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SINR Constrained Beamforming for a MIMO

Multi-user Downlink System

Qingjiang Shi, Meisam Razaviyayn, Mingyi Hong and Zhi-Quaro

Abstract

Consider a multi-input multi-output (MIMO) downlink multiser channel. A well-studied problem in
such system is the design of linear beamformers for poweinmation with the quality of service (QoS)
constraints. The most representative algorithms for aglthis class of problems are the so-called MMSE-
SOCP algorithm([11],[[12] and the UDD algorithim [9]. The fagmis based on alternating optimization
of the transmit and receive beamformers; while the lattdvased on the well-known uplink-dowlink
duality theory. Despite their wide applicability, the cengence (to KKT solutions) of both algorithms is
still open in the literature. In this paper, we rigorouslyadsish the convergence of these algorithms for
QoS-constrained power minimization (QCPM) problem withhosingle stream and multiple streams per
user cases. Key to our analysis is the development and @afys new MMSE-DUAL algorithm, which
connects the MMSE-SOCP and the UDD algorithm. Our numesggkriments show that 1) all these
algorithms can almost always reach points with the samectibgevalue irrespective of initialization;
2) the MMSE-SOCP/MMSE-DUAL algorithm works well while theDID algorithm may fail with an

infeasible initialization.

. INTRODUCTION

Multi-user MIMO (MU-MIMO) is a key building block of the nexgeneration wireless communication
system. In a MU-MIMO downlink system, a base station (BS)igped with multiple antennas simultane-
ously transmits data to a group of multiple antenna users.fititi-user interference, which is the major
performance limiting factor of MU-MIMO systems, must be raged intelligently using the physical

layer techniques such as beamforming. In general, theréwaremajor objectives in the beamformer
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design problem. One is to maximize a system utility (e.groulghput) under some power constraint,
while the other one is to minimize the system transmissioweguosubject to QoS requirements [1].

Although both formulations are justifiable and well-stuti¢he latter is more appropriate for scenarios
where the users need a guaranteed QoS level.

Although the QoS-constrained power minimization (QCPM)gem is globally solvable in polynomial
time for MISO system([[16],[[7],[]2], this problem is highly naonvex and difficult to solve in MIMO
systems. In fact, it has been shown that when the BSs and #ms ase equipped with more than
two antennas, the problem becomes NP-haid [3]. Therefoamynalgorithms have been proposed to
solve this problem approximately. For example, the refegsr{4] and|[5] propose algorithms based on
interference nulling, which can completely eliminate theei-user interference. In these algorithms, the
search space of transmit and receive beamformers is linotedro forcing transceivers, leading to simple
but suboptimal solutions. In addition, such interferenallimg based methods require that the number of
transmit antennas is no less than the total number of actgesuwhich is impractical in many scenarios.

Another approach for solving the MU-MIMO downlink QCPM pie is based on the iterative
optimization methods [6],19],.18],.112],.[11]. Referencg], [9], [B] provide iterative algorithms that
update the transmit beamformers, receive beamformerstransmit powets by switching between the
downlink and the dual uplink channels. Central to these odslis the notion of uplink-downlink duality
(UDD) theory [13], [14], [15], which guarantees that a settafget SINR levels is achievable in the
downlink channel if and only if the same set of SINR levelsdkiavable in the corresponding dual uplink
channel. We refer to such algorithms as UDD algorithms. TB®Ualgorithm was first proposed inl[8]
for the multi-antenna case, where tleeeive(resp. transmit) beamformer update is followed immedyjatel
by the transmit (resp. receive) power update. The UDD algorithm[of [9] difé&rom that of [8] in the
order of updating transmit/receive beamformers and pawerthe UDD algorithm of[[9], theransmit
(resp. receive) power is updated exactly after ttamsmit (resp. receive) beamformer. Importantly, it
is shown in [[9] that the UDD algorithm monotonically decresaghe total power consumption while
satisfying the QoS constraints. However, the algorithm{8in [9] can only apply to thesingle stream
case In [6] the UDD algorithm has been generalized to the mudtisiream case under the assumption
of no joint detection at the receivers (i.eter-streaminterference is considered). Notice that, to the best
of our knowledge, it is still not known whether the UDD algbrm converges to a KKT solution.

Different from the previous works, the references|[11] eb2] [have proposed an iterative algorithm

YIn [6], [9], [B], the power allocation and beamforming areasated and thus both need to be optimized.
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named MMSE-SOCP, which aims to solve the QCPM problem dyte€he algorithm consists of the
following two key steps: 1) Fixing the transmit power, upsldhe receive beamformers using MMSE
receiver, and 2) Fixing the receive beamformers, updaterdmsmit beamformers by solving the power
minimization problem with respect to the transmit beamfersn The authors show that the total transmit
power monotonically decreases and thus converges. Howtherconvergence of the MMSE-SOCP
iterates to a KKT solution is not known. Nevertheless, théhars of [8] and [[12] observe that the
MMSE-SOCP algorithm always generates a sequence that ig@s/€0 a unique solution, irrespective
of the initial point (or at least with high probability, seB]). Hence, a conjecture has been made in
[12], stating that the MMSE-SOCP algorithm probably reachdocal optimum solution of the QCPM
proble

In this paper, we settle the convergence issue related tMMSE-SOCP and the UDD algorithm. We
show that both algorithms converge globally to the set of KéGlutions, regardless of the number of
streams intended for each user. We start by analyzing the &d€iitions of the QCPM problem of the
single stream case. Based on the analysis, we propose aitevagie algorithm called MMSE-DUAL
algorithm, which is essentially equivalent to the MMSE-S®@&lgorithm, but with the added benefits
of having almost closed form updates and a lower compleXityough the MMSE-DUAL algorithm,
we reveal some connections between the UDD algorithm[9]thadVIMSE-SOCP algorithm_[11]} [12].
More importantly we prove that both the MMSE-DUAL algorittand the UDD algorithm monotonically
converge to the set of KKT solutions of the QCPM problem. Iditon, we extend the algorithms to
the multiple stream case and prove that they can also readiTapgint of the QCPM problem under
some mild conditions. As will be seen later, the MMSE-DUAIlg@iithm has a lower complexity than
the UDD algorithm if the number of streams is greater thanniln@ber of transmit antennas. Moreover,
although both algorithms require feasible initializatignis easier for the MMSE-DUAL algorithm to
obtain a feasible initialization (see Remaik 2 in Sectiol. IV

The remainder of this paper is organized as follows. In 8acti we give the formulation of the
QCPM problem and provide a brief review of the existing altpons. In Section Il we propose the
MMSE-DUAL algorithm which reveals the relation between MiMSE-SOCP and the UDD algorithm.
Then, we state the convergence results of the three algwith Section IV and extend the algorithms

to the multiple stream case in Section V. Finally, sectiorp¥dsents some simulation results and Section

2It is argued in [[I2] that, “Though the proposed algorithm af& converges and seems to converge to a unique optima
irrespective of the starting point from the simulation fl&sit may be possible that the steadystate solutionlecal optimumn’
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VII concludes the paper.

Notations Throughout this paper, we use uppercase bold letters fariaeg, lowercase bold letters
for column vectors, and regular letters for scalars. Theemgipt” is used to denote the Hermitian
transpose of a matrix. For a complex number/(a) and Ima) denote its phase angle and imaginary
part, respectively. For a functiofi(-), Vxf(:) denotes its gradient with respect to the variabld=or a
matrix A, A > 0 indicates thatA is a positive semidefinite matrid. denotes the identity matrix of an
appropriate size. The circularly symmetric complex Gaarsslistribution is represented B\ (1, o2),
wherey is the mean and? is the variance of the distribution. The notationg-Yanddet(-) represent

the trace and the determinant operator, respectively.

II. PROBLEM FORMULATION AND EXISTING ALGORITHMS
A. Problem Formulation

Consider a multi-user MIMO downlink system witli users, where the BS is equipped withh > 1
antennas and each ugeris equipped withN, > 1 antennas. Let us us€ = {1,2,..., K} to denote
the set of all users. Assume for now that the BS transmitsititgesstreams, to the intended receiver
with no multiplexing (the multiple stream case will be catesied in Section VI). Let us also assume
that the BS utilizes the transmit beamformer € CM*! to send the data stream to userk. On the
other side, usek utilizes the receive beamformes, € CN+*! to estimate its transmitted data stream.

The estimated data streasp can be mathematically expressed as

K
S = ukH H; Z’Uj&’j +ng |, VEeK, Q)
j=1

where H, € CV+*M denotes the channel matrix from the BS to the receijen; € CN+*! is the
additive white Gaussian noise (AWGN) with distributiéV'(0, o7). The data streams,’s are i.i.d. and
independent of the noise level; and have distributiovi(0, 1).

We are interested in designing the transmit and receive fogamars to minimize the transmit power
while the users’ QoS requirements are satisfied. Let us denthe signal-to-interference-plus-noise ratio
(SINR) as the QoS measure. The SINR of ukds given by:
|ui Hyvy |

SINR;, & .
Dk [uf B2 + o fug |2

(@)

August 20, 2018 DRAFT



Mathematically, the QCPM problem can be written as

K
min Z k|2
v,u
=1
|uj Hyvg|?
> i [up Hyvj 2407 ||uy|

where~; > 0 is the intended SINR level of usés, the set of all transmit beamformers (resp. receive

(P1)
S.t.

|22’Yk, Vk e K,

beamformers) is denoted by = {v1,...,vk} (resp.u = {u1,...,ux}). Throughout the paper, we

assume that problem (P1) is feasible arfd> 0 for all k.

B. Existing Algorithms: A Brief Review

In this subsection, we briefly review the existing MMSE-SCagorithm [12] and the UDD algorithm
[9].

1) MMSE-SOCP Algorithni [11]/[12]:The MMSE-SOCP algorithm alternates between the following
two steps:

1. Fixing all the transmit beamformers, update the receaamiformers using the MMSE receiver, i.e.,
~1
up = ZHkvjffokH + O‘]%I Hyv,, Vk € K.
J#k
2. Fixing all the receive beamformers, update the transesintformers by solving

K
minz |k
v
k=1
|uf Hyv |

S i | Hypw 2407 ||lug |

which can be transformed to a second-order cone program P$Q2], [16]. The above SOCP

®3)

S.t.

5>k Yk € K,

has K M unknowns and can be efficiently solved via interior-poirgoaithm; each iteration of the

interior-point algorithm has computational complexity @f K3 M3)[22].

2) UDD Algorithm [Q]: Let u; and v, denote the normalized beamformer, i®; = ,/qzu; and
v = /Pr0; With ||ug|| = ||vk|| = 1. We referuy, and v, as the normalized beamformeys, and g as

the power consumption. Using these notations, the dowrdirdnnel model{1) can be rewritten as

K
S = varuy! | Hy ) /pivjsj+my |, Vk € K. (4)
j=1

The UDD algorithm is established by introducingriatual uplink channel, which can be constructed

through the following three steps: 1) reverse the direstioinall links; 2) replace the channel matrices by

August 20, 2018 DRAFT



their conjugated transposed version (iH, «+ HkH Vk); 3) exchange the role of transmit beamformer

and receive beamformer. Mathematically, the virtual uplishannel model can be represented as

K
Se=peop | Y qHIu;s; + 0y |, VkeK, (5)
j=1

wheren;, = Jiknk is the virtual uplink channel AWGN.
In terms of the channel models| (4) aind (5), the SINRs for thentiak and uplink are respectively

expressed as
pr|| @ Hy [

SINR? = (6)
all (Z#kpjﬂkﬁjﬁfHkH + a,%I) ay,
and
—HHH — 112
ol (Z#k ¢ H u;ul"H; + I) Uy,
Then, fixing the beamformers, tlkownlink power minimization problem can be written as
K
min Dk
{px>0} ;
(8)

pil|af Hyo
all (Z#k piH o0 HY + a,ﬁI) ay,

Its dual problem can be obtained by using the Lagrange gualiory withg, > 0 corresponding to the

> Vi, Vk.

Lagrangian multiplier of théith QoS constrairit|9]

(9)

q | o H |
ol (Z#k g a;al Hy, + I) U,

It can be shown that problern](9) is equivalent to the follayvirplink weighted power minimization

< Y, Vk.

problem[10]

K
: 2
min oLqk
{a@>0} kz—l F
- 10
qi||of H | (10
ol (Z#k g H a;al Hy, + I) o

by noting that all the inequality constraints of both prabl¢d) and [(ID) must hold with equality at

S.t.

> Vi, Vk

the optimality and furthermore the corresponding systerfinefar equations with respect f@;} has a
unique solution[10, Lemmas 1 & 2]. To summarize, the claddi@grange duality theory leads to the

well-known uplink-downlink duality theorem:
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Theorem 1 (Uplink-Downlink Duality [9], [10]): For any given set of normalized beamforméis;, }
and {v;}, a set of given SINR value$y, }/ | is achievable in the downlink using the total power
consumptionP = Zlepk if and only if the same set of SINR values is achievable in thal diplink

channel with the weighted total power &f.

The UDD algorithm is based on the uplink-downlink dualitgdny. We summarize the UDD algorith
[9] in TABLE [I It should be pointed out that, the UDD algornithrequires a feasible initialization![9].
Otherwise, the steps 7 and 11 in the algorithm are not wéihed.

It is also worth noting that the work [12] (resp.| [9]) only st® that the MMSE-SOCP (resp. UDD)
algorithm keeps the QCPM aobjective function nonincreasiaghe iteration proceeds. In this paper, we
reveal the connection between the MMSE-SOCP and the UDDritlign Moreover prove that the two

algorithms can monotonically converge to a KKT solution loé QCPM problem.

I1l. THE MMSE-DUAL ALGORITHM

In this section, we first analyze the KKT conditions of probléP1). Based on the results of the KKT
analysis, we then present a new iterative power miniminagigorithm, dubbed MMSE-DUAL, to solve
the system of KKT equations. Moreover, the proposed algoriteveals some connections between the
MMSE-SOCP and the UDD algorithm.

A. KKT Analysis of the QCPM Problem

First, let us define the Lagrange function associated witiblem (P1) as

K
,C(A,’U,’LL) £ Z H,kaQ
k=1

K (11)
1
3N Sl s 4 ol — — [l Hy
k=1 j#k Y
whereX = [A; X2 ... Ag]T is the Lagrange multiplier vector. For a given optimal prirdaal tuple

(u,v,A), the KKT conditions of problem (P1) are given by

3As compared to the UDD algorithm i [10, Algorithm E] whichqréres updating uplink/downlink power twice at each
iteration, the UDD algorithm[9] illustrated in TABLE | reines uplink/downlink power update only once at each iteratind
thus is more efficient. However, the convergence result tehmsvn later in Proposition 2 also applies to the UDD alganitin
[20].
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TABLE |

THE UDD ALGORITHM

o Input: Hy, 02, v, k=1,2,..., K

o Output: the beamformergv; } and {u}.

1 sett=0andN >1

2 initialize vg, k =1,2,..., K.

3 repeat

4 t+—t+1,

5 G +— (Zﬁék HkvjijHkH + J,%I)ﬂ Hvi, VE

6 @y — raky, VE

7  updategs’s by solving [10) //uplink power allocation
8 Up < /qrUr, Yk

9 by (I+Z#kaujuij)’lHkHuk,\ﬂg
10 o, +— m vk
11  updatepy’s by solving [8) //downlink power allocatio
12 v «— ik, Vk
13 until some convergence criterion is met

1
Mo [ D Hpvo'HY + 071 — —Hypwpof HY | uy, =0, VE, (12a)
j#k Tk
A
- 2 H wuf Hy + )7 N wul H | v, =0, VE, (12b)
T ik
1
Ne [ D Il Hgwj |2 o g |~ — [uf Hgop |* | =0, VE, (12c)
; Yk
Jj#k
e | D ek Hygl? + ol | < g Hyop?, (12d)
i#k
Ag > 0, VE, (12e)

where [12h) and_(12b) are the first-order optimality condii with respect to the receive and transmit
beamformers, respectively. The equatibn {12c) is the cemehtary condition; and the equatiohs ({12d)

and [12&) are the primal and dual feasibility conditionsthia sequel, we analyze the above KKT system.
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Lemma 1 For any primal-dual tupléu, v, A) that satisfies[(12), we havg, > 0,Vk € K, and all the

QoS constraints hold with equality.

Proof: We prove this using contradiction. Assume the contrary tra of the optimal Lagrange
multipliers, say\x, equals to zero. Multiplying (12b) by}’ yields
||Uk||2 + Z )xjfofujuJHijvk = 0.
ik
This impliesv;, = 0, which contradicts the assumption that > 0. |

Let us defineCy £ Y-, Hyvjo/H + il and Ay, = 35 Hyvjol HY + 071 — -Hyvpo HY

Lemma 2 For any primal-dual tupléu, v, A) that satisfied (12), the minimum eigenvalueXf is zero.
Furthermore, the optimal normalized receive beamformeggyaven by

wy,

w with 4y, = C'Hyvy, Vk € K. (13)

]
Proof: Clearly, [12&) implies thatA;, must have at least one zero eigenvalue. On the other hand,

since

N =

1 | _ 1
A, =C; <1 - %ck *Hyvpvi HY C,, ) C;, (14)

A, has at most one nonpositive eigenvalue. Hence, the mininmigemealue ofA is zero. Furthermore,

the equation[(14) implies thay?c;v,?H{jC,;lHkvk =1 and therefore
1
Hv, = —Hkvkv,fHkHCngkvk. (15)
Tk

Combining [I5) and Lemnd 1, it can be verified that= C, 'Hjwvy, is the unique solution of (12a) up

to scaling. [ |
Defining Dy, £ T+ 3, \jH wjul"H; and By, £ 1+ 3 \H wjul H; — 22 H wuf Hy,

the next lemma follows directly from the KKT equations (12)d (12€). The proof of this lemma is

similar to the proof of lemma&l2 and thus omitted from the manips

Lemma 3 For any primal-dual tuple(u, v, A) that satisfieq12), the minimum eigenvalue & is zero.

Moreover, the optimal transmit beamformers are given by

vy = et with o = D H wy,, k€ K (16)

||

where the coefficient§uy } is chosen such thafl2d) is satisfied.
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Corollary 1 For any primal-dual tupléu, v, A) that satisfied (12), the Lagrange multipliéps, } satisfies

the system of equations
Vk 1

A\ =
T T uTH Y H

. Vk e K. (17)

-1
whereY £ (I +3K Aijujuij> . Moreover, the unique solution df{17) can be obtained by a

fixed point iteration.

Proof: From Lemma3B, we havB;, = Dk—% Hupul Hy, = 0. It follows from Schur complement
that
Dk A—kHH’uk
Ae o H v - (18)

SinceDy, is positive definite, using Schur complement again implies

A

Zr ol H D H g, < 1.

Yk
For any primal-dual tupléu, v, A) that satisfies the KKT conditiofi_(IL2), the above inequalitysirhold
with equality; otherwiseB;, - 0 by the Schur complement, which contradicts Lenitha 3. Hendmlds

that

Ap = Tk — , Vk e K. (19)
ukHHk (T_l — )\kaHukukHHk) HkHuk

On the other hand,
ul'Hj, (T_l — )\kaukufHk)_l H w,,
—ufH, (1- N\ YH weuf Hy) ™ TH uy (20)
—uf H,YH uy (1 - Ml HyYH wy) 7
where the second equality is due to the identity- AB)~'A = A(I + BA)~![21, Sec. 3.2.4]. Hence

(@9) can be rewritten as

1
M= (e M) VREK 21
k= Tk (ufHkTHkHuk k> (21)

which implies [1¥). Moreover, the right hand side bfl(17) istandard functicH‘uof {A\r}. Hence, the
solution of [I7) is unique and can be obtained by a fixed pdagarahm [17]. [ |

“A vector functionf () is a standard function if it satisfies FXA) > 0; 2) £(A) > F(N) for A > X; 3) af(A) > f(a)

for « > 1. If f(A) is a standard function, the system of equatidns- f(\) has a unique solution which can be obtained by

a fixed point algorithm. See more details in[[17].
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B. The Proposed MMSE-DUAL Algorithm And Its Relations Witle Existing Algorithms

Based on the results of the KKT analysis, we here present ateetive power minimization algorithm,
dubbed MMSE-DUAL algorithm, to solve the system of KKT edqans (12d-12€e). Our proposed MMSE-
DUAL algorithm first updates the receive beamformers usivegMMSE receiver[(13), followed by the
update of the transmit beamformers using equations (16§&#)d The algorithm is outlined in TABLEIII.
In this table,N denotes the total number of fixed point iterations for calting the optimal Lagrange
multipliers.

Before stating the properties of the proposed algorithtrygdirst see how the MMSE-DUAL algorithm
plays a key role in establishing the connection between thd¢SH-SOCP algorithm and the UDD
algorithm. First notice that in the MMSE-DUAL algorithm, ghprocedure of updating the transmit
beamformers (i.e., Steps 7-13 in TABLE I1l) is equivalent tdving

K
min ZH'kaZ
R
|up Hyvg|?
i [up Hyvg 240 |||

This follows from the fact that the KKT condition of (P2) amentical to [1213-12e) and strong duality

(P2)
S.t.

22"}%, Vk € K.

holds for problem (P2)[16]. Since the updates of the recbe@mformer in MMSE-DUAL is the same
as the receiver update in the MMSE-SOCP algorithm, the MND&REAL algorithm is in essence the
MMSE-SOCP algorithm. The only difference of the MMSE-DUAIlgarithm with the MMSE-SOCP
[12] is that, instead of updating the transmit beamformersivectly solving the SOCP (P2), we use
semi-closed form computatioh (16) ad](17). It is not hardae thgthe complexity of each iteration
of the fixed point algorithm is dominated by the computatiérit!, which is O(K M? 4 M3). Hence,
the MMSE-DUAL algorithm has lower complexity than the MMS®CP algorithm.

Next we explore the relation between the MMSE-DUAL and theDJBlgorithm. Comparing the
algorithms in TABLE | and I, it is not difficult to see that, ehdual variable§ \;} and the auxiliary
variables{ .} in the MMSE-DUAL algorithm respectively play the role of tdeal uplink transmit power
and the downlink transmit power in the UDD algorithm. Thispiias that, although the UDD algorithm
is developed from a different point of view, it works in a sianiway as the MMSE-DUAL algorithm

towards solving the KKT systeri (IL2). Furthermore, the aaimsts of problem[(B) must be satisfied with

®In this paper, we consider practical cases for complexitygarison, i.e., when the number of transmit antennas isarea

than the number of antennas at each receiver.
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equality at the optimality. Hence it is readily seen that MiSE-DUAL algorithm updates the auxiliary
variables{u} in the same way as the downlink transmission pofr} in the UDD algorithm; see
Step 11 in TABLE | and Step 13 in TABLE Il. The only differencetiveen the two algorithms lies in
the update of the dual variablds;} (or equivalently the dual uplink transmit powey in UDD). In
the MMSE-DUAL algorithm, the Lagrange multipliefs\,} are updated by the fixed point algorithm
independent of the current transmit beamformers, whileuphgate of uplink transmit power in the UDD
algorithm depends on the current transmission beamforrsees Steps 7-10 in TABLE Il and Step 7 in
TABLE |. Note that, if problem[(10) is feasible, the updatetbé& uplink transmit power in the UDD
algorithm is equivalent to solving a linear system{gf } which has complexity o (K?M + K3). Hence,
when M =~ K, the UDD algorithm and the MMSE-DUAL algorithm have comgaeacomplexity. But
in the general single stream case whérfe> K, the UDD algorithm has lower complexity than the
MMSE-DUAL algorithm.

TABLE Il
THE MMSE-DUAL ALGORITHM

Input: Hy, 02, v, k=1,2,... . K
Output: the beamformergv,} and {u}.

1 sett=0andN >1

2 initialize vy and Mg, K =1,2,..., K.

3 repeat

4 t+—t4+1;

5 ax ¢ (X, Hevjo HY + 0,31)71 Hyvy, Vk
6 o up +— ﬁ, Vk

7 forn=1to N /lfixed point algorithm

8 T (1425, AJ-H;’ujuJHHj)*l

9 M 4— i ey VR

10 end for

11 oy (I—&—Z#k )\iju,‘quHj)ileuk,Vk
12 oy «— iy, VE

13  solve for the linear system dfuy }:

Stk Bowl® =30, g lluk Hioy||* = of flul|?, vk
14 Vi — /UkVk, Vk

15 until some convergence criterion is met
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In a nutshell, similar to the MMSE-DUAL algorithm, the MMSEOCP algorithm and the UDD
algorithm both work towards solving the KKT system](12). i thext section, we rigorously show that

the three algorithms indeed monotonically converge to a Kdglution.

IV. CONVERGENCERESULTS OF THEMMSE-DUAL/MMSE-SOCP/UDD A.GORITHMS

In this section, we establish the convergence of the thrgeritims. Compared to the existing con-
vergence results of the MMSE-SOCP algorithmlinl[12] and tiDUalgorithm in [9], we show below
a stronger convergence result that every limit point of tee algorithms is a KKT solution of(L2).
Before stating the convergence results, we first preseeetlemmas which will be used later in the

convergence proof.

Lemma 4 For any feasible{u;}, the optimal solution to probler8) is unique up to phase rotation.

Proof: Let {v;} and {v;*} be any two optimal solutions to probleml (3). Moreover, we rukefi
0r £ £ (uf'Hyo}) and6;* £ £ (ul Hyv}*), Vi € K. In the following, we provev; = vj*el (%0,
vk € K.

It is noted that any feasible solution to the following SOCP
K
. 2
Hgn; ok

1
%ukHHk’UkZ > Jul Hyw; P +o? w2, Vk € K, (22)
pors

s.t. e 0%

Im(e % ullHpvy) =0, VE € K
is feasible to problem(3). It follows that the optimal valog problem [(3) is not greater than that of
problem [(22). On the other hand, it is easily seen that thenaptsolution {v;} to problem [(B) is a
feasible solution to problem (22). Henday; } is an optimal solution to problerd (R2). Similarly, we infer

that {v;*} is an optimal solution to the following SOCP
K
: 2
w3 o

gee 1
S.t. e_JGk —ukHHk’UkZ Z |ukHHkvj|2—|—0,%HukH2, Vk e I, (23)
vk j#k

Im(e % wlH,v;) = 0, VE € K.
By comparing the above two SOCP formulations and noﬁb@l |vi||? = Zszl |lvi*|?, we conclude

that {v}*e/%=%")1 is an optimal solution to problen(P2). Since the SOCP prob{g2) has a strictly

August 20, 2018 DRAFT



14

convex objective function, it has a unique solution. Thushagev; = v,’;*ej("i‘@i*), Vk € IC, implying

that the optimal solution to problernl(3) is unique up to phaation. This completes the proof.

Lemma 5 If {u;} and {v;} satisfy the SINR constraints of problem (P1) with equalitd for eachk
uy is an MMSE-receiver, i.ey;, = akC,QlHkvk for all k£ with o, being an arbitrary nonzero constant,
then we have

<ck — %Hkvkv}j H ) u, =0, Vk. (24)

Proof: Since{u} and{v;} satisfy the constraints of problem (P1) with equality, weéha

1
D i Hyws P +of u|® — —uf Hyor[*=0, vk
pori Vi
which can be rearranged as

ukH (Ck — %HkvkfokH> ug = 0, Vk. (25)
By substituting the MMSE receivai,; = akC,ngkvk into (28) and noting thaty, # 0, Vk, we get
v HY C, 'Hyvy, (1 - %v,ﬁfﬂfc,;lﬂkvk> =0, Vk.
Since we havey/ H! C,/'H v, # 0 (due toHj vy, # 0), it follows that
iv}j H{C_ 'Hyv; = 1, Vk. (26)

Yk
This implies that for eaclk the matrixCy — %Hkvkv,fHkH is positive semidefinite. Hence, froin {25),
we obtain
1 2
<ck - V—Hkvkvf HI ) up = 0, Vk, (27)
k
which completes the proof. [ |
Due to the uplink—downlink duality, we also have the follagilemma. The proof of the lemma is

similar to that of Lemmal5 and thus omitted for brevity.

Lemma 6 If {u;} and{v;} satisfy the SINR constraints of the virtual uplink weighpedver minimiza-
tion problerH (10) with equality and moreover for eadh vy is a (virtual uplink) MMSE-receiver, i.e.,

v = 5kD;1HkHuk with g, being an arbitrary nonzero constant, then we have

1
<Dk — —H uul Hk> vp =0, Vk, (28)
Yk
®Note that the SINR constraints i {10) hold true far's.
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whereD,’'s are defined as in Section Ill.

Remark 1 Lemmasg b and]6 indicate that, for the downlink/virtual uplimower minimization problem,
if a set of transmit and receive beamformers satisfies thdRQidhstraints with equality and moreover
complies with the MMSE receiver structure, the first—ordetimality condition with respect to the
downlink/virtual uplink receive beamformers follows. Ither words, if a set of transmit and receive

beamformers fulfills both the assumptions of Lemina 5 and ladfnthen it is a KKT solution to the
KKT system(12).

A. Convergence of the MMSE-SOCP/MMSE-DUAL Algorithms

In this subsection, we study the convergence behavior oMRESE-SOCP (or equivalently MMSE-
DUAL) algorithm.

Proposition 1 Let {(v",u", \")}22, denote a sequence generated by the MMSE-DUAL algorithm (or
equivalently the MMSE-SOCP algorithm). Supp¢s® u°, \°) is feasible for problem (P1), then every
limit point of {(v",u", \")}22, is a KKT point of (P1).

Proof: Here we prove the result for the MMSE-SOCP algorithm. Theopfor the MMSE-DUAL
algorithm follows immediately due to its equivalence to MEASOCP algorithm. The iterations of the
MMSE-SOCP algorithm are illustrated a8~ — u” — v", where the two arrows correspond to the
two update rules shown in Sec. II.B in order. Since the objedunction is coercive{v; } is bounded
and consequentlyu; } is bounded as well. Hence, the sequefice”,v")} has at least one limit point.
Consider a subsequengeu’”,v"7)}22, converging to the limit poinf{u*,v*}. Moreover, by further
restricting to another subsequence, we can assume'thiat converges to a limit point**.

In the sequel, we first prove that = v** (up to a phase rotation). Clearly,
K

K
Dokl = Il (29)
k=1 k=1

since the objective value is decreasing and it is boundeah foelow. Now consider a fixed transmit
beamformem so that
SINRg (v, ug) > vk, Vk € K, (30)

whereSINRy (v, uy) is defined in[(2). Due to the continuity of the SINR functiohette exists an index

1 so that for allj > 4, SINRk(v,qu) > v, Vk € K. Since at each iteration of the algorithm, the
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transmit beamformers are updated after the receive bearafer for allj > i we haved ;- v/ 12 <

S |lvgll?. Letting j — oo implies

K K
DI <> llosll®. (31)
k=1 k=1

Furthermore, according to the update rule, we have $(NR, u;’) > v, Vk and thus
SINRg(v*, uy) > v, Vk € K. (32)

Combining [[32) with the fact that (81) holds for amysatisfying [30), we obtaH1
K

v € argm&n Z l|lvg|?
k=1 (33)

s.t. SINR.(v,ur) > g, Vk.
On the other hand, since the update of receive beaformeng) MMSE receivers keeps the SINR

feasibility, we have SINRv"™ !, w;”) > ;. Letting j — oo, we obtain
SINRy (v, u) > 74, V. (34)

Combining [(338), [(3K) and_(29), we infer that* is also an optimal solution to problern {33). Hence,
according to Lemmal4, we hawe = v** up to an appropriate phase rotation.
Next, with v* = v**, we prove that the limit poin{u*,v*) is a KKT point of (P1). Based on

-1

the receive beamformer update rule in the algorithely, = (C;’~')"'H,v,’ "', where G~ :=

S Hyvy ™o THPH]T 4 621 Letting j — oo implies
uj = (C}) 'Hyvj Vk (35)

with Cj = 3., Hyj(v))"HY! + 071. On the other hand[(B3) implies that there exists a set of

multipliers \; > 0 so that

)\* * * * * * *
I—V—ZHfuk(uk)HHHZAJ.H]Huj(uj)HHj vi=0, Vk, (36)
i#k
e | D ) T Hk P il | —|(wi) T HyviP=0, V. (37)
i#k

"Note that, for anyw such thatSINRy, (v, u}) > v, Vk € K, we can scale up with any constants > 1 so that the
scaledv (i.e., sv) satisfies[[30). Furthermore, analogous[td (31), we B, [[vj||* < o5, s%||luk|?, Vs > 1, implying
Zle loz]l? < Zle |lvk||?. Therefore, combining(32) with the fact th&f31) holds émy v satisfying [30) implies[{33).

Similar arguments are also used in the proof of Proposition 2
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‘7r ‘71“ Vr qr+1 Vr+1
(a) (b) (©) (d)
T pr ﬁr+l ﬁ”l I/_lr+1
Fig. 1. The flow chart of the UDD algorithm.
By Lemmal5, we infer from(35) and (B7) that
1
(c; — —Hvj(v)"HY ) uj =0, Vk. (38)
Tk

Clearly, the equation$ (86}, (37) arid(38) imply that theitlippint (u*, v*) is a KKT point of (P1). m

B. Convergence of the UDD Algorithm

The following theorem states our convergence result of tB®Wlgorithm:

Proposition 2 Let {(v",p",u",¢")}>2, denote a sequence generated by the UDD algorithm. Suppose
(0°,p°, @?, ¢°) is feasible for problem (P1), then every limit point 6fo",p", @",q")}>2, is a KKT

point of (P1).

Proof: For the ease of understanding, the iterations of the UDDr#ifigo are visually presented in

Fig.[d where each arrow indicates an update rule as labekd. L

_ _ K K (or K K
{o",p",u",q"} = {{o; et (P himr, {uk b1 {ah e |

be the sequence generated by the UDD algorithm. Clearlys¢heencegv”} and {u"} are bounded.
On the other hand, since the objective functions of probl@hsand [(10) are both coercivép”} and
{¢"} are also bounded. Hence, the sequefigg p”,u",¢"} is bounded. It follows that there exists
a subsequencév”i,p"i, w7, q"7 } converging to a limit point{o*, p*, u*, ¢*}. Furthermore, by further
restricting to a subsequence, we can assume that the seoseda’™ !, p 1 a1 ¢ 1} converges
to some limit point{o**, p**, u**, ¢**}. According to [9], we have the monotonic convergence, i.e.,
0< 3l pp < it ofar ™ < X0 by < X5y ofay, implying thatdi pit = Y ofa =
ko1 i = Dk ORG-

First, we prove thap* is the optimal solution of problem(8) witli;'s andw,’s being fixed tou;'s and

v}'s respectively, and consequently SIRR*, v*, u}) = v, Vk € K. Let S, = {p | SINRY (p, v*, @) >
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vk, k € K}. Due to the continuity of the SINR functions, we can alwaysl fam integer/, such that for
al j > J,
SINR? (p, v"7, ") >k, Yk € K,¥p € S,

Step 11 of the UDD algorithm [see (a) in FId. 1] implies
SINRZ (p"7, "7, @)’ ) >, Vk € K

and
K K
> opP <Y Pk ¥p € Sy
k=1 k=1

Taking limit asj — oo yields

SINRR (p*, 0%, a}) > v, Vk € K (39)
and
K K
S <D peYpE S, (40)
k=1 k=1

Since at the optimality of problera](8) the SINR constraintstriold with equality,[(39) and (40) implies
SINR? (p*, 0*, a}) = v, Vk € K. (41)

Similarly, we next show thag** is the optimal solution of probleni (10) withi,’s and ©v;'s being
fixed to @*'s and v;’s respectively, and moreover SINR/**, @**,v}) = i, Vk € K. Let S, =
{q | SINRY (¢, @**,v}) > v, Vk € K}. Due to the continuity of the SINR functions, we can always find
J, for all j > J, such that

SINRY (g, w7, 9,7 ) > v, Vk € K,Vq € S,.
Due to Step 7 of the UDD algorithm [see (c) in Fig. 1], we have
SINRY (¢"7 T, @™ 0,7) > ., Yk € K.

and
K K
i+l
Za,%q,? < Za,%q,Vq €9,
k=1 k=1
Hence, we infer that

K K
Zazq};* < Zazq,Vq €S, (42)
k=1 k=1
and
SINRY (¢**, a**, ;) =y, Vk € K. (43)
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Now we showu* = u** after doing an appropriate phase rotation. Due to the feasiitialization,

we have for any; that [see (b) in Figl11]
SINRR(p7, "7, )" ) > .
Taking limit asj — oo yields
SINRR (p*, ©*, @}*) > v, = SINRR (p*, 0%, @}),Vk € K (44)

where the equality is due t6_(41). In the following, we showattthe inequality in[{44) actually achieves
equality. Definey;, = SINR? (p*, o, u;*) and assume for contrary that there exists p¢hat is strictly
greater thany,. By the uplink-downlink duality theory, there exisfg;.} such that SINR(q, u**, v}) =
A for all k& and S5, 024, = S5, pi. Since there exists ong for which 4, > 7, the total
poweerK:1 o2dr can be further decreased by reducijig Hence, [(4R) and_(43) impIEkK:1 olqrr <
S L o2G = S35, pt. This yields a contradiction due to the fact tha}, pi = 3", o2¢;*. Hence, we
have
SINR? (p*, 0%, u}*) = SINRD (p*, o*,u}), Vk € K. (45)
Note that Steps 5-6 of the UDD algorithm [see (b) in Fig. 1] ip
-1
Z Hkv;(v;)HHkH + o1 Hjv;, vk € K,
J#k
wherea; is normalization factor. From the above equation, we irtffat#;* maximizes SINI%(p*, v, uy)
with respect touy. It follows from (45) thatu; also maximizes SINR(p*, ©*,4y). Thus we have
vu;* =y, Vk € K for some complex valued scaldrwith 9| = 1.
Next, we showg* = ¢** and further SINI% (¢*,u*,vf) = v, Yk € K. Step 9 of the UDD algorithm
[see (d) in Fig[l] implies
SINRY (¢"7, @™, 0’ ) > 1, Yk € K.

Taking limit asj — oo, we have
SINRY (¢*, @*, ;) >, Vk € K.

and thus

SINRY (¢*, a**, ©}) > 5, Vk € K. (46)

by noting ¥a}* = @}. Combining [@8), [(4R), and ;_, o2qt = S, o7q*, we infer that bothy}’s
andg;*’s are the optimal solutions to problefn {10) with thergs andv;'s replaced byu;*’s andv;’s
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respectively. Since problern_(10) has a unique solution[@] concludey; = ¢;*, Yk € K, and
SINRY (¢*,@*,9}) = W, Vk € K. (47)

Now we are ready to end up the proof. By notifig;* = u; and¢** = ¢*, Step 5-8 of the UDD

algorithm implies .

P D S Hwl (o) HY + 031 | Hyop, VE €K (48)
J#k
wherea; is a normalization factor. On the other hand, Step 9-12 ofUb® algorithm implies
-1
vp =6 T+ HYwi(uw)"H; | Hfluj vk e K. (49)
j#k
where 3} is a normalization factor.
Egs. (41),[(417),[{48), and (#9) can be equivalently written a

_’(uk)HH vil? — Z [(up) " Hyvj |* = of [[ui]® (50)
J#k
1 * *
S —[(op) TH wi? = Y (o) TH WP = [of]? (51)
F J#k
ui = oj(Cp) ™ Hyy, (52)
* % s\—1y1H ,, *
vy, = B;(Dy)” Hy (53)
whereCj, = 3., Hyol (v)"HY + oL, D =T+ 3, Hi i (u}) " H;.
Combining Lemma&l5[(30), and_(52), we obtain
(c;; —Hkvk(vk)H H > uj =0 (54)
Yk
Similarly, Lemmel 8, [(51), and_(53) imply
1
(D1~ L Ftfu(up) ") v =0 5)
k
It can be readily seen thaf, (54), (55), abd] (50) implies tiel Kondition [12) with A, = 1 for all %.
Thus the proof is completed. |

Remark 2 Although both algorithms require feasible initializatioit is easier for the MMSE-DUAL
algorithm than the UDD algorithm to obtain a feasible initization. For example, whed/ > K, it

is guaranteed that problem (P1) with any given nonzeyd is feasible (e.g., zero-forcing solution for
v;'s) and thus the MMSE-DUAL algorithm can be randomly iniga in this case. However, random
initialization for the UDD algorithm in this case may fail.hig is also verified with a specific example

in Section VI.
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V. EXTENSION TOMULTIPLE STREAM CASE

Now we consider the extension of the two algorithms to thetiplel stream case. Differently from
[6], we assume that joint detection is employed at receila#sV . be the transmit beamformer for user

k. In this case, each user’'s achieved rate is given by
Ry £ logdet (I+H,V,VIHI Q)

whereQ;, = 071+, HyV; VI H is the interference plus noise covariance matrix. We aggésted
in solving the following rate constrained power minimipatiproblem
K
. H
min Z Tr(Ve Vi)
k=1 (56)
st. Rp >rip, ke
wherer; represents the rate requirement for uker
It is known that the streams of uskrcan be decoded sequentially without loss of informatiomgsi
MMSE receiver coupled with sequential interference caatam (SIC) technique[18]/ [20]. Indeed, it is

easily verified that
di

Ry =) log(l+ SINRy ) (57)

m=1
where

H 2
|uk7mHk'vk,m|
H 2 d; HyrH dy, H yH
uy,, (akl Tk ity Hpwj o i+ 570 Hyvy v Hy ) Uk m

Vk.m IS them-th column of Vy, i.e., the transmit beamformer for stream and
-1

SINRy 1, £

9

d; dy,
2 HyyH H y7H
Uk,m = O‘kI + E E Hk’Uj,i’Ujﬂ'ng + E Hkvk,ivk,in Hk'vk,m
jAk i=1 i=m+1

is referred to as MMSE-SIC receiver.
Define g, = i — 1, m=1,2,...,d,. With equal rate allocatio* across multiple streams, Liu.

et. al[20, Theorem 4] proved that the following SINR-coasted power minimization problem
K dy

miny Y floglf?
u,v

k=1m=1
|UkH,mHkUk7m|2

H 2 d; o HYTH dy 2 H1TH
Uy m (%I + Zj;ék > it Hyv;v; Hy' + D itmt1 Hjvp vy Hy, ) Uk,m

(58)

s.t. E’Yk,ma
m=12,...,di, k€ K.
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can achieve the same optimal solution as that of problein (3&yever, we still cannot solve problem
(58) to global optimality. Fortunately, the special sturetof Problem[(58) allows us to apply the UDD
algorithm or MMSE-DUAL algorithm. Since the UDD algorithnt MMSE-DUAL algorithm reaches a
KKT point of problem [58), a question arises: whether a KKTnpof problem [58) is also a KKT point
of problem [(56). In the following proposition, we show the Kkequivalence of the two problems under

a mild set of conditions. The proof is relegated to appendix.

Proposition 3 Let {vj, ,,, ur} be a KKT point of problenf58), and let

dy,
A HyrH
‘I’k,m =Qr+ E Hkvk,ivk,in .

Supposg vy, } satisfieSU,ZlHkH\Il,;}nHkvkvm £0,m=2,3,...,d; k € K, then
1) {vin} is a KKT point of problen(sg).
2) A KKT point of (56) can be obtained by solving Proble&8) using either the MMSE-DUAL or
the UDD algorithm.

Remark 3 It can be shown that the conditiovyﬁ{lHkH\Il,;f}nHkvhm £0,m=23,....d, ke Kis
equivalent tmﬁmHkvk,l #0,m=2,3,...,d, k € K; see(68) in Appendix. This means that, for each
user k, detection of all the second, third, ..., and thg-th symbols are interfered by the first symbol,

which is generally true in the multi-stream scenario.

Remark 4 In the proof of Propositiofi]3, the assumptimgj{lHkH\Il,;}nHkvk,m £0,m=2.3,...,d,

k € K is used to obtaim\; 1 = Ay 2 = ... = A\ 4., k € K, which finally leads to Part 1). It is worthy
mentioning that, if this assumption is relaxed, there intlegists some example (shown in the end of this
paper) where\, | = A2 = ... = A\ q4,, kK € K may not hold and in this case the KKT poipt, ,, } of
problem(G8) is not a KKT point of problenf5g).

Remark 5 LetK = S | di. Similar to the single stream case, it can be shown thatHembulti-stream
case, the complexity of each fixed point iteration in the MMIBEAL algorithm ig O(K M?+ M?3), while
solving the system of equations for thedual variables in the UDD algorithm requires the complexity
of O(MK? + K?). Hence, in the general multi-stream case Wh@é(:l dr, > M, the MMSE-DUAL

algorithm has a lower complexity than the UDD algorithm.

8Note that in the multi-stream case the matrix inversion ajens in the fixed point iteration can still be recursivebyrputed.

This is why we have the terr®(M?) as in the single stream case.
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VI. SIMULATION RESULTS

In this section, we numerically evaluate the performancitheMMSE-DUAL algorithm and the UDD
algorithm. Note that, we here only provide the convergenedopmance of the two algorithms in the
single stream case but similar convergence behavior isaiserved in the multiple stream case. The
QoS level and noise variance are set equally toybend o2 across all the users. Uncorrelated fading
channel model for all channel matrices between users anB$hare assumed. Each channel coefficient
is generated from the zero mean complex Gaussian distibwuiith unit variance. We also s&f = 20

for the number of fixed point iterations.

A. Infeasible initialization

In our first numerical experiment, we study the effect of thieasible initialization on the algorithms.
In the experiment, the BS serves two users, all equipped twithantennas, i.el = N = K = 2. We

sety = 10, 02 = 1, and the channel matrices between the BS and the two userssgrectively

0.2097 4- 0.0429¢  0.4385 4 0.1650:
—0.9788 +0.16147 0.1543 + 0.5013:

(59)

H
I

—1.0800 — 0.3203i  0.2582 + 0.1785i
H, = . (60)
0.1714 — 0.2729;  —0.9692 — 0.1711i

With initial transmit beamformers
vy = [0.0701+0.7443i — 0.3386+0.0235¢]",
vo = [—1.3709+2.0320¢ 0.1491—0.02981']T,
the corresponding normalized MMSE receivers are calcdilate
uy = [—0.7423—0.1885; — 0.2951—0.57132']T,
uy = [0.7580—0.6429; — 0.1084+0.0209i]T,

leading to SINR values, SINR= 0.1592 and SINR = 4.3871, which are both smaller than the required
SINR valuey = 10. Furthermore, it can be easily checked that the linear systeq; and g, with the

fixed initial beamformers

1 _ _
%qzclfokaIQ = gl B a;))? = [logl* k= 1,2
i#k
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Fig. 2. Infeasible initialization of MMSE-DUAL algorithm
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Fig. 3. Similar behavior of MMSE-DUAL and UDD algorithnK =4, M =7, N =3, v =10, 02 = 1.

has negative solutiong; = —3.5627 and g = —1.1379. Therefore, the uplink power update cannot
be done in the UDD algorithm. While the UDD algorithm failstiithis initialization, the MMSE-
DUAL algorithm can quickly reach a feasible point in the settdteration and then exhibits a monotonic

convergence in subsequent iterations, as shown inFig. 2.

B. Convergence property

In this set of numerical experiments, we randomly initialthe MMSE-DUAL algorithm. The UDD
algorithm is initialized by a feasible point obtained by fé&erations of the MMSE-DUAL algorithm.
Figure[3 shows that the MMSE-DUAL algorithm and the UDD altfon have a very similar convergence

behavior.

Figured 4 andl5 show that the two algorithms can almost alwagsgerge to a same objective function
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Fig. 4. The MMSE-DUAL algorithm often converge to a same otije value: K =3, M =4, N =3,y =10, 0% = 1.
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Fig. 5. The UDD algorithm often converge to a same objectsfeiat K =3, M =4, N =3, v =10, 02 = 1.

value which may be global optimum regardless of initial pifdifferent initial points are denoted by
circles). However, in an extremely rare case, local coremeg for the MMSE-DUAL algorithm (also for
the UDD algorithm) was observed in Figl. 6 where two differamitial points resulted in two different

objective values upon convergence.

VIlI. CONCLUSION

In this paper, we have considered the SINR—constrained powemization problem for MU-MIMO
system. Based on the KKT analysis of the power minimizatimblem, we propose the MMSE-DUAL
algorithm. Although the latter algorithm is in essence thMISE-SOCP algorithm in_[12], it connects
the MMSE-SOCP algorithm and the UDD algorithm. It is showattthe UDD algorithm[9] also works
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Fig. 6. The MMSE-DUAL algorithm (also the UDD algorithm) mapnverge to different local solutions depending on the
initialization: K =6, M =10, N =2, v = 100, ¢? = 0.1.

towards the KKT condition of the QCPM problem as the MMSE-OWke MMSE-SOCP algorithm.

Furthermore, we theoretically prove that all three aldwns can monotonically converge to a KKT
point of the QCPM problem. Our numerical experiments shoat the three algorithms almost always
converge to a same value which may be the optimal value, lsal mnvergence of these algorithms is

also observed.

VIIl. A PPENDIX
A. The Proof Of Proposition 3

Proof: The proof of the second part of Proposition 3 is trivial onlee first part is proven. Hence,
we here focus on proving the first part of Proposition 3. Agt,, be the Lagrange multiplier associated

with the constraint of probleni_(58) indexed ¥, m). The KKT condition of Problem(88) is given by

1
<\pk,m+1 — k—Hkvk,mv,ﬁmHkH ) W = 0, (61a)
,m
d; m—1 )\
k
I+ Z Z /\MHfuj,iufiHj + Z /\k,zH]Ijuk,zukH,ZHk - —’mHkHukmukH’mHk Vem = 0,
L L - Vkm
Jj#k i=1 1=1
(61b)
L s
7 ,m m — fyk’m, (61C)
uk7ml:[lk,m+luk,m
Ny = 0,¥m, k. (61d)
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In the following, we are going to show that given any tugle ,,, wy ., \r.n} Satisfying the above
system,{vj , A\i,m } Must also satisfy the KKT condition for problefn [56). The @irds divided into

two steps.
In the first step, we prove that (61b) can be equivalently iteawr as the first—order optimality condition

of problem [(56) by using (61b) and (61c), and showiig = Ay 2 = ... = A 4., Vk. From [61&), we

infer thatwy, ,, must be in the form of MMSE receiver
m = Bk,m k m+1Hkvk m (62)

where gy, ,,, is an arbitrary nonzero scalar. By takigg ,,, = ﬁ and using[(62), we have

1
Hi wy, uy, Hy, = mHH\Ilk s Hevp moi, B W H (63)
Moreover, from [(6Ic) and (62), we have
Yean = O HE WL Hvp . (64)

It follows that

H H
Hk‘ ’U/k;7m’ulk’mHk-
1

HI® ! Huop ol HI®L  H
J - k,m+1 MmYk.m km+11k
1+ vy mH v, m+1Hkvk7m (65)
-1
—HI (W)~ (s + Hyopofl, HE) ) Hy
H 1 -1
_H <‘Ilk m+1 ‘I’k,m> Hk

where in the second equality we have used Woodbury idefiy[Similarly, we have

H H
H; ui muy, ,, Hivkm

_ Ykm 1
1A 'm,mH & Whm s Hivkm
Yi,m Hoa—
= l1-—— | H, ‘Il H
_ 1_ Uy mHH‘I’k m+1Hkvk,m HH\II Hov
Ve,m 1+ Ve km+111kVkm (66)

Hg,—1 Hoa,—1
H ¥, m+1Hk”k mUp mH ‘I’k m+1HkUk7m>

= HIw H —
Vk,m< k km+1 kVk,m [

Hgy—1
H vk vy, mH v, m+1
Hyvgm

Hyvim

v,
_ HH i 1 k m+1
Yee,m g < km+1 1+ vl mHH‘I’

k,m+1

Hg,—1
=Yk Hy ¥y HiUgm
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where we have used the relatiop,, = v/’ H' ¥ !

km+1 HiVk,m in the first and third equality, and the

Woodbury identity in the last equality.
By using KB}) we have

ZZ)\”HHu],u H; ZZAHH HH\IIJ}HH v o HIC L H), (67)
Jj#k i=1 Jj#k i=1

Using [65), we get

m—1 m—1

3 B wul Hy = Y A HY (\Ilk . \1:,;,21) H, (68)
=1 =1

and using[(66), we obtain

Ak,
R H g g Hivgm = Ao HY! v, L H vk m (69)
Yk,m
By defining
1 H 1 H 1

and substituting[(ﬁ?)E(EB), and (69) |n1b), we have

I+ ZZAW it Z A HE (\Ilk Lo @,;}) H; — N HY 0 Hy | 0 =0 (70)
Jj#k 1=1

By noting that

Z A sz ( , z+1 ‘I’E) Hj, — /\kvale‘I’lz,inHk

1 (71)
e
= — A HY W, TH + Z (Aki = Aear)) HY @51 HY,
=1
we rewrite [70) as
m—1
I- >\k 1Hk lI’k 1Hk + Z Z )\y N + Z >\k ) >\k H—l)Hk lI’k 1+1Hk Vim = 0. (72)
Jj#k i=1 i=1
Considering[(7R) withn = 1 andm = 2, we have
I- /\k,lHE‘I’];%Hk + Z Z /\M’I‘jﬂ- Vi1 = 0 (73)
Gk i=1
d;
T— N BT+ 0 N+ (A — Ae2) B 3 H, | w2 = 0. (74)
j#k i=1

Left-multiplying v,fl on both sides of_ (714) and using {73) yeild
(At = Ak2) o HE W, S Hwg 0 = 0
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implying A\r; = Ag2 due tOU,lekH\I',;éHkvm # 0 by assumption. Recursively, we infer from {72)
that A\; = A1, by using the condition HE W, 'Hyv,; # 0, i = 2,3,...,d;. Hence, by letting

A, = A1 for all £, and usingVy, = (v, 1 vr2 ... vkgq,), We can compactly writd (72) as

d;
T NHIW TH+ ) 0> Ty, | Vie=0. (75)
j#k  i=1

Note that we have
Vv, logdet(I+ H, V., V/HI Q1)
=Vv, (logdet ¥, 1 — log det Q) (76)
=Vv, logdet ¥, = H/ ¥, [ H,V,
and

Vv, logdet(I + H;V; VIHI Q)
d

j d;
=Y Vv, logdet(I+ Hjv; w i HIW 1 )= -> "1, V,.
i=1 i=1

Substituting [(7B) and(77) int¢ (5) yields

(77)

Vi — MV, logdet(I+ H,V, VI/HI Q1) - Z A Vv, logdet(I+H;V,VIHQ ") =0 (78)
ik
which is the first-order optimality condition of problein 56
In the second step, we prove by usifgl(64) that ., } satisfies the constraints of problem](56) with

equality. Sinceyy ,, = 90 — 1,m=1,2,...,ds Vk, we have

log det(I 4+ HkvkmvlgmHk\I’_l )

k,m+1
=log det(1 + v,mek‘I’,;}nHHkUk,m) (79)
r
—log det(1 4 Ve m) = —.
dg

where we use the identityet(I + AB) = det(I + BA)[21] in the first equality and(64) in the second

equality. By summing[(79) ovemn = 1,2,...,d;, we obtain

dy,
> " log det(I + Hyvg ot Hy®, ) 1) = log det(I + HyVy VI HR Q) = 1y (80)
m=1
Combining [(78), [(8D), and together witk, > 0 Vk, we concludes thafvy, ,,,} and {\;} satisfy the
KKT condition of problem[(5B). [ |
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IX. A COUNTER EXAMPLE

In the proof of Propositiofi]3, the assumptimﬁ{lHkH\I',;}nHkvk,m £0,m=23,...,dp k€K
is used to obtaim\y; = Ag2 = ... = A\pa4,, £ € K, which finally leads to Part 1) of Propositign 3.
Intuitively, it may hold that\, ; = A2 = ... = A\ 4, for the case when, 1 =42 = ... = Y44, EVEN
if the assumption does not hold. However, it is worthy menritig that, if the assumption is relaxed,
there indeed exists some counter example as shown belowewhe = A2 = ... = A4, K €K
may not hold wheny, 1 =2 = ... = Y44,, k € K and as a result the KKT pointvy, ,,,} of problem
(58) is not a KKT point of problem(56).
Let us consider the special case—the point to point MIMOeaysivith two streams. In this case, the
rate-constrained power minimization problem](56) boilsvddo
min Tr(VVH)
M (81)
s.t. logdet(I+HVVIH) > r.

With equal rate allocation for the two streams, the optin@utson to problem([(81) can be found by

solving the following problem
o in 011 + [Jv2]?
[u{’Ho, |?
"~ ull(I+ Hogoll HH )u,
|ui Hoy|?

> 2
u{ful

=71, (82)

wherey; = = ez — 1.
Let A\; and )\, be the Lagrange multiplier associated with the first and is@@mnstraint of problem

(82), respectively. In the following, we show that there neyst the case\; # Xy when~; = .. The
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KKT system of problem[(82) is given by

<I + vaffoH — %Hvlv{{HH> u; =0 (83)
1
1
<I — —HuvyolHY ) uy =0 (84)
V2
AMleH, o H
I-—H"uwjuy H)v; =0 (85)
71
A
<I + MHPuulH - V—ZHH upul! H) ve =0 (86)
2
wiHwl ®7)
wll (I + Hogvl HH )u,
ull Huo,|?
lug Aol _ (89)
Uy U2
A, A >0 (89)

For the special case, we relax the assumption, i.eu{I@IHva = 0, which holds ifv; andv, are
two orthogonal eigenvectors & H. In the following, we letv; andv, be two orthogonal eigenvectors
of H¥H, such thatv//H”Hvy; = 72 and vfHY (I+Hv2v§{HH)_1Hfu1 = 7. Hence, we have
HYHv, = v, and H¥Hvy, = pov, where u; and u, are the two corresponding eigenvalues of

HYH. Furthermore, we let

1 -1

= I+ HuwlHY)  H 90
1
— — _Hu,, 91
(%) T, (%] ( )
and
1
M= anday = ~ 02 92)
251 w2

Now we are ready to show théii;, v, us, v2, A1, A2) defined above satisfies the KKT systéml[83-89).
Let us start with examining (83) anid (84). First, sing€H” Hv, = 0, we have(I + Hquvgi’HH)_1 Hv; =

Hwv;. Thus,
1
VvV1I+7

which is clearly orthogonal ta;, and Hv, due tO’U{{HHH’Ug = 0. It follows that

U = H’Ul, (93)

1
(I + H'vgfufHH — —Hvlfv{{HH> Uy
Y1

1 1 -1
-~ HuvvHY (1 + Hoyv ") Hov 94
! I+mm 1 ( 2 ) ! ®4)
1
- Huv; =0
“ 1+ vt

August 20, 2018 DRAFT



34

where the first equality is due t H?u; = 0 and [@0), the second equality is due to
of B (I + Hv2v§HH)_1 Hv, = 71, and the last equality is due to {93). Thus.l(83) follows. i&irly,
we can verify thatu, and v, satisfy [84).

Next let us check[(85) and(B6). First, due [0](90) arfdH" (I -+ vafoH)_lel = v, we

haveul’Hv; = —2=- It follows that
A
(I — —lHHulu{{H> V1
!
= v — Mgt w (95)
Vitm
A
= V1 — ! HHH’Ul =0
T+m

where the second equality is due [0](93) and the last equalityws from \; = 11'—]% andH"Hv, =
u1v1. Thus, [85) follows. Similarly we can verify (86).
Finally, it is easy to verify thaf(87)[(88), and_(89) holdierfor the definedwu;, v1, us, v2, A1, \2).
Now we are ready to draw the conclusion. Frdm] (92), it is rgakliown that, whenH”H has two

different eigenvalueg; and o, we have\; # Ay even ify; = vs.
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