, ∀k ∈ K,

(3)

which can be transformed to a second-order cone program (SOCP) [12], [16]. The above SOCP

hasKM unknowns and can be efficiently solved via interior-point algorithm; each iteration of the

interior-point algorithm has computational complexity ofO(K3M3)[22].

2) UDD Algorithm [9]: Let ūk and v̄k denote the normalized beamformer, i.e.,uk =
√
qkūk and

vk =
√
pkv̄k with ‖ūk‖ = ‖v̄k‖ = 1. We referūk and v̄k as the normalized beamformers,pk andqk as

the power consumption. Using these notations, the downlinkchannel model (1) can be rewritten as

ŝk =
√
qkū

H
k



Hk

K
∑

j=1

√
pjv̄jsj +nk



 , ∀k ∈ K. (4)

The UDD algorithm is established by introducing avirtual uplink channel, which can be constructed

through the following three steps: 1) reverse the directions of all links; 2) replace the channel matrices by

August 20, 2018 DRAFT
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their conjugated transposed version (i.e.,Hk ← H
H
k ∀k); 3) exchange the role of transmit beamformer

and receive beamformer. Mathematically, the virtual uplink channel model can be represented as

s̃k = pkv̄
H
k





K
∑

j=1

qjH
H
j ūjsj + ñk



 , ∀k ∈ K, (5)

whereñk = 1
σk
nk is the virtual uplink channel AWGN.

In terms of the channel models (4) and (5), the SINRs for the downlink and uplink are respectively

expressed as

SINRD
k =

pk‖ūH
k Hkv̄k‖2

ūH
k

(

∑

j 6=k pjHkv̄jv̄
H
j HH

k + σ2
kI

)

ūk

(6)

and

SINRU
k =

qk‖v̄H
k H

H
k ūk‖2

v̄H
k

(

∑

j 6=k qjH
H
j ūjū

H
j Hj + I

)

v̄k

. (7)

Then, fixing the beamformers, thedownlink power minimization problem can be written as

min
{pk≥0}

K
∑

k=1

pk

s.t.
pk‖ūH

k Hkv̄k‖2

ūH
k

(

∑

j 6=k pjHkv̄jv̄
H
j HH

k + σ2
kI

)

ūk

≥ γk,∀k.
(8)

Its dual problem can be obtained by using the Lagrange duality theory withqk ≥ 0 corresponding to the

Lagrangian multiplier of thekth QoS constraint[9]

max
{qk≥0}

K
∑

k=1

σ2
kqk

s.t.
qk‖v̄H

k H
H
k ūk‖2

v̄H
k

(

∑

j 6=k qjH
H
j ūjū

H
j Hk + I

)

v̄k

≤ γk,∀k.
(9)

It can be shown that problem (9) is equivalent to the following uplink weighted power minimization

problem[10]

min
{qk≥0}

K
∑

k=1

σ2
kqk

s.t.
qk‖v̄H

k H
H
k ūk‖2

v̄H
k

(

∑

j 6=k qjH
H
j ūjū

H
j Hk + I

)

v̄k

≥ γk,∀k
(10)

by noting that all the inequality constraints of both problem (9) and (10) must hold with equality at

the optimality and furthermore the corresponding system oflinear equations with respect to{qk} has a

unique solution[10, Lemmas 1 & 2]. To summarize, the classical Lagrange duality theory leads to the

well-known uplink-downlink duality theorem:

August 20, 2018 DRAFT
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Theorem 1 (Uplink-Downlink Duality [9], [10]): For any given set of normalized beamformers{ūk}
and {v̄k}, a set of given SINR values{γk}Kk=1 is achievable in the downlink using the total power

consumptionP =
∑K

k=1 pk if and only if the same set of SINR values is achievable in the dual uplink

channel with the weighted total power ofP .

The UDD algorithm is based on the uplink-downlink duality theory. We summarize the UDD algorithm3

[9] in TABLE I. It should be pointed out that, the UDD algorithm requires a feasible initialization [9].

Otherwise, the steps 7 and 11 in the algorithm are not well-defined.

It is also worth noting that the work [12] (resp. [9]) only shows that the MMSE-SOCP (resp. UDD)

algorithm keeps the QCPM objective function nonincreasingas the iteration proceeds. In this paper, we

reveal the connection between the MMSE-SOCP and the UDD algorithm. Moreover prove that the two

algorithms can monotonically converge to a KKT solution of the QCPM problem.

III. T HE MMSE-DUAL A LGORITHM

In this section, we first analyze the KKT conditions of problem (P1). Based on the results of the KKT

analysis, we then present a new iterative power minimization algorithm, dubbed MMSE-DUAL, to solve

the system of KKT equations. Moreover, the proposed algorithm reveals some connections between the

MMSE-SOCP and the UDD algorithm.

A. KKT Analysis of the QCPM Problem

First, let us define the Lagrange function associated with problem (P1) as

L(λ,v,u) ,
K
∑

k=1

‖vk‖2

+

K
∑

k=1

λk





∑

j 6=k

|uH
k Hkvj|2 + σ2

k‖uk‖2 −
1

γk
|uH

k Hkvk|2




(11)

whereλ = [λ1 λ2 . . . λK ]T is the Lagrange multiplier vector. For a given optimal primal dual tuple

(u,v,λ), the KKT conditions of problem (P1) are given by

3As compared to the UDD algorithm in [10, Algorithm E] which requires updating uplink/downlink power twice at each

iteration, the UDD algorithm[9] illustrated in TABLE I requires uplink/downlink power update only once at each iteration and

thus is more efficient. However, the convergence result to beshown later in Proposition 2 also applies to the UDD algorithm in

[10].

August 20, 2018 DRAFT
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TABLE I

THE UDD ALGORITHM

• Input: Hk, σ2
k, γk, k = 1, 2, . . . ,K

• Output: the beamformers{vk} and{uk}.

1 sett = 0 andN ≥ 1

2 initialize vk, k = 1, 2, . . . ,K.

3 repeat

4 t←− t+ 1;

5 ûk ←−
(

∑

j 6=k
Hkvjv

H
j H

H
k + σ2

kI

)−1

Hkvk, ∀k
6 ūk ←− ûk

‖ûk‖
, ∀k

7 updateqk ’s by solving (10) //uplink power allocation

8 uk ←− √qkūk, ∀k
9 v̂k ←−

(

I+
∑

j 6=k
H

H
j uju

H
j Hj

)−1

H
H
k uk, ∀k

10 v̄k ←− v̂k

‖v̂k‖
, ∀k

11 updatepk ’s by solving (8) //downlink power allocation

12 vk ←− √pkv̄k, ∀k

13 until some convergence criterion is met

λk





∑

j 6=k

Hkvjv
H
j H

H
k + σ2

kI−
1

γk
Hkvkv

H
k H

H
k



uk = 0, ∀k, (12a)



I− λk

γk
H

H
k uku

H
k Hk +

∑

j 6=k

λjH
H
j uju

H
j Hj



vk = 0, ∀k, (12b)

λk





∑

j 6=k

‖uH
k Hkvj‖2+σ2

k‖uk‖2−
1

γk
|uH

k Hkvk|2


=0, ∀k, (12c)

γk





∑

j 6=k

‖uH
k Hkvj‖2 + σ2

k‖uk‖2


 ≤ |uH
k Hkvk|2, ∀k, (12d)

λk ≥ 0, ∀k, (12e)

where (12a) and (12b) are the first-order optimality conditions with respect to the receive and transmit

beamformers, respectively. The equation (12c) is the complementary condition; and the equations (12d)

and (12e) are the primal and dual feasibility conditions. Inthe sequel, we analyze the above KKT system.

August 20, 2018 DRAFT
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Lemma 1 For any primal-dual tuple(u,v,λ) that satisfies (12), we haveλk > 0,∀k ∈ K, and all the

QoS constraints hold with equality.

Proof: We prove this using contradiction. Assume the contrary thatone of the optimal Lagrange

multipliers, sayλk, equals to zero. Multiplying (12b) byvH
k yields

‖vk‖2 +
∑

j 6=k

λjv
H
k H

H
j uju

H
j Hjvk = 0.

This impliesvk = 0, which contradicts the assumption thatγk > 0.

Let us defineCk ,
∑

j 6=k Hkvjv
H
j H

H
k +σ2

kI andAk ,
∑

j 6=k Hkvjv
H
j H

H
k +σ2

kI− 1
γk
Hkvkv

H
k H

H
k .

Lemma 2 For any primal-dual tuple(u,v,λ) that satisfies (12), the minimum eigenvalue ofAk is zero.

Furthermore, the optimal normalized receive beamformers are given by

uk =
ûk

‖ûk‖
with ûk = C

−1
k Hkvk, ∀k ∈ K. (13)

Proof: Clearly, (12a) implies thatAk must have at least one zero eigenvalue. On the other hand,

since

Ak = C

1

2

k

(

I− 1

γk
C

− 1

2

k Hkvkv
H
k H

H
k C

− 1

2

k

)

C

1

2

k , (14)

Ak has at most one nonpositive eigenvalue. Hence, the minimum eigenvalue ofAk is zero. Furthermore,

the equation (14) implies that1
γk
v
H
k H

H
k C

−1
k Hkvk = 1 and therefore

Hkvk =
1

γk
Hkvkv

H
k H

H
k C

−1
k Hkvk. (15)

Combining (15) and Lemma 1, it can be verified thatuk = C
−1
k Hkvk is the unique solution of (12a) up

to scaling.

Defining Dk , I +
∑

j 6=k λjH
H
j uju

H
j Hj andBk , I +

∑

j 6=k λjH
H
j uju

H
j Hj − λk

γk
H

H
k uku

H
k Hk,

the next lemma follows directly from the KKT equations (12b)and (12c). The proof of this lemma is

similar to the proof of lemma 2 and thus omitted from the manuscript.

Lemma 3 For any primal-dual tuple(u,v,λ) that satisfies(12), the minimum eigenvalue ofBk is zero.

Moreover, the optimal transmit beamformers are given by

vk = µk
v̂k

‖v̂k‖
with v̂k = D

−1
k H

H
k uk, ∀k ∈ K (16)

where the coefficients{µk} is chosen such that(12c) is satisfied.

August 20, 2018 DRAFT
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Corollary 1 For any primal-dual tuple(u,v,λ) that satisfies (12), the Lagrange multipliers{λk} satisfies

the system of equations

λk =
γk

1 + γk

1

uH
k HkΥHH

k uk

, ∀k ∈ K. (17)

whereΥ ,

(

I+
∑K

j=1 λjH
H
j uju

H
j Hj

)−1
. Moreover, the unique solution of (17) can be obtained by a

fixed point iteration.

Proof: From Lemma 3, we haveBk = Dk− λk

γk
H

H
k uku

H
k Hk � 0. It follows from Schur complement

that




Dk

√

λk

γk
H

H
k uk

√

λk

γk
u
H
k Hk 1



 � 0. (18)

SinceDk is positive definite, using Schur complement again implies

λk

γk
u
H
k HkD

−1
k H

H
k uk ≤ 1.

For any primal-dual tuple(u,v,λ) that satisfies the KKT condition (12), the above inequality must hold

with equality; otherwiseBk ≻ 0 by the Schur complement, which contradicts Lemma 3. Hence, it holds

that

λk =
γk

uH
k Hk

(

Υ−1 − λkH
H
k uku

H
k Hk

)−1
HH

k uk

, ∀k ∈ K. (19)

On the other hand,

u
H
k Hk

(

Υ
−1 − λkH

H
k uku

H
k Hk

)−1
H

H
k uk

=u
H
k Hk

(

I− λkΥH
H
k uku

H
k Hk

)−1
ΥH

H
k uk

=u
H
k HkΥH

H
k uk

(

1− λku
H
k HkΥH

H
k uk

)−1
,

(20)

where the second equality is due to the identity(I + AB)−1A = A(I +BA)−1[21, Sec. 3.2.4]. Hence

(19) can be rewritten as

λk = γk

(

1

uH
k HkΥHH

k uk

− λk

)

, ∀k ∈ K, (21)

which implies (17). Moreover, the right hand side of (17) is astandard function4 of {λk}. Hence, the

solution of (17) is unique and can be obtained by a fixed point algorithm [17].

4A vector functionf(λ) is a standard function if it satisfies 1)f(λ) > 0; 2) f(λ) ≥ f(λ′) for λ ≥ λ′; 3) αf(λ) ≥ f(αλ)

for α > 1. If f(λ) is a standard function, the system of equationsλ = f(λ) has a unique solution which can be obtained by

a fixed point algorithm. See more details in [17].
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B. The Proposed MMSE-DUAL Algorithm And Its Relations With The Existing Algorithms

Based on the results of the KKT analysis, we here present a newiterative power minimization algorithm,

dubbed MMSE-DUAL algorithm, to solve the system of KKT equations (12a-12e). Our proposed MMSE-

DUAL algorithm first updates the receive beamformers using the MMSE receiver (13), followed by the

update of the transmit beamformers using equations (16) and(17). The algorithm is outlined in TABLE II.

In this table,N denotes the total number of fixed point iterations for calculating the optimal Lagrange

multipliers.

Before stating the properties of the proposed algorithm, let us first see how the MMSE-DUAL algorithm

plays a key role in establishing the connection between the MMSE-SOCP algorithm and the UDD

algorithm. First notice that in the MMSE-DUAL algorithm, the procedure of updating the transmit

beamformers (i.e., Steps 7-13 in TABLE II) is equivalent to solving

(P2)

min
{vk}

K
∑

k=1

‖vk‖2

s.t.
|uH

k Hkvk|2
∑

j 6=k |uH
k Hkvj|2+σ2

k‖uk‖2
≥γk, ∀k ∈ K.

This follows from the fact that the KKT condition of (P2) are identical to (12b-12e) and strong duality

holds for problem (P2)[16]. Since the updates of the receivebeamformer in MMSE-DUAL is the same

as the receiver update in the MMSE-SOCP algorithm, the MMSE-DUAL algorithm is in essence the

MMSE-SOCP algorithm. The only difference of the MMSE-DUAL algorithm with the MMSE–SOCP

[12] is that, instead of updating the transmit beamformers by directly solving the SOCP (P2), we use

semi-closed form computation (16) and (17). It is not hard tosee that5 the complexity of each iteration

of the fixed point algorithm is dominated by the computation of Υ−1, which isO(KM2 +M3). Hence,

the MMSE-DUAL algorithm has lower complexity than the MMSE-SOCP algorithm.

Next we explore the relation between the MMSE-DUAL and the UDD algorithm. Comparing the

algorithms in TABLE I and II, it is not difficult to see that, the dual variables{λk} and the auxiliary

variables{µk} in the MMSE-DUAL algorithm respectively play the role of thedual uplink transmit power

and the downlink transmit power in the UDD algorithm. This implies that, although the UDD algorithm

is developed from a different point of view, it works in a similar way as the MMSE-DUAL algorithm

towards solving the KKT system (12). Furthermore, the constraints of problem (8) must be satisfied with

5In this paper, we consider practical cases for complexity comparison, i.e., when the number of transmit antennas is greater

than the number of antennas at each receiver.
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equality at the optimality. Hence it is readily seen that theMMSE-DUAL algorithm updates the auxiliary

variables{µk} in the same way as the downlink transmission power{pk} in the UDD algorithm; see

Step 11 in TABLE I and Step 13 in TABLE II. The only difference between the two algorithms lies in

the update of the dual variables{λk} (or equivalently the dual uplink transmit powerqk in UDD). In

the MMSE-DUAL algorithm, the Lagrange multipliers{λk} are updated by the fixed point algorithm

independent of the current transmit beamformers, while theupdate of uplink transmit power in the UDD

algorithm depends on the current transmission beamformers; see Steps 7-10 in TABLE II and Step 7 in

TABLE I. Note that, if problem (10) is feasible, the update ofthe uplink transmit power in the UDD

algorithm is equivalent to solving a linear system of{qk} which has complexity ofO(K2M+K3). Hence,

whenM ≈ K, the UDD algorithm and the MMSE-DUAL algorithm have comparable complexity. But

in the general single stream case whereM > K, the UDD algorithm has lower complexity than the

MMSE-DUAL algorithm.

TABLE II

THE MMSE-DUAL ALGORITHM

• Input: Hk, σ2
k, γk, k = 1, 2, . . . ,K

• Output: the beamformers{vk} and{uk}.

1 sett = 0 andN ≥ 1

2 initialize vk andλk, k = 1, 2, . . . ,K.

3 repeat

4 t←− t+ 1;

5 ûk ←−
(

∑

j 6=k
Hkvjv

H
j H

H
k + σ2

kI

)−1

Hkvk, ∀k
6 uk ←− ûk

‖ûk‖
, ∀k

7 for n = 1 to N //fixed point algorithm

8 Υ←−
(

I+
∑K

j=1
λjH

H
j uju

H
j Hj

)−1

9 λk ←− γk
1+γk

1

u
H
k

HkΥHH
k

uk
, ∀k

10 end for

11 v̂k ←−
(

I+
∑

j 6=k
λjH

H
j uju

H
j Hj

)−1

H
H
k uk, ∀k

12 v̄k ←− v̂k

‖v̂k‖
, ∀k

13 solve for the linear system of{µk}:
1

γk
µk|uH

k Hkv̄k|2−
∑

j 6=k
µj‖uH

k Hkv̄j‖2 = σ2
k‖uk‖2, ∀k

14 vk ←− √µkv̄k, ∀k

15 until some convergence criterion is met
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In a nutshell, similar to the MMSE-DUAL algorithm, the MMSE-SOCP algorithm and the UDD

algorithm both work towards solving the KKT system (12). In the next section, we rigorously show that

the three algorithms indeed monotonically converge to a KKTsolution.

IV. CONVERGENCERESULTS OF THEMMSE-DUAL/MMSE-SOCP/UDD ALGORITHMS

In this section, we establish the convergence of the three algorithms. Compared to the existing con-

vergence results of the MMSE-SOCP algorithm in [12] and the UDD algorithm in [9], we show below

a stronger convergence result that every limit point of the three algorithms is a KKT solution of (12).

Before stating the convergence results, we first present three lemmas which will be used later in the

convergence proof.

Lemma 4 For any feasible{uk}, the optimal solution to problem(3) is unique up to phase rotation.

Proof: Let {v∗
k} and {v∗∗

k } be any two optimal solutions to problem (3). Moreover, we define

θ∗k , ∠
(

u
H
k Hkv

∗
k

)

andθ∗∗k , ∠
(

u
H
k Hkv

∗∗
k

)

, ∀k ∈ K. In the following, we provev∗
k = v

∗∗
k ej(θ

∗

k−θ∗∗

k ),

∀k ∈ K.

It is noted that any feasible solution to the following SOCP

min
v

K
∑

k=1

‖vk‖2

s.t. e−jθ∗

k
1√
γk

u
H
k Hkvk≥

√

∑

j 6=k

|uH
k Hkvj|2+σ2

k‖uk‖2, ∀k ∈ K,

Im(e−jθ∗

ku
H
k Hkvk) = 0, ∀k ∈ K

(22)

is feasible to problem (3). It follows that the optimal valueof problem (3) is not greater than that of

problem (22). On the other hand, it is easily seen that the optimal solution{v∗
k} to problem (3) is a

feasible solution to problem (22). Hence,{v∗
k} is an optimal solution to problem (22). Similarly, we infer

that {v∗∗
k } is an optimal solution to the following SOCP

min
v

K
∑

k=1

‖vk‖2

s.t. e−jθ∗∗

k
1√
γk

u
H
k Hkvk≥

√

∑

j 6=k

|uH
k Hkvj|2+σ2

k‖uk‖2, ∀k ∈ K,

Im(e−jθ∗∗

k u
H
k Hkvk) = 0, ∀k ∈ K.

(23)

By comparing the above two SOCP formulations and noting
∑K

k=1 ‖v∗
k‖2 =

∑K
k=1 ‖v∗∗

k ‖2, we conclude

that {v∗∗
k ej(θ

∗

k−θ∗∗

k )} is an optimal solution to problem (22). Since the SOCP problem (22) has a strictly
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convex objective function, it has a unique solution. Thus wehavev∗
k = v

∗∗
k ej(θ

∗

k−θ∗∗

k ), ∀k ∈ K, implying

that the optimal solution to problem (3) is unique up to phaserotation. This completes the proof.

Lemma 5 If {uk} and {vk} satisfy the SINR constraints of problem (P1) with equality and for eachk

uk is an MMSE-receiver, i.e.,uk = αkC
−1
k Hkvk for all k with αk being an arbitrary nonzero constant,

then we have
(

Ck −
1

γk
Hkvkv

H
k H

H
k

)

uk = 0, ∀k. (24)

Proof: Since{uk} and{vk} satisfy the constraints of problem (P1) with equality, we have

∑

j 6=k

‖uH
k Hkvj‖2+σ2

k‖uk‖2 −
1

γk
|uH

k Hkvk|2=0, ∀k

which can be rearranged as

u
H
k

(

Ck −
1

γk
Hkvkv

H
k H

H
k

)

uk = 0, ∀k. (25)

By substituting the MMSE receiveruk = αkC
−1
k Hkvk into (25) and noting thatαk 6= 0, ∀k, we get

v
H
k H

H
k C

−1
k Hkvk

(

1− 1

γk
v
H
k H

H
k C

−1
k Hkvk

)

= 0, ∀k.

Since we havevH
k H

H
k C

−1
k Hkvk 6= 0 (due toHkvk 6= 0), it follows that

1

γk
v
H
k H

H
k C

−1
k Hkvk = 1, ∀k. (26)

This implies that for eachk the matrixCk − 1
γk
Hkvkv

H
k H

H
k is positive semidefinite. Hence, from (25),

we obtain
(

Ck −
1

γk
Hkvkv

H
k H

H
k

) 1

2

uk = 0, ∀k, (27)

which completes the proof.

Due to the uplink–downlink duality, we also have the following lemma. The proof of the lemma is

similar to that of Lemma 5 and thus omitted for brevity.

Lemma 6 If {uk} and{vk} satisfy the SINR constraints of the virtual uplink weightedpower minimiza-

tion problem6 (10) with equality and moreover for eachk, vk is a (virtual uplink) MMSE-receiver, i.e.,

vk = βkD
−1
k H

H
k uk with βk being an arbitrary nonzero constant, then we have

(

Dk −
1

γk
H

H
k uku

H
k Hk

)

vk = 0, ∀k, (28)

6Note that the SINR constraints in (10) hold true forvk’s.
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whereDk ’s are defined as in Section III.

Remark 1 Lemmas 5 and 6 indicate that, for the downlink/virtual uplink power minimization problem,

if a set of transmit and receive beamformers satisfies the SINR constraints with equality and moreover

complies with the MMSE receiver structure, the first–order optimality condition with respect to the

downlink/virtual uplink receive beamformers follows. In other words, if a set of transmit and receive

beamformers fulfills both the assumptions of Lemma 5 and Lemma 6, then it is a KKT solution to the

KKT system(12).

A. Convergence of the MMSE-SOCP/MMSE-DUAL Algorithms

In this subsection, we study the convergence behavior of theMMSE-SOCP (or equivalently MMSE-

DUAL) algorithm.

Proposition 1 Let {(vr,ur, λr)}∞r=1 denote a sequence generated by the MMSE-DUAL algorithm (or

equivalently the MMSE-SOCP algorithm). Suppose(v0,u0, λ0) is feasible for problem (P1), then every

limit point of {(vr,ur, λr)}∞r=1 is a KKT point of (P1).

Proof: Here we prove the result for the MMSE-SOCP algorithm. The proof for the MMSE-DUAL

algorithm follows immediately due to its equivalence to MMSE-SOCP algorithm. The iterations of the

MMSE-SOCP algorithm are illustrated asvr−1 → u
r → v

r, where the two arrows correspond to the

two update rules shown in Sec. II.B in order. Since the objective function is coercive,{vr
k} is bounded

and consequently{ur
k} is bounded as well. Hence, the sequence{(ur,vr)} has at least one limit point.

Consider a subsequence{(urj ,vrj )}∞j=1 converging to the limit point{u∗,v∗}. Moreover, by further

restricting to another subsequence, we can assume thatv
rj−1 converges to a limit pointv∗∗.

In the sequel, we first prove thatv∗ = v
∗∗ (up to a phase rotation). Clearly,

K
∑

k=1

‖v∗
k‖2 =

K
∑

k=1

‖v∗∗
k ‖2 (29)

since the objective value is decreasing and it is bounded from below. Now consider a fixed transmit

beamformerv so that

SINRk(v,u
∗
k) > γk,∀k ∈ K, (30)

whereSINRk(v,u
∗
k) is defined in (2). Due to the continuity of the SINR function, there exists an index

i so that for all j > i, SINRk(v,u
rj
k ) ≥ γk,∀k ∈ K. Since at each iteration of the algorithm, the
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transmit beamformers are updated after the receive beamformers, for allj > i we have
∑K

k=1 ‖v
rj
k ‖2 ≤

∑K
k=1 ‖vk‖2. Letting j →∞ implies

K
∑

k=1

‖v∗
k‖2 ≤

K
∑

k=1

‖vk‖2. (31)

Furthermore, according to the update rule, we have SINRk(v
rj ,u

rj
k ) ≥ γk,∀k and thus

SINRk(v
∗,u∗

k) ≥ γk, ∀k ∈ K. (32)

Combining (32) with the fact that (31) holds for anyv satisfying (30), we obtain7

v
∗ ∈ argmin

v

K
∑

k=1

‖vk‖2

s.t. SINRk(v,u
∗
k) ≥ γk,∀k.

(33)

On the other hand, since the update of receive beaformers using MMSE receivers keeps the SINR

feasibility, we have SINRk(vrj−1,u
rj
k ) ≥ γk. Letting j →∞, we obtain

SINRk(v
∗∗,u∗

k) ≥ γk, ∀k. (34)

Combining (33), (34) and (29), we infer thatv∗∗ is also an optimal solution to problem (33). Hence,

according to Lemma 4, we havev∗ = v
∗∗ up to an appropriate phase rotation.

Next, with v
∗ = v

∗∗, we prove that the limit point(u∗,v∗) is a KKT point of (P1). Based on

the receive beamformer update rule in the algorithm,u
rj
k = (C

rj−1
k )−1

Hkv
rj−1
k , where C

rj−1
k :=

∑

ℓ 6=k Hkv
rj−1
ℓ (v

rj−1
ℓ )HH

H
k + σ2

kI. Letting j →∞ implies

u
∗
k = (C∗

k)
−1

Hkv
∗
k ∀k (35)

with C
∗
k =

∑

j 6=k Hkv
∗
j (v

∗
j )

H
H

H
k + σ2

kI. On the other hand, (33) implies that there exists a set of

multipliers λ∗
k ≥ 0 so that



I−λ∗
k

γk
H

H
k u

∗
k(u

∗
k)

H
Hk+

∑

j 6=k

λ∗
jH

H
j u

∗
j(u

∗
j )

H
Hj



v
∗
k=0, ∀k, (36)

γk





∑

j 6=k

‖(u∗
k)

H
Hkv

∗
j ‖2+σ2

k‖u∗
k‖2


−|(u∗
k)

H
Hkv

∗
k|2=0, ∀k. (37)

7Note that, for anyv such thatSINRk(v,u
∗
k) ≥ γk,∀k ∈ K, we can scale upv with any constants > 1 so that the

scaledv (i.e., sv) satisfies (30). Furthermore, analogous to (31), we have
∑K

k=1
‖v∗

k‖2 ≤
∑K

k=1
s2‖vk‖2, ∀s > 1, implying

∑K

k=1
‖v∗

k‖2 ≤
∑K

k=1
‖vk‖2. Therefore, combining (32) with the fact that (31) holds forany v satisfying (30) implies (33).

Similar arguments are also used in the proof of Proposition 2.
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u

1r
v

1r
u

(c)(b) (d)(a)

Fig. 1. The flow chart of the UDD algorithm.

By Lemma 5, we infer from (35) and (37) that
(

C
∗
k −

1

γk
Hkv

∗
k(v

∗
k)

H
H

H
k

)

u
∗
k = 0, ∀k. (38)

Clearly, the equations (36), (37) and (38) imply that the limit point (u∗,v∗) is a KKT point of (P1).

B. Convergence of the UDD Algorithm

The following theorem states our convergence result of the UDD algorithm:

Proposition 2 Let {(v̄r, pr, ūr, qr)}∞r=1 denote a sequence generated by the UDD algorithm. Suppose

(v̄0, p0, ū0, q0) is feasible for problem (P1), then every limit point of{(v̄r, pr, ūr, qr)}∞r=1 is a KKT

point of (P1).

Proof: For the ease of understanding, the iterations of the UDD algorithm are visually presented in

Fig. 1 where each arrow indicates an update rule as labeled. Let

{v̄r, pr, ūr, qr} ,
{

{v̄r
k}Kk=1, {prk}Kk=1, {ūr

k}Kk=1, {qrk}Kk=1

}

be the sequence generated by the UDD algorithm. Clearly, thesequences{v̄r} and{ūr} are bounded.

On the other hand, since the objective functions of problems(8) and (10) are both coercive,{pr} and

{qr} are also bounded. Hence, the sequence{v̄r, pr, ūr, qr} is bounded. It follows that there exists

a subsequence{v̄rj , prj , ūrj , qrj} converging to a limit point{v̄∗, p∗, ū∗, q∗}. Furthermore, by further

restricting to a subsequence, we can assume that the subsequence{v̄rj+1, prj+1, ūrj+1, qrj+1} converges

to some limit point{v̄∗∗, p∗∗, ū∗∗, q∗∗}. According to [9], we have the monotonic convergence, i.e.,

0 ≤ ∑K
k=1 p

r+1
k ≤ ∑K

k=1 σ
2
kq

r+1
k ≤ ∑K

k=1 p
r
k ≤

∑K
k=1 σ

2
kq

r
k, implying that

∑K
k=1 p

∗∗
k =

∑K
k=1 σ

2
kq

∗∗
k =

∑K
k=1 p

∗
k =

∑K
k=1 σ

2
kq

∗
k.

First, we prove thatp∗ is the optimal solution of problem (8) with̄uk ’s andv̄k’s being fixed toū∗
k ’s and

v̄
∗
k’s respectively, and consequently SINRD

k (p
∗, v̄∗, ū∗

k) = γk, ∀k ∈ K. Let Sp = {p | SINRD
k (p, v̄

∗, ū∗
k) >
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γk, k ∈ K}. Due to the continuity of the SINR functions, we can always find an integerJ , such that for

all j ≥ J ,

SINRD
k (p, v̄

rj , ū
rj
k ) ≥ γk,∀k ∈ K,∀p ∈ Sp.

Step 11 of the UDD algorithm [see (a) in Fig. 1] implies

SINRD
k (p

rj , v̄rj , ū
rj
k ) ≥ γk,∀k ∈ K

and
K
∑

k=1

p
rj
k ≤

K
∑

k=1

pk,∀p ∈ Sp.

Taking limit asj →∞ yields

SINRD
k (p

∗, v̄∗, ū∗
k) ≥ γk,∀k ∈ K (39)

and
K
∑

k=1

p∗k ≤
K
∑

k=1

pk,∀p ∈ Sp. (40)

Since at the optimality of problem (8) the SINR constraint must hold with equality, (39) and (40) implies

SINRD
k (p

∗, v̄∗, ū∗
k) = γk,∀k ∈ K. (41)

Similarly, we next show thatq∗∗ is the optimal solution of problem (10) with̄uk ’s and v̄k’s being

fixed to ū
∗∗
k ’s and v̄

∗
k’s respectively, and moreover SINRU

k (q
∗∗, ū∗∗, v̄∗

k) = γk, ∀k ∈ K. Let Sq =

{q | SINRU
k (q, ū

∗∗, v̄∗
k) > γk,∀k ∈ K}. Due to the continuity of the SINR functions, we can always find

J , for all j ≥ J , such that

SINRU
k (q, ū

rj+1, v̄
rj
k ) ≥ γk,∀k ∈ K,∀q ∈ Sq.

Due to Step 7 of the UDD algorithm [see (c) in Fig. 1], we have

SINRU
k (q

rj+1, ūrj+1, v̄
rj
k ) ≥ γk,∀k ∈ K.

and
K
∑

k=1

σ2
kq

rj+1
k ≤

K
∑

k=1

σ2
kq,∀q ∈ Sq.

Hence, we infer that
K
∑

k=1

σ2
kq

∗∗
k ≤

K
∑

k=1

σ2
kq,∀q ∈ Sq (42)

and

SINRU
k (q

∗∗, ū∗∗, v̄∗
k) = γk,∀k ∈ K. (43)
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Now we showū∗ = ū
∗∗ after doing an appropriate phase rotation. Due to the feasible initialization,

we have for anyrj that [see (b) in Fig. 1]

SINRD
k (p

rj , v̄rj , ū
rj+1
k ) ≥ γk.

Taking limit asj →∞ yields

SINRD
k (p

∗, v̄∗, ū∗∗
k ) ≥ γk = SINRD

k (p
∗, v̄∗, ū∗

k),∀k ∈ K (44)

where the equality is due to (41). In the following, we show that the inequality in (44) actually achieves

equality. Definêγk , SINRD
k (p

∗, v̄∗, ū∗∗
k ) and assume for contrary that there exists oneγ̂k that is strictly

greater thanγk. By the uplink-downlink duality theory, there exists{q̂k} such that SINRUk (q̂, ū
∗∗, v̄∗

k) =

γ̂k for all k and
∑K

k=1 σ
2
k q̂k =

∑K
k=1 p

∗
k. Since there exists onek for which γ̂k > γk, the total

power
∑K

k=1 σ
2
kq̂k can be further decreased by reducingq̂k. Hence, (42) and (43) imply

∑K
k=1 σ

2
kq

∗∗
k <

∑K
k=1 σ

2
k q̂k =

∑K
k=1 p

∗
k. This yields a contradiction due to the fact that

∑

k p
∗
k =

∑

k σ
2
kq

∗∗
k . Hence, we

have

SINRD
k (p

∗, v̄∗, ū∗∗
k ) = SINRD

k (p
∗, v̄∗, ū∗

k), ∀k ∈ K. (45)

Note that Steps 5-6 of the UDD algorithm [see (b) in Fig. 1] imply

ū
∗∗
k = ᾱ∗

k





∑

j 6=k

Hkv
∗
j (v

∗
j )

H
H

H
k + σ2

kI





−1

Hkv
∗
k,∀k ∈ K,

whereᾱ∗
k is normalization factor. From the above equation, we infer thatū∗∗

k maximizes SINRDk (p
∗, v̄∗, ūk)

with respect toūk. It follows from (45) that ū∗
k also maximizes SINRDk (p

∗, v̄∗, ūk). Thus we have

ϑū∗∗
k = ū

∗
k,∀k ∈ K for some complex valued scalarϑ with |ϑ| = 1.

Next, we showq∗ = q∗∗ and further SINRUk (q
∗, ū∗, v̄∗

k) = γk, ∀k ∈ K. Step 9 of the UDD algorithm

[see (d) in Fig. 1] implies

SINRU
k (q

rj , ūrj , v̄
rj
k ) ≥ γk,∀k ∈ K.

Taking limit asj →∞, we have

SINRU
k (q

∗, ū∗, v̄∗
k) ≥ γk,∀k ∈ K.

and thus

SINRU
k (q

∗, ū∗∗, v̄∗
k) ≥ γk,∀k ∈ K. (46)

by noting ϑū∗∗
k = ū

∗
k. Combining (46), (42), and

∑K
k=1 σ

2
kq

∗
k =

∑K
k=1 σ

2
kq

∗∗
k , we infer that bothq∗k’s

andq∗∗k ’s are the optimal solutions to problem (10) with thereūk’s and v̄k’s replaced byū∗∗
k ’s and v̄∗

k’s
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respectively. Since problem (10) has a unique solution[10], we concludeq∗k = q∗∗k , ∀k ∈ K, and

SINRU
k (q

∗, ū∗, v̄∗
k) = γk,∀k ∈ K. (47)

Now we are ready to end up the proof. By notingϑū∗∗
k = ū

∗
k and q∗∗ = q∗, Step 5-8 of the UDD

algorithm implies

u
∗
k = α∗

k





∑

j 6=k

Hkv
∗
j (v

∗
j )

H
H

H
k + σ2

kI





−1

Hkv
∗
k,∀k ∈ K. (48)

whereα∗
k is a normalization factor. On the other hand, Step 9-12 of theUDD algorithm implies

v
∗
k = β∗

k



I+
∑

j 6=k

H
H
j u

∗
j(u

∗
j )

H
Hj





−1

H
H
k u

∗
k,∀k ∈ K. (49)

whereβ∗
k is a normalization factor.

Eqs. (41), (47), (48), and (49) can be equivalently written as

1

γk
|(u∗

k)
H
Hkv

∗
k|2 −

∑

j 6=k

‖(u∗
k)

H
Hkv

∗
j‖2 = σ2

k‖u∗
k‖2 (50)

1

γk
|(v∗

k)
H
H

H
k u

∗
k|2 −

∑

j 6=k

‖(v∗
k)

H
H

H
j u

∗
j‖2 = ‖v∗

k‖2 (51)

u
∗
k = α∗

k(C
∗
k)

−1
Hkv

∗
k (52)

v
∗
k = β∗

k(D
∗
k)

−1
H

H
k u

∗
k (53)

whereC∗
k =

∑

j 6=k Hkv
∗
j (v

∗
j )

H
H

H
k + σ2

kI, D
∗
k = I+

∑

j 6=k H
H
j u

∗
j(u

∗
j )

H
Hj .

Combining Lemma 5, (50), and (52), we obtain
(

C
∗
k −

1

γk
Hkv

∗
k(v

∗
k)

H
H

H
k

)

u
∗
k = 0 (54)

Similarly, Lemma 6, (51), and (53) imply
(

D
∗
k −

1

γk
H

H
k u

∗
k(u

∗
k)

H
Hk

)

v
∗
k = 0 (55)

It can be readily seen that, (54), (55), and (50) implies the KKT condition (12) withλk = 1 for all k.

Thus the proof is completed.

Remark 2 Although both algorithms require feasible initialization, it is easier for the MMSE-DUAL

algorithm than the UDD algorithm to obtain a feasible initialization. For example, whenM ≥ K, it

is guaranteed that problem (P1) with any given nonzerouk ’s is feasible (e.g., zero-forcing solution for

vk’s) and thus the MMSE-DUAL algorithm can be randomly initialized in this case. However, random

initialization for the UDD algorithm in this case may fail. This is also verified with a specific example

in Section VI.

August 20, 2018 DRAFT



21

V. EXTENSION TO MULTIPLE STREAM CASE

Now we consider the extension of the two algorithms to the multiple stream case. Differently from

[6], we assume that joint detection is employed at receivers. Let Vk be the transmit beamformer for user

k. In this case, each user’s achieved rate is given by

Rk , log det
(

I+HkVkV
H
k H

H
k Ω

−1
k

)

whereΩk , σ2
kI+

∑

j 6=k HkVjV
H
j H

H
k is the interference plus noise covariance matrix. We are interested

in solving the following rate constrained power minimization problem

min
V

K
∑

k=1

Tr(VkV
H
k )

s.t. Rk ≥ rk, k ∈ K
(56)

whererk represents the rate requirement for userk.

It is known that the streams of userk can be decoded sequentially without loss of information using

MMSE receiver coupled with sequential interference cancelation (SIC) technique[18], [20]. Indeed, it is

easily verified that

Rk =

dk
∑

m=1

log(1 + SINRk,m) (57)

where

SINRk,m ,
|uH

k,mHkvk,m|2

uH
k,m

(

σ2
kI+

∑

j 6=k

∑dj

i=1 Hkvj,iv
H
j,iH

H
k +

∑dk

i=m+1 Hkvk,iv
H
k,iH

H
k

)

uk,m

,

vk,m is them-th column ofVk, i.e., the transmit beamformer for streamm, and

uk,m =



σ2
kI+

∑

j 6=k

dj
∑

i=1

Hkvj,iv
H
j,iH

H
k +

dk
∑

i=m+1

Hkvk,iv
H
k,iH

H
k





−1

Hkvk,m

is referred to as MMSE-SIC receiver.

Defineγk,m , e
rk

dk − 1, m = 1, 2, . . . , dk. With equal rate allocationrk
dk

across multiple streams, Liu.

et. al[20, Theorem 4] proved that the following SINR-constrained power minimization problem

min
u,v

K
∑

k=1

dk
∑

m=1

‖vk,m‖2

s.t.
|uH

k,mHkvk,m|2

uH
k,m

(

σ2
kI+

∑

j 6=k

∑dj

i=1 Hkvj,iv
H
j,iH

H
k +

∑dk

i=m+1 Hkvk,iv
H
k,iH

H
k

)

uk,m

≥ γk,m,

m = 1, 2, . . . , dk, k ∈ K.

(58)
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can achieve the same optimal solution as that of problem (56). However, we still cannot solve problem

(58) to global optimality. Fortunately, the special structure of Problem (58) allows us to apply the UDD

algorithm or MMSE-DUAL algorithm. Since the UDD algorithm or MMSE-DUAL algorithm reaches a

KKT point of problem (58), a question arises: whether a KKT point of problem (58) is also a KKT point

of problem (56). In the following proposition, we show the KKT equivalence of the two problems under

a mild set of conditions. The proof is relegated to appendix.

Proposition 3 Let {vk,m,uk,m} be a KKT point of problem(58), and let

Ψk,m , Ωk +

dk
∑

i=m

Hkvk,iv
H
k,iH

H
k .

Suppose{vk,m} satisfiesvH
k,1H

H
k Ψ

−1
k,mHkvk,m 6= 0, m = 2, 3, . . . , dk, k ∈ K, then

1) {vk,m} is a KKT point of problem(56).

2) A KKT point of (56) can be obtained by solving Problem(58) using either the MMSE-DUAL or

the UDD algorithm.

Remark 3 It can be shown that the conditionvH
k,1H

H
k Ψ

−1
k,mHkvk,m 6= 0, m = 2, 3, . . . , dk, k ∈ K is

equivalent touH
k,mHkvk,1 6= 0, m = 2, 3, . . . , dk, k ∈ K; see(66) in Appendix. This means that, for each

user k, detection of all the second, third, ..., and thedk-th symbols are interfered by the first symbol,

which is generally true in the multi-stream scenario.

Remark 4 In the proof of Proposition 3, the assumptionvH
k,1H

H
k Ψ

−1
k,mHkvk,m 6= 0, m = 2, 3, . . . , dk,

k ∈ K is used to obtainλk,1 = λk,2 = . . . = λk,dk
, k ∈ K, which finally leads to Part 1). It is worthy

mentioning that, if this assumption is relaxed, there indeed exists some example (shown in the end of this

paper) whereλk,1 = λk,2 = . . . = λk,dk
, k ∈ K may not hold and in this case the KKT point{vk,m} of

problem(58) is not a KKT point of problem(56).

Remark 5 LetK̄ =
∑K

k=1 dk. Similar to the single stream case, it can be shown that, for the multi-stream

case, the complexity of each fixed point iteration in the MMSE-DUAL algorithm is8 O(K̄M2+M3), while

solving the system of equations for thēK dual variables in the UDD algorithm requires the complexity

of O(MK̄2 + K̄3). Hence, in the general multi-stream case where
∑K

k=1 dk > M , the MMSE-DUAL

algorithm has a lower complexity than the UDD algorithm.

8Note that in the multi-stream case the matrix inversion operations in the fixed point iteration can still be recursively computed.

This is why we have the termO(M3) as in the single stream case.
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VI. SIMULATION RESULTS

In this section, we numerically evaluate the performance ofthe MMSE-DUAL algorithm and the UDD

algorithm. Note that, we here only provide the convergence performance of the two algorithms in the

single stream case but similar convergence behavior is alsoobserved in the multiple stream case. The

QoS level and noise variance are set equally to beγ andσ2 across all the users. Uncorrelated fading

channel model for all channel matrices between users and theBS are assumed. Each channel coefficient

is generated from the zero mean complex Gaussian distribution with unit variance. We also setN = 20

for the number of fixed point iterations.

A. Infeasible initialization

In our first numerical experiment, we study the effect of the infeasible initialization on the algorithms.

In the experiment, the BS serves two users, all equipped withtwo antennas, i.e.,M = N = K = 2. We

setγ = 10, σ2 = 1, and the channel matrices between the BS and the two users arerespectively

H1 =





0.2097 + 0.0429i 0.4385 + 0.1650i

−0.9788 + 0.1614i 0.1543 + 0.5013i



 , (59)

H2 =





−1.0800 − 0.3203i 0.2582 + 0.1785i

0.1714 − 0.2729i −0.9692 − 0.1711i



 . (60)

With initial transmit beamformers

v1 = [0.0701+0.7443i − 0.3386+0.0235i]T ,

v2 = [−1.3709+2.0320i 0.1491−0.0298i]T ,

the corresponding normalized MMSE receivers are calculated as

ū1 = [−0.7423−0.1885i − 0.2951−0.5713i]T ,

ū2 = [0.7580−0.6429i − 0.1084+0.0209i]T ,

leading to SINR values, SINR1 = 0.1592 and SINR2 = 4.3871, which are both smaller than the required

SINR valueγ = 10. Furthermore, it can be easily checked that the linear system on q1 andq2 with the

fixed initial beamformers

1

γk
qk|vH

k H
H
k ūk|2 −

∑

j 6=k

qj‖vH
k H

H
j ūj‖2 = ‖vk‖2, k = 1, 2
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Fig. 2. Infeasible initialization of MMSE-DUAL algorithm
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Fig. 3. Similar behavior of MMSE-DUAL and UDD algorithm:K = 4, M = 7, N = 3, γ = 10, σ2 = 1.

has negative solutionsq1 = −3.5627 and q2 = −1.1379. Therefore, the uplink power update cannot

be done in the UDD algorithm. While the UDD algorithm fails with this initialization, the MMSE-

DUAL algorithm can quickly reach a feasible point in the second iteration and then exhibits a monotonic

convergence in subsequent iterations, as shown in Fig. 2.

B. Convergence property

In this set of numerical experiments, we randomly initialize the MMSE-DUAL algorithm. The UDD

algorithm is initialized by a feasible point obtained by fewiterations of the MMSE-DUAL algorithm.

Figure 3 shows that the MMSE-DUAL algorithm and the UDD algorithm have a very similar convergence

behavior.

Figures 4 and 5 show that the two algorithms can almost alwaysconverge to a same objective function
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Fig. 4. The MMSE-DUAL algorithm often converge to a same objective value:K = 3, M = 4, N = 3, γ = 10, σ2 = 1.
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Fig. 5. The UDD algorithm often converge to a same objective value:K = 3, M = 4, N = 3, γ = 10, σ2 = 1.

value which may be global optimum regardless of initial points (different initial points are denoted by

circles). However, in an extremely rare case, local convergence for the MMSE-DUAL algorithm (also for

the UDD algorithm) was observed in Fig. 6 where two differentinitial points resulted in two different

objective values upon convergence.

VII. C ONCLUSION

In this paper, we have considered the SINR–constrained power minimization problem for MU-MIMO

system. Based on the KKT analysis of the power minimization problem, we propose the MMSE-DUAL

algorithm. Although the latter algorithm is in essence the MMSE-SOCP algorithm in [12], it connects

the MMSE-SOCP algorithm and the UDD algorithm. It is shown that the UDD algorithm[9] also works
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Fig. 6. The MMSE-DUAL algorithm (also the UDD algorithm) mayconverge to different local solutions depending on the

initialization: K = 6, M = 10, N = 2, γ = 100, σ2 = 0.1.

towards the KKT condition of the QCPM problem as the MMSE-DUAL/the MMSE-SOCP algorithm.

Furthermore, we theoretically prove that all three algorithms can monotonically converge to a KKT

point of the QCPM problem. Our numerical experiments show that the three algorithms almost always

converge to a same value which may be the optimal value, but local convergence of these algorithms is

also observed.

VIII. A PPENDIX

A. The Proof Of Proposition 3

Proof: The proof of the second part of Proposition 3 is trivial once the first part is proven. Hence,

we here focus on proving the first part of Proposition 3. Letλk,m be the Lagrange multiplier associated

with the constraint of problem (58) indexed by(k,m). The KKT condition of Problem (58) is given by
(

Ψk,m+1 −
1

γk,m
Hkvk,mv

H
k,mH

H
k

)

uk,m = 0, (61a)



I+
∑

j 6=k

dj
∑

i=1

λj,iH
H
j uj,iu

H
j,iHj +

m−1
∑

i=1

λk,iH
H
k uk,iu

H
k,iHk −

λk,m

γk,m
H

H
k uk,mu

H
k,mHk



vk,m = 0,

(61b)

|uH
k,mHkvk,m|2

uH
k,mΨk,m+1uk,m

= γk,m, (61c)

λk,m ≥ 0,∀m,k. (61d)
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In the following, we are going to show that given any tuple{vk,m,uk,m, λk,m} satisfying the above

system,{vk,m, λk,m} must also satisfy the KKT condition for problem (56). The proof is divided into

two steps.

In the first step, we prove that (61b) can be equivalently rewritten as the first–order optimality condition

of problem (56) by using (61b) and (61c), and showingλk,1 = λk,2 = . . . = λk,dk
, ∀k. From (61a), we

infer thatuk,m must be in the form of MMSE receiver

uk,m = βk,mΨ
−1
k,m+1Hkvk,m (62)

whereβk,m is an arbitrary nonzero scalar. By takingβk,m = 1√
1+γk,m

and using (62), we have

H
H
k uk,mu

H
k,mHk =

1

1 + γk,m
H

H
k Ψ

−1
k,m+1Hkvk,mv

H
k,mH

H
k Ψ

−1
k,m+1Hk. (63)

Moreover, from (61c) and (62), we have

γk,m = v
H
k,mH

H
k Ψ

−1
k,m+1Hkvk,m. (64)

It follows that

H
H
k uk,mu

H
k,mHk

=
1

1 + vH
k,mH

H
k Ψ

−1
k,m+1Hkvk,m

H
H
k Ψ

−1
k,m+1Hkvk,mv

H
k,mH

H
k Ψ

−1
k,m+1Hk

=H
H
k

(

Ψ
−1
k,m+1 −

(

Ψk,m+1 +Hkvk,mv
H
k,mH

H
k

)−1
)

Hk

=H
H
k

(

Ψ
−1
k,m+1 −Ψ

−1
k,m

)

Hk

(65)

where in the second equality we have used Woodbury identity[21]. Similarly, we have

H
H
k uk,mu

H
k,mHkvk,m

=
γk,m

1 + γk,m
H

H
k Ψ

−1
k,m+1Hkvk,m

=γk,m

(

1− γk,m

1 + γk,m

)

H
H
k Ψ

−1
k,m+1Hkvk,m

=γk,m

(

1−
v
H
k,mH

H
k Ψ

−1
k,m+1Hkvk,m

1 + γk,m

)

H
H
k Ψ

−1
k,m+1Hkvk,m

=γk,m

(

H
H
k Ψ

−1
k,m+1Hkvk,m −

H
H
k Ψ

−1
k,m+1Hkvk,mv

H
k,mH

H
k Ψ

−1
k,m+1Hkvk,m

1 + γk,m

)

=γk,mH
H
k

(

Ψ
−1
k,m+1 −

Ψ
−1
k,m+1Hkvk,mv

H
k,mH

H
k Ψ

−1
k,m+1

1 + vH
k,mH

H
k Ψ

−1
k,m+1Hkvk,m

)

Hkvk,m

=γk,mH
H
k Ψ

−1
k,mHkvk,m

(66)
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where we have used the relationγk,m = v
H
k,mH

H
k Ψ

−1
k,m+1Hkvk,m in the first and third equality, and the

Woodbury identity in the last equality.

By using (63), we have

∑

j 6=k

dj
∑

i=1

λj,iH
H
j uj,iu

H
j,iHj =

∑

j 6=k

dj
∑

i=1

λj,i
1

1 + γj,i
H

H
j Ψ

−1
j,i+1Hjvj,iv

H
j,iH

H
j Ψ

−1
j,i+1Hj , (67)

Using (65), we get

m−1
∑

i=1

λk,iH
H
k uk,iu

H
k,iHk =

m−1
∑

i=1

λk,iH
H
k

(

Ψ
−1
k,i+1 −Ψ

−1
k,i

)

Hk (68)

and using (66), we obtain

λk,m

γk,m
H

H
k uk,mu

H
k,mHkvk,m = λk,mH

H
k Ψ

−1
k,mHkvk,m (69)

By defining

Υk,i ,
1

1 + γk,i
H

H
k Ψ

−1
k,i+1Hkvk,iv

H
k,iH

H
k Ψ

−1
k,i+1Hk,

and substituting (67), (68), and (69) into (61b), we have


I+
∑

j 6=k

dj
∑

i=1

λj,iΥj,i +

m−1
∑

i=1

λk,iH
H
k

(

Ψ
−1
k,i+1 −Ψ

−1
k,i

)

Hk − λk,mH
H
k Ψ

−1
k,mHk



vk,m = 0 (70)

By noting that

m−1
∑

i=1

λk,iH
H
k

(

Ψ
−1
k,i+1 −Ψ

−1
k,i

)

Hk − λk,mH
H
k Ψ

−1
k,mHk

=− λk,1H
H
k Ψ

−1
k,1Hk +

m−1
∑

i=1

(λk,i − λk,i+1)H
H
k Ψ

−1
k,i+1Hk,

(71)

we rewrite (70) as


I− λk,1H
H
k Ψ

−1
k,1Hk +

∑

j 6=k

dj
∑

i=1

λj,iΥj,i +

m−1
∑

i=1

(λk,i − λk,i+1)H
H
k Ψ

−1
k,i+1Hk



vk,m = 0. (72)

Considering (72) withm = 1 andm = 2, we have


I− λk,1H
H
k Ψ

−1
k,1Hk +

∑

j 6=k

dj
∑

i=1

λj,iΥj,i



vk,1 = 0 (73)



I− λk,1H
H
k Ψ

−1
k,1Hk +

∑

j 6=k

dj
∑

i=1

λj,iΥj,i + (λk,1 − λk,2)H
H
k Ψ

−1
k,2Hk



vk,2 = 0. (74)

Left-multiplying v
H
k,1 on both sides of (74) and using (73) yeild

(λk,1 − λk,2)v
H
k,1H

H
k Ψ

−1
k,2Hkvk,2 = 0
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implying λk,1 = λk,2 due tovH
k,1H

H
k Ψ

−1
k,2Hkvk,2 6= 0 by assumption. Recursively, we infer from (72)

that λk,i = λk,i+1, by using the conditionvH
k,1H

H
k Ψ

−1
k,iHkvk,i 6= 0, i = 2, 3, . . . , dk. Hence, by letting

λk = λk,1 for all k, and usingVk = [vk,1 vk,2 . . . vk,dk
], we can compactly write (72) as



I− λkH
H
k Ψ

−1
k,1Hk +

∑

j 6=k

λj

dj
∑

i=1

Υj,i



Vk = 0. (75)

Note that we have

∇Vk
log det(I+HkVkV

H
k H

H
k Ω

−1
k )

=∇Vk
(log detΨk,1 − log detΩk)

=∇Vk
log detΨk,1 = H

H
k Ψ

−1
k,1HkVk

(76)

and

∇Vk
log det(I+HjVjV

H
j H

H
j Ω

−1
j )

=

dj
∑

i=1

∇Vk
log det(I+Hjvj,iv

H
j,iH

H
j Ψ

−1
j,i+1) = −

dj
∑

i=1

Υj,iVk.

(77)

Substituting (76) and (77) into (75) yields

Vk − λk∇Vk
log det(I+HkVkV

H
k H

H
k Ω

−1
k )−

∑

j 6=k

λj∇Vk
log det(I +HjVjV

H
j H

H
j Ω

−1
j ) = 0 (78)

which is the first–order optimality condition of problem (56).

In the second step, we prove by using (64) that{vk,m} satisfies the constraints of problem (56) with

equality. Sinceγk,m = 2
rk

dk − 1, m = 1, 2, . . . , dk, ∀k, we have

log det(I+Hkvk,mv
H
k,mHkΨ

−1
k,m+1)

= log det(1 + v
H
k,mHkΨ

−1
k,m+1Hkvk,m)

= log det(1 + γk,m) =
rk

dk
.

(79)

where we use the identitydet(I + AB) = det(I +BA)[21] in the first equality and (64) in the second

equality. By summing (79) overm = 1, 2, . . . , dk, we obtain

dk
∑

m=1

log det(I+Hkvk,mv
H
k,mHkΨ

−1
k,m+1) = log det(I+HkVkV

H
k HkΩ

−1
k ) = rk (80)

Combining (78), (80), and together withλk ≥ 0 ∀k, we concludes that{vk,m} and {λk} satisfy the

KKT condition of problem (56).
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IX. A C OUNTER EXAMPLE

In the proof of Proposition 3, the assumptionvH
k,1H

H
k Ψ

−1
k,mHkvk,m 6= 0, m = 2, 3, . . . , dk, k ∈ K

is used to obtainλk,1 = λk,2 = . . . = λk,dk
, k ∈ K, which finally leads to Part 1) of Proposition 3.

Intuitively, it may hold thatλk,1 = λk,2 = . . . = λk,dk
for the case whenγk,1 = γk,2 = . . . = γk,dk

, even

if the assumption does not hold. However, it is worthy mentioning that, if the assumption is relaxed,

there indeed exists some counter example as shown below, where, λk,1 = λk,2 = . . . = λk,dk
, k ∈ K

may not hold whenγk,1 = γk,2 = . . . = γk,dk
, k ∈ K and as a result the KKT point{vk,m} of problem

(58) is not a KKT point of problem (56).

Let us consider the special case—the point to point MIMO system with two streams. In this case, the

rate-constrained power minimization problem (56) boils down to

min
V

Tr(VV
H)

s.t. log det(I +HVV
H
H) ≥ r.

(81)

With equal rate allocation for the two streams, the optimal solution to problem (81) can be found by

solving the following problem

min
u1,u2,v1,v2

‖v1‖2 + ‖v2‖2

s.t.
|uH

1 Hv1|2
uH
1 (I+Hv2v

H
2 HH)u1

≥ γ1,

|uH
1 Hv2|2
uH
1 u1

≥ γ2

(82)

whereγ1 = γ2 = e
r

2 − 1.

Let λ1 andλ2 be the Lagrange multiplier associated with the first and second constraint of problem

(82), respectively. In the following, we show that there mayexist the caseλ1 6= λ2 whenγ1 = γ2. The
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KKT system of problem (82) is given by
(

I+Hv2v
H
2 H

H − 1

γ1
Hv1v

H
1 H

H

)

u1 = 0 (83)

(

I− 1

γ2
Hv2v

H
2 H

H

)

u2 = 0 (84)

(

I− λ1

γ1
H

H
u1u

H
1 H

)

v1 = 0 (85)

(

I+ λ1H
H
u1u

H
1 H− λ2

γ2
H

H
u2u

H
2 H

)

v2 = 0 (86)

|uH
1 Hv1|2

uH
1 (I+Hv2v

H
2 HH)u1

= γ1 (87)

|uH
2 Hv2|2
uH
2 u2

= γ2 (88)

λ1, λ2 ≥ 0 (89)

For the special case, we relax the assumption, i.e., letv
H
1 H

H
Hv2 = 0, which holds ifv1 andv2 are

two orthogonal eigenvectors ofHH
H. In the following, we letv1 andv2 be two orthogonal eigenvectors

of H
H
H, such thatvH

2 H
H
Hv2 = γ2 and v

H
1 H

H
(

I+Hv2v
H
2 H

H
)−1

Hv1 = γ1. Hence, we have

H
H
Hv1 = µ1v1 and H

H
Hv2 = µ2v2 where µ1 and µ2 are the two corresponding eigenvalues of

H
H
H. Furthermore, we let

u1 =
1√

1 + γ1

(

I+Hv2v
H
2 H

H
)−1

Hv1, (90)

u2 =
1√

1 + γ2
Hv2, (91)

and

λ1 =
1 + γ1

µ1
andλ2 =

1 + γ2

µ2
. (92)

Now we are ready to show that(u1,v1,u2,v2, λ1, λ2) defined above satisfies the KKT system (83-89).

Let us start with examining (83) and (84). First, sincev
H
1 H

H
Hv2 = 0, we have

(

I+Hv2v
H
2 H

H
)−1

Hv1 =

Hv1. Thus,

u1 =
1√

1 + γ1
Hv1, (93)

which is clearly orthogonal tou2 andHv2 due tovH
1 H

H
Hv2 = 0. It follows that

(

I+Hv2v
H
2 H

H − 1

γ1
Hv1v

H
1 H

H

)

u1

=u1 −
1√

1 + γ1

1

γ1
Hv1v

H
1 H

H
(

I+Hv2v
H
2 H

H
)−1

Hv1

=u1 −
1√

1 + γ1
Hv1 = 0

(94)

August 20, 2018 DRAFT



34

where the first equality is due tovH
2 H

H
u1 = 0 and (90), the second equality is due to

v
H
1 H

H
(

I+Hv2v
H
2 H

H
)−1

Hv1 = γ1, and the last equality is due to (93). Thus, (83) follows. Similarly,

we can verify thatu2 andv2 satisfy (84).

Next let us check (85) and (86). First, due to (90) andv
H
1 H

H
(

I+Hv2v
H
2 H

H
)−1

Hv1 = γ1, we

haveuH
1 Hv1 =

γ1√
1+γ1

. It follows that
(

I− λ1

γ1
H

H
u1u

H
1 H

)

v1

= v1 −
λ1√
1 + γ1

H
H
u1

= v1 −
λ1

1 + γ1
H

H
Hv1 = 0

(95)

where the second equality is due to (93) and the last equalityfollows from λ1 = 1+γ1

µ1

andHH
Hv1 =

µ1v1. Thus, (85) follows. Similarly we can verify (86).

Finally, it is easy to verify that (87), (88), and (89) hold true for the defined(u1,v1,u2,v2, λ1, λ2).

Now we are ready to draw the conclusion. From (92), it is readily known that, whenHH
H has two

different eigenvaluesµ1 andµ2, we haveλ1 6= λ2 even if γ1 = γ2.
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