
Graph-Based vs Depth-Based Data Representation
for Multiview Images

Thomas Maugey∗, Antonio Ortega†, Pascal Frossard∗
∗Signal Processing Laboratory (LTS4), Ecole Polytechnique Fédérale de Lausanne (EPFL)

Email: {thomas.maugey,pascal.frossard}@epfl.ch
†Department of Electrical Engineering, University of Southern California

Email: antonio.ortega@sipi.usc.edu

Abstract—In this paper, we propose a representation and
coding method for multiview images. As an alternative to depth-
based schemes, we propose a representation that captures the
geometry and the dependencies between pixels in different views
in the form of connections in a graph. In our approach it is
possible to perform compression of the geometry information
and to preserve a direct control of the effect of geometry
approximation on view reconstruction. This is not possible with
classical depth-based representations. As a results, our method
leads to more accurate view prediction, when compared to
conventional lossy coding of depth maps operating at the same
bit rate. We finally show in experiments that our representation
adapts the amount of transmitted geometry to the complexity of
the predictions that are performed at the decoder.

I. INTRODUCTION

Multiview or 3D data are generally represented as a set
of images that correspond to the information captured by
cameras at different viewpoints. These images describe the
color information acquired by the multiple cameras, along
with depth information that becomes easily accessible [1].
Depth images describe the distance between the scene and the
focal length of the camera. Obviously this brings interesting
challenges for 3D transmission systems. For example, a depth
image can be used to project one reference image onto another
one [2], [3] with interesting benefits in the compression of
multiview images. Despite the huge potential of this tool, one
of the important questions linked with depth images relies in
the effect of compression on the view prediction performance
[4]. More precisely, an imprecise depth value leads to a spatial
position uncertainty for the projected pixels in the predicted
viewpoint. The modeling of this error has led to several works
[5], [6]. Some sophisticated depth image coder has also been
proposed [7], [8] to tackle this drawback. However, artifacts
due to compressed depth images remain generally difficult
to control. This is why, in this paper, we propose a new
multiview image representation that permits better control of
the geometry information.

We propose a natural form of geometry information that
is of moderate size, but leads to effective view reconstruction
algorithms. After observing that the knowledge of the scene
geometry leads to connections between pixels in images from
different viewpoints, we propose to directly represent these
links with a graph. The graph contains all the geometrical
information needed for multiview image reconstruction at the
decoder side. Contrary to depth maps, the geometry informa-
tion in our graph takes into account the complexity of the

prediction when adjusting the proper amount of geometry to
compress and transmit. The advantage of such an approach is
that it works directly with the inter-pixel connections and offers
a better control of the geometry compression artifacts. We
have compared this approach with depth map representations
in terms of view prediction quality for similar geometry rate
budget and shown promising with performance improvements
of 4 dB.

The paper is organized as follows. In Section II, we
introduce the general concepts of our new representation along
with the main differences with depth-based approaches. In
Section III, we explain the construction of the graph in detail
and finally, in Section IV, we validate the potential of our
solution in terms of prediction quality improvement.

II. DENSE DISPARITY MAPS

As mentioned in the introduction, one of the most adopted
format to represent and transmit N viewpoints is the MVD
one. It consists of N color image and their associated N depth
maps. A depth map is a gray-scale 2D image that represents the
distance between the scene and the camera plane. Since it takes
values between 0 and 255 as a classical image, it is associated
to a scaling function that converts the chrominance values into
units denoting the distance to objects. This scaling function is
generally not linear but follows a evolution in 1

z in order to
describe more finely the closest points than the furthest objects
in the scene. It is justified by the fact that the disparity of a
point in the scene between two images evolves in function
of the inverse of the depth. Depth images are mainly used
to project the corresponding color image onto other arbitrary
viewpoints. This is generally done with depth image based
rendering (DIBR) techniques [2], as illustrated in Fig. 1. Depth
is firstly used to find the correspondence between a pixel of
the image and points of the 3D world, based on the intrinsic
and extrinsic parameters of the cameras. Then, the 3D point
is projected back onto another viewpoint.

When lossy compression of the depth data is performed,
the DIBR decreases its prediction precision. More precisely,
one pixel of the reference image is mapped to a segment of
several pixels in the predicted image (represented by ∆ in
Fig. 1). Due to this imprecise mapping, the error in DIBR
is difficult to control, which leads to complex compression
algorithms [7], [9], [10]. Depth maps have generally a high
precision (256 levels) which is not always necessary, as in the
case of simple prediction for example. When a simple lossy
coding of depth is performed, one preserves an unnecessary bit
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Fig. 1. Illustration of the difference between depth-based prediction and
disparity compensation.

depth precision while it introduces losses in crucial regions. In
that sense, depth-based representation does not enable a natural
control of geometry compression error.

In our GBR representation, we therefore propose another
description of geometry information, which constitutes a sim-
pler version of depth and which is eventually losslessly coded.
In that way, this geometry signal corresponds to the minimum
information that is needed at the decoder for view prediction.
During view prediction, one pixel of the reference frame is
shifted of D pixels in the predicted viewpoint, with:

D =
f.d

Z
, (1)

where f is the focal length, d the distance between the two
cameras and Z the depth attached to this pixel. In Fig. 2, we
plot the integer disparity |D| as a function of the depth Z
which takes 256 values between Z = 20 cm and Z = 150 cm,
for different distances between the reference image and the
predicted camera. We clearly see that the disparity requires
less precision than the original depth signals. We also remark
that the number of levels increases with the inter-camera
distance d. In other words, the complexity of the geometry
signal that needs to be transmitted varies with the position
of the predicted view. Moreover, we remark that the number
of disparity levels is larger for small depth values, which
also means that the geometry signal complexity depends on
the scene content. In our GBR representation, we propose a
compact representation of the disparity values, which permit
to reconstruct a predefined set of views. Contrary to traditional
multiview coders, which transmit one disparity value for blocks
of pixels, our solution considers dense disparity maps. The
GBR representation is detailed in the next section.

III. GRAPH-BASED GEOMETRY REPRESENTATION

We recall here the main ideas of GBR construction process
and the view reconstruction at the decoder. Readers are referred
to [11] for details. Let us consider a scene captured by N
cameras with the same resolution and focal length f . The n-th
image is denoted by In, with 1 ≤ n ≤ N , where In(r, c) is
the pixel at row r and column c. We only consider translation
between cameras, and we assume that the views are rectified.
In other words, the geometrical correlation between the views
In is only horizontal. We assume that accurate depth images,
Zn, are available at the encoding for every viewpoint, In. As
explained above, we compute N − 1 dense disparity maps
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Fig. 2. Integer disparity as a function of depth for different distances between
the reference and predicted camera.

from these depth images. In what follows we assume that there
are N − 1 predicted images, which are generated using the
reference image along with structure and color information
introduced below.

We categorize the different types of pixels in terms of how
they change from one view to another. Because of camera
translation, a new part of the scene appears on the right
or left of the image (appearing pixels) and another part
disappears (disappearing pixels). During camera translation,
foreground objects move faster than the background. As a
result, some background pixels may appear behind objects
(disoccluded pixels). Conversely, some background pixels may
become hidden by a foreground object (occluded pixels). If
we consider a pair of images (reference and target), a row
of the target image can be reconstructed by copying pixels
from the corresponding row of the reference image, except
when the abovementioned types of pixels occur (in which case
“new” pixels have to be inserted). Our graph approach directly
conveys this information by transmitting either i) a link to the
location in reference row where pixels should be copied from,
or ii) the values of new pixels to be inserted.

A graph with N levels describes 1 reference image and
N − 1 predicted ones. We show in Fig. 3 a simple graph
construction example, with 5 levels (1 reference and 4 pre-
dicted images). Its construction requires the depth maps Zn,
1 ≤ n ≤ N − 1. Since the object displacement is only
horizontal, we consider independent graph construction for
each image row1. Such a graph is made of two components,
which are described by two matrices of size N×W , where N
is the number of levels (i.e., the number of images encoded by
the graph) and W is the image width. These two matrices are
the color values Γr and the connections Λr and represent color
and geometry information for all pixels of all images, where
r is the row index (a pair of matrices per row). Γr and Λr are
generated based on the following principles. Pixel intensity
values are stored in the level (view) where they appear first.
This means that a given level only contains pixels that were not
present in a lower level. The connections simply links these
“new” pixels to the position of their neighbor in the previous
level.

We look now in more details at Fig. 3. First, the intensities
of appearing pixels, (a), are stored in Γr. No connectivity
information is needed, since these pixels appear on the side

1Note that while we construct the graph row by row, compression techniques
could be developed that exploit redundancies across rows.
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Fig. 3. Toy graph construction example: blue texture background has a disparity of 1 at each level and red rectangle foreground a disparity of 3 for each level.
Graph contains all different types of pixels: a) appearing, b) disoccluded, c) occluded and d) disappearing.

level index

1

2

3

4

5

column index c of row r

column index c of row r

Reconstruction of level 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1

2

3 4

5 6 7 8 9 10 12 13 14 15 16 17 18 1911

Fig. 4. Reconstruction of the level 2 with the toy example of Fig. 3. Green arrows indicates the graph exploration order for view reconstruction.

of the image. Disoccluded pixels, (b), do not appear in the
lower level, and their intensity is stored in the color matrix
Γr. A set of consecutive disoccluded pixels at level r starts
right after a pixel that appears at level r− 1. Thus, our graph
links the first disoccluded pixel at level r to the last copied
pixel from level r − 1 (b). Occluded pixels, (c), are pixels at
level r − 1 that are not copied to level r. This situation is
represented by links in the graph that go from level r − 1 to
level r and back to level r − 1 without inserting any pixel
values. For example, in Fig. 3 the links between the pixel at
position 4 in level 1, through level 2 to the pixel at position 6
in level 1 represent the occlusion of the pixel at position 5 in
the representation at level 2. Finally, disappearing pixels, (d),
are simply represented by a link (but no pixel intensity value)
after the last pixel to be displayed.

To get a different view on the graph representation, refer to
Fig. 4, where we show the image of level 2 that is reconstructed
based on the graph of Fig. 3. By “reconstruction” we mean
creating an output row containing all pixel values at level
2 based on the sparse graph representation. Reconstruction
involves traversing the graph (left to right) and copying pixel
values from either level 1 or level 2 to the output, following
the links in the graph. In what follows, pixel numbering
corresponds to their order in the reconstructed level 2 shown
in Fig. 4. The reconstruction starts with the appearing pixel
1 at level 2 . Then, it moves to the reference level and
copies the corresponding pixels until encountering a link. In
the case of Fig. 4, the first connection is after pixel 2 and
links it to pixels 3 and 4 in level 2, which are disoccluded
pixels. After all disoccluded pixels have been copied, the
reconstruction goes back to the reference level and copies
(5, 6 and 7) until the next non-zero connection (at pixel 7).
The connection in 7 indicates an occluded region. Hence, the
reconstruction algorithm jumps in the reference frame and
restarts the filling process (pixel 8 to 19) until the next non-
zero connection (disappearing pixel). The reconstruction of
the other levels is done recursively. Note that, in contrast to

depth-based representations, our GBR explicitly captures the
correspondence between levels, making it easier to control the
desired level of quality in the representation.

IV. EXPERIMENT

In this section, we show that the geometry sent with
our GBR representation corresponds to the proper level of
precision that is needed at the decoder side for inter-view
prediction, contrary to depth-based scheme. More precisely, we
show that GBR offers a higher control of geometry loss impact
on the reconstructed quality, compared to depth representation.
In the test presented below, we code the geometry while the
texture signal is not compressed.

We have implemented a prototype coding scheme for our
GBR solution. As we can observe in the example of Fig. 3,
the matrix Λr has a large number of zero values. We do not
code directly Λr and rather consider a smaller matrix Φ of
size M × 4, where M is the number of non-zero elements
in all the Λr with r < H (H is the height of the image).
The matrix Φ stores all the meaningful connections and it is
organized as follows. The first column of Φ contains this row
indices r. The second column contains the column indices c,
the third column contains the level indices, and finally, the
fourth column contains the connection values. Then, we simply
consider an arithmetic coding of every column, with, for some
of them, a differential operation as preprocessing, in order to
decrease the entropy. Alternatively, the depth maps are encoded
using the classical image coding tool JPEG2000 [12]. They are
used for view prediction at decoder, using DIBR algorithm. As
for GBR, no correction is sent since we only consider goemetry
compression in these tests.

In Fig. 5, we show the prediction error images using depth
or GBR as geometry information. We only consider 2 views
in this experiment. First, we build our GBR representation de-
rived from the dense disparity values computed with the depth
images. These disparity map is designed for the prediction



(a) Prediction error with lossy depth (27.2 dB)

(b) Prediction error with GBR information (31.8 dB)
Fig. 5. Prediction error images for sawtooth dataset using depth (a) and GBR
(b). Coding rate of 15.1 kb for geometry rate. PSNR is calculated on the non
occluded regions of the image.

of view 2. The geometry size after the coding of the GBR
data is 15.1 kb. We then encode the depth map with the same
bitrate. For both decoded geometry information we perform
the prediction of view 2, we calculate the error image and we
evaluate the PSNR on the non occluded regions. We see in
Fig. 5 that the GBR-based prediction has error only on the
disoccluded regions, while depth coding introduces artifacts
also on predicted regions.

Next, we show that GBR adapts the complexity of its
geometry signal to the one of the prediction process. We still
consider lossless texture and only two views. For different
distances between the two views (1 and 2 times the intra-ocular
distance), we run the following test. We first build the GBR
representation and we obtain a given geometry rate R in bits.
Then, we compress the depth map of view 1 with the same
rate. We then observe the decoded geometry information. They
are presented for Venus and Sawtooth datasets in Fig. 6. We
also show the prediction PSNR values calculated on the non
occluded regions. We see that when the distance increases, the
GBR provides higher precision. More precisely the foreground
objects in (b) and (h) are described with more different values
in respectively (e) and (k). At the same time, the depth signal
keeps useless precision. More precisely, we see that the right

foreground in (c) is represented with several different depth
values while one would be enough as it is the case in (b).
Moreover, some losses has been introduced in the depth-based
coding scheme, for example around the foreground boundaries.
In other words, the GBR representation permits to transmit
the exact level of geometry required at the decoder side in
contrary to depth-based scheme, which leads to more accurate
view prediction as shown by the PSNR gain observed for these
datasets. The previous experiments show the validity of our
solution and prove that GBR constitutes a serious alternative to
depth-based data representation schemes in multiview imaging.

V. CONCLUSION

In this paper, we have presented our new graph-based
representation used to describe geometry and texture infor-
mation of multiview images. In addition to removing spatial
redundancies in the data, it provides an intuitive graph structure
that permits to efficiently represent the geometry signal. This
leads to a better control of inaccuracies due to geometry
compression, and their impact on the multiview reconstruction
quality, compared to depth-based approach.
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Original data GBR disparity map Corresponding compressed depth

(a) texture image (b) d = 1, R = 15.0kb, 32.2 dB (c) d = 1, R = 15.0kb, 28.3 dB

(d) depth map (e) d = 2, R = 22.5kb, 32.0 dB (f) d = 2, R = 22.5kb, 26.9 dB

(g) texture image (h) d = 1, R = 15.1kb, 31.8 dB (i) d = 1, R = 15.1kb, 27.2 dB

(j) depth map (k) d = 2, R = 23.8kb, 27.9 dB (l) d = 2, R = 23.8kb, 23.9 dB
Fig. 6. Illustration on Venus (a-f) and Sawtooth (g-l) multiview datasets of how the inter-view distance (d) impacts on the geometry signals of both the
GBR representation (b,e,h,k) and the depth-based approach (c,f,i,l). This distance is expressed in view index (i.e., multiple of the inter-camera distance) and
corresponds to 1 or 2 times the intra-ocular distance (6.5 cm). We expressed for every geometry map its rate R and the PSNR of the prediction using it (on
the non occluded regions).


