

A Neuron as a Signal Processing Device

Tao Hu
1,2

, Zaid J. Towfic
1,3

, Cengiz Pehlevan
1
, Alex Genkin

1,4
, and Dmitri B. Chklovskii

1

1
Janelia Farm Research Campus

Howard Hughes Medical Institute

Ashburn, VA 20147

2
Texas A&M University

MS 3128 TAMUS

College Station, TX 77843

3
Electrical Engineering Department

UCLA

Los Angeles, CA 90095

4
 AVG Consulting

Brooklyn, NY

Abstract— A neuron is a basic physiological and

computational unit of the brain. While much is known about the

physiological properties of a neuron, its computational role is

poorly understood. Here we propose to view a neuron as a signal

processing device that represents the incoming streaming data

matrix as a sparse vector of synaptic weights scaled by an

outgoing sparse activity vector. Formally, a neuron minimizes a

cost function comprising a cumulative squared representation

error and regularization terms. We derive an online algorithm

that minimizes such cost function by alternating between the

minimization with respect to activity and with respect to synaptic

weights. The steps of this algorithm reproduce well-known

physiological properties of a neuron, such as weighted

summation and leaky integration of synaptic inputs, as well as an

Oja-like, but parameter-free, synaptic learning rule. Our

theoretical framework makes several predictions, some of which

can be verified by the existing data, others require further

experiments. Such framework should allow modeling the

function of neuronal circuits without necessarily measuring all

the microscopic biophysical parameters, as well as facilitate the

design of neuromorphic electronics.

Keywords—neuron; leaky integrate & fire; online matrix

factorization; subspace tracking; feature learning; Oja algorithm

I. INTRODUCTION

While the complexity of neuronal function is truly mind-

boggling, several of its salient features can be summarized in

the following diagram, Fig. 1A. A typical neuron receives

spike trains from thousands of upstream neurons via synapses

converting spikes into currents. The magnitude of each such

current is called a synaptic weight and its shape indicates low-

pass (LP) filtering, or leaky integration. Synaptic currents

summate in the cell body, thus depolarizing the axonal

membrane to generate a spike train that then is transmitted to

thousands of downstream neurons. For the purposes of this

paper, we quantify the incoming and the outgoing spike trains

by a firing rate, which is the number of spikes per unit time.

The firing rate is a nonlinear function of the summed current

often approximated by a one-sided soft-threshold function.

The firing rate of a neuron typically follows a nonGaussian

distribution that is sparse (i.e. with a significant peak at zero)

and heavy-tailed (i.e. decaying slower than a Gaussian).

Finally, synaptic weights are continuously updated according

to the correlation between the activity of presynaptic and

postsynaptic neurons, known as Hebbian learning.

Fig. 1. A neuron as a signal processing device. A) A simplified view of a

biological neuron. A neuron receives spike trains from presynaptic neurons.
Each spike train is low-pass-filtered, or leaky integrated, and weighted by

synapses. Synaptic weights are modified by Hebbian-like rules according to

the correlation between the inputs and the output communicated by
backpropagating action potentials (AP, dashed lines). B) Synaptic currents are

summed together and the total current is soft-thresholded by the spike-

generation mechanism. C) A signal processing view of a neuron. Output firing
rate is given by the soft-thresholded sum of weighted LP-filtered pre-synaptic

inputs. D) Synaptic weights are updated based on the output firing rate and

LP-filtered inputs.

Whereas our knowledge of neurophysiology is much

more extensive than these basic facts, the function of a neuron

from a computational perspective remains a mystery. Previous

attempts have been made to assign computational function to

several aspects of neuronal physiology. For example, a leaky

integrate-and-fire neuron has been derived from an optimal

change detection in neuronal inputs [1], from minimization of

prediction error for a linear dynamical system [2], and optimal

estimation of presynaptic membrane potential [3]. Hebbian

learning rules may enable principal component extraction if

the output function is linear [4] or the detection of high-order

correlations in synaptic inputs if the output function is non-

linear [5]. However, these works address only a part of neural

function, either activity dynamics or synaptic plasticity. A

unified view of neuronal physiology from a computational

perspective is still missing.

In this paper, we make a step towards a unified

computational model of a neuron as a signal processing

device. We adopt the firing rate approximation, in which spike

timing is ignored and neuronal activity is quantified by the

number of spikes per unit time. We postulate that a neuron’s

objective is to represent its high-dimensional input by the

synaptic weight vector scaled by its output. Mathematically, a

neuron finds a sparse rank-1 approximation to the input data

matrix by minimizing a regularized squared representation

error. By solving this minimization problem online we derive

a computational algorithm that, amazingly, reproduces many

salient physiological properties of a neuron.

In a departure from previous normative approaches that

optimized performance in a statistical setting [1-3,5], we adopt

a competitive online setting [6-8]. We choose this approach

combining elements of game theory, machine learning and

convex optimization because competitive online algorithms

capture several aspects of neuronal function. Specifically,

online algorithms compute output recursively at each time-

step, without storing previous observations in memory, thus

reflecting the real-time nature and low storage capacity of

single neurons. Most interestingly, the performance of online

algorithms is guaranteed not on average as in the statistical

setting but for any possible input. Such performance

guarantees convey robustness to neuronal operation.

This paper is organized as follows. In Section II, we

introduce the cost function and give sparse rank-1

representation algorithms for both offline and online settings.

In Section III we study the performance of the online

algorithm both numerically and analytically. In Section IV, we

demonstrate that the steps of the online algorithm parallel

physiological properties of a biological neuron.

II. WEIGHTED SPARSE RANK-1 MATRIX FACTORIZATION

A. Offline setting

We start by postulating that a neuron computes a rank-1

representation of a temporally smoothed incoming data

matrix. The data matrix,
M T

X , contains the activity of M

potential upstream neurons at T time points,

 
1 2
, , ...,

T
X x x x . The neuron represents X by an outer

product of two sparse vectors: synaptic weights,
M

w , and

outgoing activity,
T

y , which minimize the cost function

comprising the discounted representation error and sparsity-

inducing 1 -norm regularizers. Assuming that the data matrix

is temporally correlated on a timescale, , to improve signal-

to-noise ratio the representation error is convolved with a

smoothing kernel given by the powers

of exp(0 11),     :

 
 

2

2

0

, 1

1 21

2

1 212
, 1

2

2

2

2

1
, arg min

2 2

arg min 2 2

s
T

t s t

s

t

y t w w

T

t t y t w w

t

y

y

y y

 

  

  









  
 

 

    

 
 
 
  

  






w y

w y

x w
w y

w w

x w w w

where  
0

1
s

T T s

s

 




  x x , LP filtered, or leaky-integrated

vector of presynaptic inputs. While the offline cost above is

convex in w or y separately, it is not jointly-convex. Such

problem may be solved by the block-coordinate-descent or

nonlinear Gauss-Seidel algorithm [9], which alternates

minimization with respect to each variable [10,11]:

Algorithm I: Offline sparse rank-1 matrix factorization

 Initialize w, y

 Iterate until convergence:

 

   1 2

2

2

2

2

= ST ,

= ST ,
w

T

y

wT T



 







y X w w

w X y y

where ST denotes soft thresholding, Figure 3C:

  

,

ST , 0,

,

f f

f f

f f

 

 

 

 

 

  







When f is a vector, ST acts on it in a component-wise manner.

 While Algorithm I converges quickly and yields an offline

solution to the sparse rank-1 factorization, it requires

simultaneous access to the entire data matrix which may not be

always possible. Simultaneous access is impossible when the

data matrix is too large to be loaded into computer memory at

the same time or when the data matrix is streamed, one column

at a time, and a (partial) result must be computed in real time.

Since neurons cannot store streaming data in memory and must

compute on it in real time, their function must be analyzed in

the so-called online setting.

B. Online setting

In the online setting the cumulative loss must be minimized

by computing both w and (partially) y in real-time but only

from the data received so far. For T  we have:

   

 

1
2

2
, 1 0

2

1 21 12

0

2

2

, arg min 1

1 2 2

T

s

T T t s t

y t s

s

T s y w w

s

y y

y y T T

 

    





 





   

    

 
  



 



w

w x w

x w w w

Again, we solve this online minimization problem by

alternating the minimization steps with respect to w and y.

First, we fix the value of w and minimize the online loss with

respect to y:

 

 

2

1 12

0

2

1

0

12 2

1 12 2

 arg min 1 2

1
2

arg min

s

T T s T y

y s

s

T s T

ys

y
T T

y y y

y y

  

 


 



 



 

    



  

 
 
 
 
 





x w

x w

w w

We solve this minimization problem by leaky integrating

presynaptic inputs,  
0

1
s

T T s

s

 




  x x , and soft

thresholding their weighted sum:

 

 

1

1 1

2

2

1

ST ,

T T T

T T T y T
y

 





 

  







x x x

w x w

These equations are nothing else but a commonly used linear-

nonlinear or leaky integrate-and-fire model of a neuron, Fig.

1C. Note that by using recursion we avoided storing past data

keeping this step truly online.

Second, we fix the value of y and minimize the online loss

with respect to w:

 

 

2

1 212

1 0

1 21 0 1

2 2

1 1

2

2

2

2

2

2

arg min 1 2

1
2

arg min

T

T

s

t s t w w

t s

T

s

t t s

w wt s

T T

t t

t t

y

y

T

y y

   

 
 



 



 

 



    




 

 
  

 

 

 

w

w

w

x w w w

x
w w

w

By introducing a cumulative squared postsynaptic activity,

1

2
T

T

t

tY y


 , we obtain a truly online solution, or a synaptic

learning rule (see Fig.1D), which together with the above

activity dynamics yields:

Algorithm II: Online sparse rank-1 matrix factorization

 

 

 

  

1

1 1

2

1

1 1

1 2

2

2

1

ST ,

ST ,

T T T

T T T y T

T T T

T T T T T T T

T T w T w

y

Y Y y

y y Y

T Y T

 



 



 



 

  



 

  

 











x x x

w x w

u u x u

w u

While the synaptic weight update equation is similar to the Oja

rule [4], it was derived not by linearizing the cost function, like

the Oja rule, but by solving the minimization problem exactly.

Thus it does not contain an arbitrary learning rate and is, in this

sense, parameter-free. Moreover, physiological synaptic

weights, w, are obtained by soft thresholding an internal

variable, u, a suggestion that, to our knowledge, has not been

made previously.

Algorithm II is closest to subspace tracking algorithms [12-

14] and the Oja rule [4] but there are several differences. First,

unlike previous work, we regularize both weights and activity

resulting in nonlinearities. Second, unlike [12,13] who applied

discounting to w, we apply the discounting with respect to

relative time, s, resulting in leaky integration in the calculation

of y. If w is expected to vary over time one can easily introduce

discounting with respect to the absolute time, t. Such

discounting would trade off memory longevity for adaptability.

III. PERFORMANCE ANALYSIS OF THE ONLINE ALGORITHM

In this section, we analyze the performance of Algorithm II

numerically and analytically. First, we applied Algorithm II to

a standard dataset of whitened natural image patches. Pixel

intensities from each image patch were reshaped into a vector

and presented to the algorithm sequentially. The results of the

algorithm, Fig. 2, agree with [15] and biological observations,

see next section.

Fig. 2. Online sparse rank-1 representation of the natural image dataset using

Algorithm II (w1 = y = 0.4;  = exp(-1/10)). The algorithm is
presented with 50000, 32x32 pre-whitened natural image patches. Each image

is presented 50 time steps. A) Learned weights form a Gabor-like receptive

field. B) Learned weight distribution (solid red line) is heavy-tailed. Dashed
blue line is a Gaussian with identical mean and variance. C) Learned weights

lead to sparse firing with heavy-tailed statistics (solid red line). Dashed blue

line is a Gaussian with identical mean and variance. This plot was obtained by
presenting the neuron with the same image patches but synaptic weights were

frozen. D) Learning rate drops over time.

Second, we would like to demonstrate that Algorithm II,

despite operating online, performs, asymptotically in the large

T limit, no worse than Algorithm I. Analysis is complicated by

the fact that even in the offline setting the problem is not

convex and optimal solution is not guaranteed. Because of

this, following [16] we focus on the algorithm’s ability to

learn synaptic weights, w. For that purpose we consider a

repeated game [6-8], with the following rules for each time

step, t=1…T:

1. Algorithm selects value ˆ
t

w

2. World reveals
t

x and
t

y

3. Algorithm suffers loss:

 
2

1 22 1

2

2
ˆ ˆ ˆ ˆ2

t t t t t w t w t
l y     w x w w w

The regret of the online algorithm is its cumulative loss

relative to the best possible offline solution:

     
1

1 1

ˆ ˆ ˆ, ..., min
T

t

T

t t

t

T

t
R l l

 

  
w

ww w w

The best offline solution can be found by applying the

second step of Algorithm I (no iteration required). The online

algorithm effectively solves the optimization problem,

1

1

min ()
s

t

s

l






w

w , which is equivalent to an offline problem

because all needed information is available. Such online

strategy is called “follow the leader" (FTL) [6-8] and has a

provable regret bound.

Theorem: Logarithmic bound on the regret of FTL.

Let D be such that
2t tt Dy  x w for all t, and d be such

that
2t

dw for all t, then:

     
2

1 1 2 2
ˆ ˆ, ..., 16 1 log /

T w w w
R D Td     w w

Sketch of proof: Following [17, Theorem 3.1], the upper

bound on the regret for a convex twice differentiable objective

function is:  2
4 1 log /B T C , where B is Lipschitz constant

and C is the lower limit on Hessian eigenvalues. The proof can

be modified for non-differentiable function, which is strongly

convex with parameter C. Substituting

 1 2
2

w w
B D d    ,

2w
C  , we obtain the regret bound.

According to the above theorem, the cumulative loss of the

online algorithm relative to the offline is no worse than logT,

meaning that the difference in loss per round for online

relative to offline goes to zero in the large T limit. In this

sense, the online algorithm performs asymptotically no worse

than offline.

IV. COMPARISON OF THE ONLINE RANK-1 FACTORIZATION

ALGORITHM WITH OBSERVATIONS ON BIOLOGICAL NEURONS

In this section, we demonstrate that the steps of the online

algorithm derived in the previous section, as well as the

statistics of its output, are amazingly similar to the salient

physiological properties of biological neurons.

1) Synaptically weighted summation of pre-synaptic

activity. Neurons are known to sum weighted presynaptic

activity by combining the corresponding postsynaptic currents

according to Kirchhoff’s current law, Fig.1. While theoretical

models of a neuron often postulate weighted summation, we

obtain it from minimizing a principled loss function.

2) Leaky integration. Discounting of errors in

representing past inputs, a common requirement in signal

processing, results in leaky integration of inputs to a neuron,

Figs. 1A,3A. The experimentally observed signature of leaky

integration is a time course of a postsynaptic current in

response to a presynaptic spike, Fig. 3B. Our framework

suggests that the time constant of the decay should depend on

the correlation time scale of the input and its SNR.

3) Nonlinear output function. Inclusion of a sparsity

inducing regularizer, such as an l1-norm, of activity into the

loss function leads to a nonlinear operation on the total

current, such as soft thresholding, Figs. 1B,3C. A nonlinear

firing rate vs. current curve experimentaly observed in many

neurons, Fig. 3D, mimics one side of the soft thresholding

function, Fig. 3C. Therefore, a pair of neurons, like ON-OFF

cells in the retina, can together implement a two-sided soft-

threshold function.

4) NonGaussian distribution of neuronal activity. As a

consequence of soft thresholding derived from l1-norm

regularization the distribution of output activity in our model

is nonGaussian, sparse and heavy-tailed, Fig. 2C. Such

distribution of neuronal firing rates has been observed

experimentally, Fig. 4A.

Fig. 3. Leaky integration and soft thresholding in the online algorithm and

biological neurons. A) Leaky integration specified by the discounting factor.

B) Experimentally measured decay of a postsynaptic potential in response to a
presynpatic spike is similar to leaky integration [18]. C) Because of the l1-

norm regularizer sparse factorization algorithms apply soft threshold function

to the weighted sum of leaky integrated inputs. D) Experimentally measured
firing rate vs. injected current curve [19] is similar to the nonnegative half of

the soft threshold function.

5) Synaptic weight update reflects the correlation

between pre- and postsynaptic activity (Hebb postulate) with

an activity dependent learning rate. Unlike the arbitrary

learning rate in the Oja rule, our learning rate is the inverse of

the cumulative squared postsynaptic activity. This result

parallels the experimentally reported decay of synaptic

plasticity, known as LTP, with age in an activity-dependent

manner [21-23].

6) Soft thresholding step in synaptic weight update

predicts the existence of silent synapses. If the cumulative

correlation between pre- and postsynaptic activity exists (non-

zero u) but does not reach the threshold specified by the

regularization coefficient then the physiological synaptic

weight, w, should be zero. Such silent synapses, i.e.

morphologically defined synapses without a physiological

synaptic weight, have been observed experimentally [24,25].

7) NonGaussian distribution of synaptic weights. As a

consequence of soft thresholding derived from l1-norm

regularization the distribution of synaptic weights must be

sparse and heavy-tailed. Ineed, both physiologically [20] and

anatomically [26,27] measured synaptic weights follow a

sparse heavy-tailed distribution, Fig. 4B.

8) Learning Gabor features from the natural scene

ensemble. When presented with a dataset of whitened patches

from natural images this algorithm learns a Gabor feature

similar to the receptive field of neurons in the primary visual

cortex [28].

Fig. 4. Experimentally observed nonGaussian distributions. Red: distribution

of firing rates (A) (Courtesy of J. Magee) and synaptic weights (B) [20] are
nonGaussian, sparse and heavy-tailed. Dashed blue: a Gaussian distribution

shown for comparison.

V. CONCLUSION

We postulate that the computational function of a neuron is

to represent a streaming data matrix of presynaptic activity by

an outer product of its synaptic weights and the outgoing

activity as a function of time. We derive an online algorithm

that computes such representation and demonstrate that it

reproduces many physiological properties of a neuron. When

trained on natural images the algorithm learns Gabor-like

features as observed in the primary visual cortex. The

performance of the online algorithm is asymptotically no worse

than that of the offline one conveying a degree of robustness.

Thus, we make a step towards a unified computational model

of a neuron that should help model neuronal networks without

necessarily measuring all the biophysical parameters and help

design neuromorphic electronics.

ACKNOWLEDGMENT

We are grateful to Jeff Magee and Elad Hazan for helpful

discussions.

REFERENCES

[1] A. J. Yu, "Optimal change-detection and spiking neurons," in Advances
in Neural Information Processing Systems, 2007, pp. 1545-1552.

[2] M. Boerlin and S. Deneve, "Spike-based population coding and working
memory," PLoS Comput Biol, vol. 7, p. e1001080, Feb 2011.

[3] J. P. Pfister, et al., "Synapses with short-term plasticity are optimal
estimators of presynaptic membrane potentials," Nat Neurosci, vol. 13,
pp. 1271-5, Oct 2010.

[4] E. Oja, "A simplified neuron model as a principal component analyzer,"
Journal of Mathematical Biology, vol. 15, pp. 267-273, 1982.

[5] A. Hyvärinen and E. Oja, "Independent component analysis by general
nonlinear Hebbian-like learning rules," Signal Processing, vol. 64, pp.
301-313, 1998.

[6] A. Rakhlin, “Lecture notes on online convex optimization,” 2009.

[7] S. Shalev-Shwartz, "Online Learning and Online Convex Optimization,"
Foundations and Trends in Machine Learning, vol. 4, pp. 107-194, 2011.

[8] E. Hazan, "The convex optimization approach to regret minimization,"
in Optimization for Machine Learning, S. Sra, et al., Eds., ed: MIT
press, 2011, pp. 287-303.

[9] D. P. Bertsekas and J. N. Tsisiklis, Parallel and distributed computation:
nmberical methods. Prentice-Hall, Englewood Cliffs, NJ. 1989.

[10] D.M. Witten, R. Tibshirani, & T. Hastie. "A penalized matrix
decomposition, with applications to sparse principal components and
canonical correlation analysis." Biostatistics 10.3 (2009): 515-534.

[11] M. Lee, H. Shen, J. Z. Huang, and J. S. Marron, “Biclustering via sparse
singular value decomposition”, Biometrics vol. 66, pp. 1087–1095,
2010.

[12] B. Yang, “Projection approximation subspace tracking,” IEEE Trans.
Signal Process., vol. 44, pp. 95–107, Jan. 1995.

[13] Y. Chi , Y. C. Eldar and R. Calderbank, “PETRELS: Parallel Subspace
Estimation and Tracking by Recursive Least Squares From Partial
Observations,” IEEE Trans. Signal Process., vol. 61, pp.5947–5959,
2013.

[14] L. Balzano, R. Nowak, and B. Recht, “Online identification and tracking
of subspaces from highly incomplete information” in Proceedings of
Allerton, September 2010.

[15] B. A. Olshausen and D. J. Field, “Emergence of simple-cell receptive
field properties by learning a sparse code for natural images,” Nature,
vol. 381, pp. 607-9, 1996.

[16] S.P. Kasiviswanathan et al. "Online l1-Dictionary Learning with
Application to Novel Document Detection." Advances in Neural
Information Processing Systems 25. 2012.

[17] N. Cesa-Bianchi, & G. Lugosi, “Learning Prediction. Games"
Cambridge University Press (2006).

[18] J.C. Magee, & E.P. Cook, “Somatic EPSP amplitude is independent of
synapse location in hippocampal pyramidal neurons.” Nature
neuroscience,3(9), 895-903, 2000.

[19] T. Tateno, A. Harsch, & H.P.C. Robinson. "Threshold firing frequency–
current relationships of neurons in rat somatosensory cortex: type 1 and
type 2 dynamics." Journal of neurophysiology 92.4 (2004): 2283-2294.

[20] S. Song, et al., "Highly nonrandom features of synaptic connectivity in
local cortical circuits," PLoS Biol, vol. 3, p. e68, 2005.

[21] M. Crair and R. Malenka, “A critical period for long-term potentiation at
thalamocortical synapses,” Nature, vol. 375, pp. 325–327, 1995.

[22] A. Kirkwood, H. K. Lee, and M. F. Bear, “Co-regulation of long-term
potentiation and experience-dependent synaptic plasticity in visual
cortex by age and experience,” Nature, vol. 375, pp. 328-331, 1995.

[23] C. Poo and J. S. Isaacson, “An early critical period for long-term
plasticity and structural modification of sensory synapses in olfactory
cortex,” J. Neurosci, vol. 27, pp. 7553–7558, 2007.

[24] D. Liao, N.A. Hessler, & R. Malinow. "Activation of postsynaptically
silent synapses during pairing-induced LTP in CA1 region of
hippocampal slice." Nature 375.6530 (1995): 400-403.

[25] G.A. Kerchner & R.A. Nicoll. "Silent synapses and the emergence of a
postsynaptic mechanism for LTP." Nature Reviews Neuroscience 9.11
(2008): 813-825.

[26] L. R. Varshney, et al., "Optimal information storage in noisy synapses
under resource constraints," Neuron, vol. 52, pp. 409-23, 2006.

[27] Y. Mishchenko, et al., "Ultrastructural analysis of hippocampal neuropil
from the connectomics perspective," Neuron, vol. 67, pp. 1009-20,
2010.

[28] D.H. Hubel, & T.N. Wiesel. Receptive fields and functional architecture
of monkey striate cortex. Journal of Physiology, London, 195, 215-243.

[29] C. J. Rozell, D. H. Johnson, R. G. Baraniuk, and B.A. Olshausen,
“Sparse coding via thresholding and local competition in neural
circuits,” Neural Computation, vol. 20, pp. 2526-2563, 2008.

