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Abstract— A neuron is a basic physiological and 

computational unit of the brain. While much is known about the 

physiological properties of a neuron, its computational role is 

poorly understood. Here we propose to view a neuron as a signal 

processing device that represents the incoming streaming data 

matrix as a sparse vector of synaptic weights scaled by an 

outgoing sparse activity vector. Formally, a neuron minimizes a 

cost function comprising a cumulative squared representation 

error and regularization terms. We derive an online algorithm 

that minimizes such cost function by alternating between the 

minimization with respect to activity and with respect to synaptic 

weights. The steps of this algorithm reproduce well-known 

physiological properties of a neuron, such as weighted 

summation and leaky integration of synaptic inputs, as well as an 

Oja-like, but parameter-free, synaptic learning rule. Our 

theoretical framework makes several predictions, some of which 

can be verified by the existing data, others require further 

experiments. Such framework should allow modeling the 

function of neuronal circuits without necessarily measuring all 

the microscopic biophysical parameters, as well as facilitate the 

design of neuromorphic electronics.  
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factorization; subspace tracking; feature learning; Oja algorithm 

I. INTRODUCTION 

While the complexity of neuronal function is truly mind-

boggling, several of its salient features can be summarized in 

the following diagram, Fig. 1A. A typical neuron receives 

spike trains from thousands of upstream neurons via synapses 

converting spikes into currents. The magnitude of each such 

current is called a synaptic weight and its shape indicates low-

pass (LP) filtering, or leaky integration. Synaptic currents 

summate in the cell body, thus depolarizing the axonal 

membrane to generate a spike train that then is transmitted to 

thousands of downstream neurons. For the purposes of this 

paper, we quantify the incoming and the outgoing spike trains 

by a firing rate, which is the number of spikes per unit time. 

The firing rate is a nonlinear function of the summed current 

often approximated by a one-sided soft-threshold function. 

The firing rate of a neuron typically follows a nonGaussian 

distribution that is sparse (i.e. with a significant peak at zero) 

and heavy-tailed (i.e. decaying slower than a Gaussian). 

Finally, synaptic weights are continuously updated according 

to the correlation between the activity of presynaptic and 

postsynaptic neurons, known as Hebbian learning. 

Fig. 1. A neuron as a signal processing device. A) A simplified view of a 

biological neuron. A neuron receives spike trains from presynaptic neurons. 
Each spike train is low-pass-filtered, or leaky integrated, and weighted by 

synapses. Synaptic weights are modified by Hebbian-like rules according to 

the correlation between the inputs and the output communicated by 
backpropagating action potentials (AP, dashed lines). B) Synaptic currents are 

summed together and the total current is soft-thresholded by the spike-

generation mechanism. C) A signal processing view of a neuron. Output firing 
rate is given by the soft-thresholded sum of weighted LP-filtered pre-synaptic 

inputs. D) Synaptic weights are updated based on the output firing rate and 

LP-filtered inputs.   

Whereas our knowledge of neurophysiology is much 

more extensive than these basic facts, the function of a neuron 

from a computational perspective remains a mystery. Previous 

attempts have been made to assign computational function to 

several aspects of neuronal physiology. For example, a leaky 

integrate-and-fire neuron has been derived from an optimal 

change detection in neuronal inputs [1],  from minimization of 

prediction error for a linear dynamical system [2], and optimal 

estimation of presynaptic membrane potential [3]. Hebbian 

learning rules may enable principal component extraction if 

the output function is linear [4] or the detection of high-order 

correlations in synaptic inputs if the output function is non-

linear [5]. However, these works address only a part of neural 

function, either activity dynamics or synaptic plasticity. A 

unified view of neuronal physiology from a computational 

perspective is still missing. 

In this paper, we make a step towards a unified 

computational model of a neuron as a signal processing 

device. We adopt the firing rate approximation, in which spike 

timing is ignored and neuronal activity is quantified by the 

number of spikes per unit time. We postulate that a neuron’s 

objective is to represent its high-dimensional input by the 

synaptic weight vector scaled by its output. Mathematically, a 



neuron finds a sparse rank-1 approximation to the input data 

matrix by minimizing a regularized squared representation 

error. By solving this minimization problem online we derive 

a computational algorithm that, amazingly, reproduces many 

salient physiological properties of a neuron.  

In a departure from previous normative approaches that 

optimized performance in a statistical setting [1-3,5], we adopt 

a competitive online setting [6-8]. We choose this approach 

combining elements of game theory, machine learning and 

convex optimization because competitive online algorithms 

capture several aspects of neuronal function. Specifically, 

online algorithms compute output recursively at each time-

step, without storing previous observations in memory, thus 

reflecting the real-time nature and low storage capacity of 

single neurons. Most interestingly, the performance of online 

algorithms is guaranteed not on average as in the statistical 

setting but for any possible input. Such performance 

guarantees convey robustness to neuronal operation. 

This paper is organized as follows. In Section II, we 

introduce the cost function and give sparse rank-1 

representation algorithms for both offline and online settings. 

In Section III we study the performance of the online 

algorithm both numerically and analytically. In Section IV, we 

demonstrate that the steps of the online algorithm parallel 

physiological properties of a biological neuron.  

II. WEIGHTED SPARSE RANK-1 MATRIX FACTORIZATION 

A. Offline setting 

We start by postulating that a neuron computes a rank-1 

representation of a temporally smoothed incoming data 

matrix. The data matrix, 
M T

X , contains the activity of M 

potential upstream neurons at T time points, 

 
1 2
, , ...,

T
X x x x . The neuron represents X by an outer 

product of two sparse vectors: synaptic weights,
M

w , and 

outgoing activity,
T

y , which minimize the cost function 

comprising the discounted representation error and sparsity-

inducing 1 -norm regularizers. Assuming that the data matrix 

is temporally correlated on a timescale, , to improve signal-

to-noise ratio the representation error is convolved with a 

smoothing kernel given by the powers 

of exp( 0 11 ),     : 
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where  
0

1
s

T T s

s

 




  x x , LP filtered, or leaky-integrated 

vector of presynaptic inputs. While the offline cost above is 

convex in w or y separately, it is not jointly-convex. Such 

problem may be solved by the block-coordinate-descent or 

nonlinear Gauss-Seidel algorithm [9], which alternates 

minimization with respect to each variable [10,11]: 

Algorithm I: Offline sparse rank-1 matrix factorization 

      Initialize w, y 

      Iterate until convergence:  
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where ST denotes soft thresholding, Figure 3C: 
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When f is a vector, ST acts on it in a component-wise manner.  

 While Algorithm I converges quickly and yields an offline 

solution to the sparse rank-1 factorization, it requires 

simultaneous access to the entire data matrix which may not be 

always possible. Simultaneous access is impossible when the 

data matrix is too large to be loaded into computer memory at 

the same time or when the data matrix is streamed, one column 

at a time, and a (partial) result must be computed in real time. 

Since neurons cannot store streaming data in memory and must 

compute on it in real time, their function must be analyzed in 

the so-called online setting. 

B. Online setting 

In the online setting the cumulative loss must be minimized 

by computing both w and (partially) y in real-time but only 

from the data received so far. For T   we have: 
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Again, we solve this online minimization problem by 

alternating the minimization steps with respect to w and y. 

First, we fix the value of w and minimize the online loss with 

respect to y:   
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We solve this minimization problem by leaky integrating 

presynaptic inputs,  
0

1
s

T T s

s

 




  x x , and soft 

thresholding their weighted sum:  
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These equations are nothing else but a commonly used linear-

nonlinear or leaky integrate-and-fire model of a neuron, Fig. 

1C. Note that by using recursion we avoided storing past data 

keeping this step truly online. 

Second, we fix the value of y and minimize the online loss 

with respect to w: 
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By introducing a cumulative squared postsynaptic activity, 

1

2
T

T

t

tY y


 , we obtain a truly online solution, or a synaptic 

learning rule (see Fig.1D), which together with the above 

activity dynamics yields: 

Algorithm II: Online sparse rank-1 matrix factorization 
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While the synaptic weight update equation is similar to the Oja 

rule [4], it was derived not by linearizing the cost function, like 

the Oja rule, but by solving the minimization problem exactly. 

Thus it does not contain an arbitrary learning rate and is, in this 

sense, parameter-free. Moreover, physiological synaptic 

weights, w, are obtained by soft thresholding an internal 

variable, u, a suggestion that, to our knowledge, has not been 

made previously. 

Algorithm II is closest to subspace tracking algorithms [12-

14] and the Oja rule [4] but there are several differences. First, 

unlike previous work, we regularize both weights and activity 

resulting in nonlinearities. Second, unlike [12,13] who applied 

discounting to w, we apply the discounting with respect to 

relative time, s, resulting in leaky integration in the calculation 

of y. If w is expected to vary over time one can easily introduce 

discounting with respect to the absolute time, t. Such 

discounting would trade off memory longevity for adaptability. 

III. PERFORMANCE ANALYSIS OF THE ONLINE ALGORITHM 

In this section, we analyze the performance of Algorithm II 

numerically and analytically. First, we applied Algorithm II to 

a standard dataset of whitened natural image patches. Pixel 

intensities from each image patch were reshaped into a vector 

and presented to the algorithm sequentially. The results of the 

algorithm, Fig. 2, agree with [15] and biological observations, 

see next section.  

Fig. 2. Online sparse rank-1 representation of the natural image dataset using 

Algorithm II (w1 = y  = 0.4;  = exp(-1/10)). The algorithm is 
presented with 50000, 32x32 pre-whitened natural image patches. Each image 

is presented 50 time steps.   A) Learned weights form a Gabor-like receptive 

field. B) Learned weight distribution (solid red line) is heavy-tailed. Dashed 
blue line is a Gaussian with identical mean and variance. C) Learned weights 

lead to sparse firing with heavy-tailed statistics (solid red line). Dashed blue 

line is a Gaussian with identical mean and variance. This plot was obtained by 
presenting the neuron with the same image patches but synaptic weights were 

frozen. D) Learning rate drops over time.  

Second, we would like to demonstrate that Algorithm II, 

despite operating online, performs, asymptotically in the large 

T limit, no worse than Algorithm I. Analysis is complicated by 

the fact that even in the offline setting the problem is not 

convex and optimal solution is not guaranteed. Because of 

this, following [16] we focus on the algorithm’s ability to 

learn synaptic weights, w. For that purpose we consider a 

repeated game [6-8], with the following rules for each time 

step, t=1…T: 

1. Algorithm selects value ˆ
t

w   

2. World reveals 
t

x and 
t

y  

3. Algorithm suffers loss: 
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The regret of the online algorithm is its cumulative loss 

relative to the best possible offline solution: 
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The best offline solution can be found by applying the 

second step of Algorithm I (no iteration required). The online 



 

algorithm effectively solves the optimization problem, 

1

1

min ( )
s

t

s

l


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
w

w , which is equivalent to an offline problem 

because all needed information is available. Such online 

strategy is called “follow the leader" (FTL) [6-8] and has a 

provable regret bound.  

Theorem: Logarithmic bound on the regret of FTL.  

Let D be such that 
2t tt Dy  x w  for all t, and d be such 

that 
2t

dw  for all t, then: 
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Sketch of proof: Following [17, Theorem 3.1], the upper 

bound on the regret for a convex twice differentiable objective 

function is:  2
4 1 log /B T C , where B is Lipschitz constant 

and C is the lower limit on Hessian eigenvalues. The proof can 

be modified for non-differentiable function, which is strongly 

convex with parameter C. Substituting 

 1 2
2

w w
B D d    , 

2w
C  , we obtain the regret bound. 

According to the above theorem, the cumulative loss of the 

online algorithm relative to the offline is no worse than logT, 

meaning that the difference in loss per round for online 

relative to offline goes to zero in the large T limit. In this 

sense, the online algorithm performs asymptotically no worse 

than offline. 

IV. COMPARISON OF THE ONLINE RANK-1 FACTORIZATION 

ALGORITHM WITH OBSERVATIONS ON BIOLOGICAL NEURONS 

In this section, we demonstrate that the steps of the online 

algorithm derived in the previous section, as well as the 

statistics of its output, are amazingly similar to the salient 

physiological properties of biological neurons.  

1) Synaptically weighted summation of pre-synaptic 

activity. Neurons are known to sum weighted presynaptic 

activity by combining the corresponding postsynaptic currents 

according to Kirchhoff’s current law, Fig.1. While theoretical 

models of a neuron often postulate weighted summation, we 

obtain it from minimizing a principled loss function. 

2) Leaky integration. Discounting of errors in 

representing past inputs, a common requirement in signal 

processing, results in leaky integration of inputs to a neuron, 

Figs. 1A,3A. The experimentally observed signature of leaky 

integration is a time course of a postsynaptic current in 

response to a presynaptic spike, Fig. 3B. Our framework 

suggests that the time constant of the decay should depend on 

the correlation time scale of the input and its SNR. 

3) Nonlinear output function. Inclusion of a sparsity 

inducing regularizer, such as an l1-norm, of activity into the 

loss function leads to a nonlinear operation on the total 

current, such as soft thresholding, Figs. 1B,3C. A nonlinear 

firing rate vs. current curve experimentaly observed in many 

neurons, Fig. 3D, mimics one side of the soft thresholding 

function, Fig. 3C. Therefore, a pair of neurons, like ON-OFF 

cells in the retina, can together implement a two-sided soft-

threshold function. 

4) NonGaussian distribution of neuronal activity. As a 

consequence of soft thresholding derived from l1-norm 

regularization the distribution of output activity in our model 

is nonGaussian, sparse and heavy-tailed, Fig. 2C. Such 

distribution of neuronal firing rates has been observed 

experimentally, Fig. 4A. 

Fig. 3. Leaky integration and soft thresholding in the online algorithm and 

biological neurons. A) Leaky integration specified by the discounting factor. 

B) Experimentally measured decay of a postsynaptic potential in response to a 
presynpatic spike is similar to leaky integration [18]. C) Because of the l1-

norm regularizer sparse factorization algorithms apply soft threshold function 

to the weighted sum of leaky integrated inputs. D) Experimentally measured 
firing rate vs. injected current curve [19] is similar to the nonnegative half of 

the soft threshold function.   

5) Synaptic weight update reflects the correlation 

between pre- and postsynaptic activity (Hebb postulate) with 

an activity dependent learning rate. Unlike the arbitrary 

learning rate in the Oja rule, our learning rate is the inverse of 

the cumulative squared postsynaptic activity. This result 

parallels the experimentally reported decay of synaptic 

plasticity, known as LTP, with age in an activity-dependent 

manner [21-23].  

6) Soft thresholding step in synaptic weight update 

predicts the existence of silent synapses. If the cumulative 

correlation between pre- and postsynaptic activity exists (non-

zero u) but does not reach the threshold specified by the 

regularization coefficient then the physiological synaptic 

weight, w, should be zero. Such silent synapses, i.e. 

morphologically defined synapses without a physiological 

synaptic weight, have been observed experimentally [24,25].   

7) NonGaussian distribution of synaptic weights. As a 

consequence of soft thresholding derived from l1-norm 

regularization the distribution of synaptic weights must be 

sparse and heavy-tailed. Ineed, both physiologically [20] and 

anatomically [26,27] measured synaptic weights follow a 

sparse heavy-tailed distribution, Fig. 4B. 

8) Learning Gabor features from the natural scene 

ensemble. When presented with a dataset of whitened patches 

from natural images this algorithm learns a Gabor feature 



 

similar to the receptive field of neurons in the primary visual 

cortex [28]. 

Fig. 4. Experimentally observed nonGaussian distributions. Red: distribution 

of firing rates (A) (Courtesy of J. Magee) and synaptic weights (B) [20] are 
nonGaussian, sparse and heavy-tailed. Dashed blue: a Gaussian distribution 

shown for comparison. 

V. CONCLUSION 

We postulate that the computational function of a neuron is 

to represent a streaming data matrix of presynaptic activity by 

an outer product of its synaptic weights and the outgoing 

activity as a function of time.  We derive an online algorithm 

that computes such representation and demonstrate that it 

reproduces many physiological properties of a neuron. When 

trained on natural images the algorithm learns Gabor-like 

features as observed in the primary visual cortex. The 

performance of the online algorithm is asymptotically no worse 

than that of the offline one conveying a degree of robustness. 

Thus, we make a step towards a unified computational model 

of a neuron that should help model neuronal networks without 

necessarily measuring all the biophysical parameters and help 

design neuromorphic electronics.  
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