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Abstract—In this paper, we introduce a scalable model for
the aggregate electricity demand of a fleet of electric vehicles,
which can provide the right balance between model simplicity
and accuracy. The model is based on classification of tasks with
similar energy consumption characteristics into a finite number
of clusters. The aggregator responsible for scheduling the charge
of the vehicles has two goals: 1) to provide a hard QoS guarantee
to the vehicles at the lowest possible cost; 2) to offer load or
generation following services to the wholesale market. In order
to achieve these goals, we combine the scalable demand model
we propose with two scheduling mechanisms, a near-optimal and
a heuristic technique. The performance of the two mechanisms is
compared under a realistic setting in our numerical experiments.

I. INTRODUCTION

Today, electric power is traded on an hourly basis. However,
demand is random in nature and varies within the hour.
Since physical constraints of the grid dictate that demand
and supply should be instantaneously balanced, a separate
market environment exists where fast-ramping generators offer
to follow the intra-hour variations of demand in real-time. The
service is referred to as load following and is dispatched by
the Independent System Operator (ISO) [1]. Consequently, the
availability of enough fast ramping controllable generation is
essential to keep the grid safe. With a widespread integration
of renewables, generation quantities will also become random
and uncontrollable, and the need for real-time balancing ca-
pacity will increase. With the high costs and scarcity of fast
ramping generators, this brute-force solution of tweaking the
generation to ensure balance is no longer viable.

A positive development that could reverse this trend is the
electrification of transportation. In fact, with a large scale
integration of electric vehicles (EVs) and Plug-in Hybrid
Electric Vehicles (PHEV), a large fleet of batteries can act as
an invaluable resource for balancing demand/supply at shorter
time scales. In this paper, we discuss a scalable model to
incorporate this flexibility as a load or wind following reserve.
We assume that an aggregator is in charge of scheduling the
charge of EVs in real-time to execute intra-hour balancing
instructions from the ISO by tweaking its aggregate load.

A. Possible Scenarios Regarding Charge Flexibility

There are three different charge flexibility scenarios for the
EVs that differ in terms of the required physical infrastructure:

1) Deferrable but non-interruptible charge, with an uncon-
trollable charging rate (instantaneous power);

2) Charge can be interrupted at an intermediate state and
resumed later. Charging rate is still uncontrollable;
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3) Charging rate is considered controllable. Vehicle-to-grid
(V2G) can also be considered in this scenario.

Almost all the previous work is focused on the third sce-
nario, e.g. [2|-[8]]. However, even with the right infrastructure
in place for the instantaneous charging rates to be fully
controllable, centralized hard real-time scheduling results in
computationally intensive optimizations and is intractable at
large scale. As a result, the authors in [9], [10] have proposed
heuristic schemes for the third scenario. We think that an
important first step in designing a scalable central real-time
scheduler is the right form of approximation in describing the
workload/consumption of different tasks.

The most popular approximation in the Smart Grid liter-
ature is to ignore the shape of the consumption profiles of
different appliances, and model any appliance as a battery
with a controllable charging rate, which can be unrealistic.
To overcome this issue, our work maps different requests
into clusters of demand behavior. Based on the ideas behind
quantization and classification, each cluster has an associated
code that approximates the behavior of all requests within
the cluster. This code is a scalable multiple description model
for reconfiguring the charge of EVs. The number of clusters
determines the level of reconstruction error in the load.

Here, we focus on the second EV charge scenario to present
an example of our proposed classification based aggregate load
modeling princinples. Naturally, the second scenario requires
a much lower infrastructure cost than the third scenario but,
it can only deliver a comparable service to the third scenario
with a very large population of participants [11]. Note that the
ideas we propose for load classification fit the first and third
scenarios as well, as will be seen in future work.

B. The Aggregator’s Objective

The aggregator runs a program that offers EV owners cheap
tariffs in return for directly managing their charge schedule.
We assume that all participating EVs are plugged in before
a certain deadline, denoted by ¢ = 0. No charging requests
are accepted after this time, e.g., after 9 pm. Each customer
can choose an individual charging deadline. We provide a hard
quality of service (QoS) guarantee, which ensures that all EVs
will be fully charged by their deadline. We assume that this
is always feasible due to the long duration of the night.

Due to the structure of the electricity market, a retailer
wishes to buy exactly enough power to serve its load, no
more no less. This power has to be purchased at least an hour
ahead of real-time, based on a prediction of demand. Real-time
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Fig. 1. EVs go from one state to another until they receive full charge (reach
state s = S9)

deviations from this bulk purchase can be very highly priced.
Thus, our aggregator has two operational goals: 1) purchase
exactly enough bulk power from the market to serve the EVs
with hard QoS. This power profile is constant during hourly
intervals. At the beginning of every hour, the aggregator has
an opportunity to update its bulk purchase for the next hour.
We denote the bulk purchase for a future time ¢, updated
at hour k, by P(k)(t); 2) to follow real-time load following
instructions from the ISO. These instructions, denoted by a(t),
are received on a 5-minute time resolution and in the form
of a deviation from the bulk hourly purchase P(*)(t). The
aggregator is penalized if its load deviates from P*) (t)+a(t).
Thus, the aggregator repeats the following steps in a loop:

1) Update its bulk purchase P(¥)(¢) at every hour k to meet
hard QoS constraints at lowest possible market cost;

2) Schedule EVs to follow intra-hourly load following sig-
nals and adjust consumption to be close to P(¥) (t)+-a(t).

Due to space limitations, we mostly focus on the second step
and leave the detailed discussion of the first as future work.

II. SCALABLE LOAD MODEL

We assume that load following dispatch signals a(t) are sent
to the aggregator at discrete epochs every 5 minutes, denoted
by t = 1,...,T. The aggregator wishes to schedule its total
load L(t) to be as close as possible to P*)(t) + a(t). We
choose to limit the times at which the aggregator takes action
to these epochs. Next, we present the details of our scalable
model for L(t), to be used later to design a scheduling strategy.

A. Classification of Charge Requests

We assume that the set of acceptable power consumption
patterns for each EV is characterized by a set of parameters
that depend on the physical characteristics of the vehicle, the
specifications of the charging station, and the preferences of
the customer. These parameters can include, but are not limited
to: initial state of charge (SoC), charge deadline, charge rate,
battery capacity, make and model, etc. For reasons that will be
subsequently clear, we separately denote the SoC by a scalar
c and bundle the rest of the parameters in a vector v, which
we refer to as the characteristic vector. Consequently, each
charge request is fully described by a tuple (v, ¢).

Notice that the tuple (v,c) can take a very large if not
infinite number of values. Thus, the scheduler will face high
computational and data storage costs to keep track of every
single EVs characteristics. An important measure taken in this
work to alleviate this issue is to classify loads that share similar
parameters in a finite number of clusters denoted by a tuple
of indices (g, s). The classifier is a mapping

Cluster Cluster indices
(v,c) T> (vg, cl) f—% (g, 8)-
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Notice that the quantization points of the SoC parameter c,
which we denote by c{,...,c%,, depend on all the other pa-
rameters bundled in the characteristic vector v,. Accordingly,
g € {1,...,Q} will be referred to as the class index and
s € {1,...,5%} will be referred to as the subclass index.
Indices s = 0 and s = S? respectively represent an empty
and full battery for vehicles with class index g. From this
point on, we use subscripts s and superscripts ¢ to distinguish
variables associated with cluster (g, s).

With the help of this classifier, we can propose a scalable
model of the scheduled EV load next.

B. Interruptible Charging Modeled as Serial Subtasks

We assume that the quantization points of the SoC, i.e., the
c¥’s, are designed such that it takes an EV with class index
q exactly one time step to get from SoC ¢ to ¢! 41- Each
EV aims to reach the full charge SoC c¢%,. Thus, charging
can be modeled as a process in which the EV starts from
an initial cluster (g, sinit) and goes through a sequence of
clusters to reach cluster (g, S?). For each class index ¢, these
sequences of clusters are placed in tandem in a serial queueing
system, i.e., EVs dispatched from the cluster (g, s) are sent to
(¢,s + 1) and wait to get dispatched again. We assume that
each time an EV moves from one cluster to the next, it needs
to be authorized by the aggregator. This models charging as
a number of serially executed subtasks, each of which are
no longer interruptible. We denote the power consumption of
EVs authorized to go from state (g, s) to (¢g,s+1) as g2, s =
1,...,89—1 (see Fig. 1), highlighting the common temporal
charge evolution of all EVs with class index q.

C. Decision Variables

At each time epoch ¢, a population of n%(t) EVs belong to
the cluster (g, s). This number changes as appliances are au-
thorized to charge and move forward in the subtask chain. We
model these dynamics by denoting the number of appliances
authorized to move from cluster (g, s) to (q,s + 1) exactly
at time t as d%(t), and refer to it as the activation process.
Alternatively, one can use the cumulative activation process
D1(t), which denotes the number of appliances authorized
to move from cluster (g, s) to (q,s + 1) at or before time
t, initialized as zero at ¢ = 0. Consequently, for ¢ > 0, the
aggregate charging demand of EVs is approximately equal to
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Also, we can now write the dynamics of nd(t) as

ni(t)

n2(0) + S0 (0) — 3 de(0)
/=1 /=1
= nd(0)+ DI (t-1)-Dit-1). (3

The values of d%(t) or D(t) are decision variables of our
model, to be chosen by the scheduler (see Fig. 2).

D. Ensuring Per Cluster Deadline Constraints

We denote by m(t) the number of EVs that have a deadline
to get activated from cluster (g, s) at time ¢ at the latest or
they would miss their global deadline. Then, we define the
cumulative minimum activation process for cluster (g, s) as

ME(t) = mi(0). )
=1

This provides a lower threshold on the number of activations
from cluster (g, s) at or before time t. To ensure hard QoS,
the cumulative activation process of cluster (g, s) should be
bounded from below by the cumulative minimum activation
process:

DI(t) > MI(t), Vts.q 5)

But, how should we determine the values of the m%(t)’s?

E. Mapping Ultimate Charge Deadlines to Subtask Deadlines

We denote that common global deadline shared by all EVs
with class index ¢ as k9. Thus, all of these EVs should
reach the cluster (g,S5?) by k9. In order to enforce this
constraint, we need to map the global deadline of a charging
task to individual subtask deadlines. We start by calculating
m¥,_,(t), the number of appliances with a deadline to get
activated from the cluster (¢, S7—1) at time ¢ in order to finish
charging and reach (g, S?) by time k9. Since a transition from
one cluster to the next takes exactly one step, m%, (k7 —1)
is equal to the total number of vehicles with class index ¢ that
have an initial state of charge lower than or equal to S? — 1.
For all other time epochs ¢ # k% — 1, m¥%,_,(t) = 0.

Similarly, we can derive mZ(t), i.e. the number of EVs that
have a deadline to get activated from cluster (g, s) at time ¢. In
order to reach cluster (¢, S?) at or before time k9, an appliance
should have left cluster (g, s) by time k% — (S7 — s). Thus,
mi(k? — (S7 — s)) is equal to the number of EVs of type ¢
that have an initial SoC lower than or equal to s, and O for all
other ¢’s.

Note that the m(t)’s can be computed once and for all
in an offline fashion before real-time operation. To do so, we
initialize all m(t)’s at zero for all ¢,q,s. Then, for every

d§e_5(t)  d§q_(t)

Each charging task is divided up in a number of subtasks and appliances go through a serial queueing system to receive full charge

appliance joining the program at initial cluster (g, Sinit), we
update these terms as

mi(k1—(S9=s)) = mI(k?—(S7—5))+1,Ys = Sinit, - - -
We can then calculate MJ(t) from (@).

,99—1.

F. Decision Set

With these definitions, we can now write the set of admis-
sible values for the decisions variables d?(t):

di(t) >0,

idi(f) > M{(1),
=1

ai() < ni(t) = n3(0) + S (0) = S0, ©)
=1 =1

which are all affine. Alternatively, we can use the cumulative
activation process D(t) as the decision variable, with

DI(t) — DIt —1) > 0,
Di(t) = MI(t), (7
Di(t) — Di(t — 1) < nd(0) + Di_;(t — 1) — DI(t — 1).

The proposed load model has considerably reduced the size
of the search space required to schedule EVs. With this, we
can now focus on scheduling the EVs in real-time.

ITI. SCHEDULING STRATEGIES
A. Near-Optimal Solution: Model Predictive Scheduling

The aggregator’s goal is to optimize L(t) in order to
minimize its cost for serving the load over the length of the
night. Since the dispatch commands a(t) are stochastic and
their values are only revealed in a causal fashion, this is not
a deterministic offline optimization and scheduling decisions
should be made online as the a(t)’s are received.

Since current scheduling decisions affect future costs, an
optimal schedule cannot be decided in a myopic fashion. Thus,
one approach is to apply model predictive control (MPC) and
optimize L(t) such that the overall expected cost incurred in
a look-ahead horizon is minimized [12f]. The cost incurred at
different intervals in the look-ahead horizon should be mod-
eled separately. Following the aggregator’s objective explained
in Section we use a function CTenalty(\) to capture the
intra-hourly penalties paid if deviating from P(*)(t) + a(t),
and a function CMarket(\) to capture the costs of updating
the bulk purchase from the market to ensure hard QoS, cf.
(T2). Here, the scheduler needs to solve an integer program to
find the optimum values of DZ(t) for all ¢ in the look-ahead
horizon. By making dummy decisions about future D{(t)’s



and L(t), the MPC helps find a suitable update for the future
bulk purchase in the hourly electricity market, i.e., it helps
optimize P**+1)(¢). We will showcase this important aspect
in our numerical experiments. Due to lack of space, we defer
the thorough analysis of the MPC approach to future work.
Instead, the question that we focus on in this paper is as
follows: Can we find a simple heuristic policy that has similar
performance to MPC, with lower computational complexity?

B. Proposed Heuristic: SPUC

The heuristic policy we propose is non-anticipative and tries
to minimize the current deviation penalty CTe"a!% (), without
considering future penalties and market costs. Thus, it does not
carry out the adaptive updates on the bulk purchase, P(k)(t),
and simply follows P©)(t) 4 a(t), with P©)(¢) determined
at ¢t = 0. Thus, at each t, the scheduler activates a number of
subtasks so as to to get the consumption as close as possible
to P°(t) + a(t). But which subtasks should be picked? If any
subtask has reached its deadline, the scheduler has no choice
but to activate it. Thus, the first step would be to activate
all the subtasks with zero laxity. If the consumption has not
exceeded P(O)(t)+a(t) yet, the scheduler then picks a number
of subtasks to activate among those remaining. A heuristic
algorithm needs a metric to rank the waiting subtasks from
different clusters (g, s) in the order of time sensitiveness. Our
proposed metric, referred to as Slack per Unit Charge (SPUC),
is used by the following algorithm at every t:

1) Schedule subtasks with immediate deadlines: Vq, s,

It DI(t) < M(t): Set di(t) = M2(t) — Di(0),
Else: Set di(t) = 0;

2) Set L(t) = 3oL, S0, di(h)gf:

3) Define S as the set of all clusters (g, s);

4) While L(t) < PO (t) + a(t) and S # 0

a) Pick the cluster (¢f,sT) in S with the largest value
for the SPUC metric x4(t) (defined later);

b) If dg: t) = ngi (t) — no EV left to schedule.
Remove (¢', s) from S and go back to step (a);

c) Increase dzl (t) and DgTT (t) by 1;

d) Set L(t) = L(t) + g%

5) Activate d(t) subtasks in each cluster (g, s);

But how to design the metric x%(¢)? The scheduler can
potentially apply an Earliest Deadline First/ Least Laxity First
(LLF) policy among all clusters. The slack of any subtask
waiting in cluster (g, s) is simply equal to

pi(t) = k7 — (¢ + (57 = s)) ®)

Thus, an LLF policy would find the cluster with the lowest
pl(t), and activate one task from that cluster. This process
continues until L(t) exceeds P (t) + a(t).

However, the slack for each subtask (accounted for by
pl(t)) is shared with the subsequent subtasks that compose
the global charge task. Thus, if all the slack is used up for a
specific subtask, the remaining subtasks in the chain need to
be activated immediately with zero flexibility. Thus, a more
appropriate benchmark is to normalize p?(t) by the number

of remaining subtasks for appliances in cluster (g, s) to reach
(g, S?), which is equal to S? — s. This gives us our initial per
cluster time-sensitivity index, which we denote by £9(¢):
iy PAD)
g =g ©)
Using £4(t) does not distinguish between subtasks with
higher and lower power consumption. An EV using a level-
3 high power charger can prove more problematic in terms
of fitting in a capacity constrained system and should be
prioritized. Consequently, we normalize {1(t) by the average
charge power for the remaining subtasks after state s, i.e., by

S1-1 ¢
gl = Lh=s In
s S —s

This gives us our final ranking benchmark for sorting the time
sensitivity of scheduling a subtask from cluster (g, s):

pi(t)
95(87 =)’
referred to as the SPUC metric. Ties are broken by comparing

the variance of charge power for the remaining subtasks in the
chain after cluster (g, s), i.e., by finding (g, s) with the highest

Xi(t) = (10)

S71-1

Var(g)? = > (gf — g9)°,
h=s

Y

which is a measure of how bursty the remaining charge profile
for a certain appliance is. By reapplying this criterion in a loop,
we can pick the appropriate d4(¢)’s for each cluster.

Remark 3.1: The performance of both schedulers can be
assessed under the following effects: 1) users may depart ear-
lier than their declared deadline; 2) real-time arrivals modeled
by an arrival process can be considered instead of task being
submitted a-priori; 3) classification of tasks may be overly
coarse; or 4) users may provide inexact cluster estimates.
Papers considering the last issue include [[13]] [[14].

IV. NUMERICAL EXPERIMENT

To assess the performance of the proposed scheduling
methods in Sections and we compare their real-
time performance under a realistic setting. We simulate the
operations of an aggregator in charge of directly scheduling
an average population of 1000 EVs over a 12 hour nighttime
period between 9 pm to 9 am. Twenty different characteristic
clusters ¢ were considered, bundled into 4 groups. Each group
shares a certain shape of the charging pulse gi,...,g%,: a
rectangular pulse with a height of 1.1 kWs and a maximum
length of 8 hours; A triangular pulse with a height of 2.2 kWs
and a maximum length of 8 hours; A rectangular pulse with
a height of 3.3 kWs and a maximum length of 4 hours; A
triangular pulse with a height of 6.6 kWs and a maximum
length of 4 hours. The initial SoC was drawn from lognormal
distributions consistent with the findings in [[15] based on
actual PHEV charging data. We used InN(3,1.22) for the
first two cluster and In A/(1,0.582) for the next two. Clusters
bundled in the same group differ in terms of the quantized
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Fig. 3. Performance of the MPC scheduling method

deadline k?. We generated the hard deadline for each request
randomly according to the real-world based statistics in [15]],
and then quantized it into one of the 5 possible options. The
wind following signals were generated using real-world wind
forecast errors from the Bonneville Power Administration with
a 5 minute resolution, normalized to a maximum wind follow-
ing capacity of 60 kWs for the aggregator. Wind following is
only provided in the first 9 hours of the 12 hour night period.
To solve the integer program for the MPC scheduler, we
used CVX + Gurobi [|16]. A linear cost was assumed, with the
intra-hour deviation penalties assumed to be 10 times higher
than energy market costs. If each hour is A units, at time ¢
(within hour k), the cost at time ¢ > t in the look-ahead is:

oPenalty (7) — 10 HL(@) —PW(g) - E[a(z)]Hl < 0<EA

C’Market(ﬁ) = ||L(¢) — P(k)(g)Hl’é > kA (12)

A persistence time series model was applied to forecast
expected future intra-hour values of a(t), while future inter-
hour values were predicted with their marginal expected value,
i.e., 0. The average run-time for one full night period (144
epochs) exceeds one hour on a 2.67 GHz i7 CPU. Notice that
the last update on the bulk purchase performed by the MPC is
PU1(#), since the length of the night is 12 hours and the last
update can happen at hour k& = 11. Fig. 3 displays P(®)(¢),
POV () +a(t), and the consumption of the aggregator under
the MPC scheduler, L™P°(t), following P*)(t) + a(t). The
total deviation of L™P°(t) from the dispatch P*)(t) +a(t) is
nearly zero (0.03 kWhs over the length of the night).

The heuristic method delivers a comparable performance to
that of the MPC, with a run-time close to one minute. The
increase in deviation from ISO dispatch, though considerable,
is still negligible (13 kWhs overall). However, remember that
the heuristic method itself does not carry out any hourly
updates on the bulk purchase. We simulate the performance of
the heuristic technique when following P(%)(t) + a(t). Notice
the poor performance in the last 2 hours (L} (¢)). However,
if presented with the adaptively updated bulk purchase, the
heuristic method successfully follows the pseudo optimal
profile P)(t) + a(t), as seen in Fig. 4 (L5 (¢)).
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Fig. 4. Performance of the heuristic scheduling method
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