
Simultaneous Routing and Power Allocation

using Location Information

Rocco Di Taranto and Henk Wymeersch

Department of Signals and Systems, Chalmers University of Technology, Gothenburg, Sweden

E-mail: {taranto, henkw}@chalmers.se

Abstract—To guarantee optimal performance of wireless net-
works, simultaneous optimization of routing and resource allo-
cation is needed. Optimal routing of data depends on the link
capacities which, in turn, are determined by the allocation of
communication resources to the links. Simultaneous routing and
resource allocation (SRRA) problems have been studied under
the assumption that (global) channel state information (CSI) is
collected at a central node. This is a drawback as SRRA depends
on channels between all pairs of nodes in the network, thus
leading to poor scalability of the CSI-based approach. In this
paper, we first investigate to what extent it is possible to rely solely
on location information (i.e., position of nodes) when solving the
SRRA problem. We also propose a distributed heuristic based on
which nodes can locally adjust their rate based on the local CSI.
Our numerical results show that the proposed heuristic achieves
near-optimal flow in the network under different shadowing
conditions.

I. INTRODUCTION

There are many ways in which communication networks

can move information from source to destination nodes, es-

pecially in the presence of multiple paths between nodes.

The fundamental idea motivating optimal design is to select

operating points as solution of well-defined optimization prob-

lems, which, if the optimization criteria (i.e., objective function

and constraints) are chosen appropriately, guarantee the best

possible network operation in a well-defined sense. Extensive

research efforts (see [1]–[3] and references therein) have been

dedicated to optimal design of wireless networks and results

in this field include architectural insights and protocol design.

A major drawback shared by most of the optimal design

research is the reliance on global channel state information

(CSI), i.e., the optimal design problem depends on the chan-

nels between all pairs of terminal in the network. While

availability of global CSI is plausible in certain situations, it

is unlikely to hold if time-varying fading channels are taken

into account, or when very large networks are considered.

More recent work assumes that only local CSI is available

at the nodes, which implies that operating variables of each

terminal are selected as functions of the channels linking the

terminal with neighboring nodes [4]. This leads [4] to propose

an algorithm that, with limited amount of message passing

among nodes and small computational cost, converges almost

surely in an ergodic sense, to the optimal solution.

Outside the context of optimal design, the problem of

scalability and lack of CSI was also tackled by the networking

community. Relevant in our context is geographic routing,

wherein only local CSI is available, and where each node

is aware of its own geographic location, the location of

its immediate neighbors, and the location of the destination

[5]. Under these assumptions, the source sends data to the

destination through intermediate nodes, which are selected

according to a distance-to-destination criterion. By doing so,

packets can be routed to the destination without knowledge

of the network topology or a prior route discovery. Despite

these attractive properties, geographic routing is sub-optimal

and does not easily allow multiple routes towards a destination.

Nevertheless, next generation wireless devices, e.g., 4G hand-

sets, already have the capability to self-localize and provide

location information with high level of accuracy everywhere

and anytime [6]. We believe that this additional information

can be harnessed in the design of routing protocols, in a similar

way as it was shown to benefit the physical layer [7]–[9].

In this paper, we investigate how and to what extent location

information can aid routing capabilities in wireless networks,

in the context of optimal design. Our approach is centralized,

but scales better than conventional CSI-based solutions. We

assume that nodes report their position to a central planner,

which makes routing and resource allocation decisions for all

nodes. We compare four routing strategies: (i) the benchmark

approach from [10], [11], relying on full CSI; (ii) a variation of

[10], [11], where nodes report only their position to the central

planner and links that are found to be in outage are discarded;

(iii) an improved version of (ii), where the maximum flow

is computed based on the CSI of the active links; (iv) a

decentralized heuristic to approximate the maximum flow,

based on local CSI and local rate adaptation; and (v) greedy

geographic routing. Our contributions are as follows:

• We propose the use of location information in simulta-

neous routing and resource allocation (SRRA) problems,

due to the lower overhead and limited performance degra-

dation;

• We show that simple heuristics can mitigate the impact

of outages due to mismatch between assumed channels

(based on path loss) and actual channels (based on path

loss and fading), by relying on local communication.

II. SYSTEM MODEL

In this section, we describe the network, flow, and commu-

nication model [10], [11]. Our aim is to maximize the rate
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Fig. 1. Target scenario with one destination (node 1), one source (node 2),
and 28 relay nodes. There are 94 directed links between nodes.

from a single source to a single destination over a number of

intermediate nodes.

A. Network Model

We consider a network with N nodes, indexed by

{1, 2, . . . , N}. Node 1 represents the destination node, while

node 2 is designated the source node. Intermediate nodes serve

as relays. Communication links exist between nodes and are

modeled as ordered pairs (i, j), i 6= j, indicating that a non-

zero rate can be supported from node i to node j. This rate

depends on the resources allocated to this link as well as the

channel from node i to j (more on this in Section II-C). The

links are labeled {1, 2, . . . , L}. We denote the N×L incidence

matrix by A, so that anl = 1 when link l ends in node n,

anl = −1 when link l starts in node n, and anl = 0 otherwise.

B. Flow Model

The flow model aims to capture the flow from source to

destination, and the conservation of flow at intermediate nodes.

To this end, we introduce a source vector s ∈ R
N , with s2 ≥ 0

denoting the flow generated by the source for the destination,

s1 = −s2, and sn = 0 for n 6= {1, 2}. At any relay node

n 6= {1, 2} the incoming flow must equal the outgoing flow.

To model this, we introduce x ∈ R
L, where xl ≥ 0 denotes

the flow over link l, which can be related to sn by

aTnx = sn, ∀n, (1)

where aTn is the n-th row of A.

C. Link Model

We assume links do not interfere, as would occur in, e.g., a

time-division multiple access or frequency-division multiple

access scenario. With every link l we associate a limited

set of resources rl, which may comprise transmit power and

signaling bandwidth. The rate over link l depends not only on

the allocated resources, but also on the physical propagation

channel. The channels are modeled to comprise path loss and

shadow fading. Denoting the distance between the nodes on

link l as dl, the channel (power) gain thus becomes

hl = 10−PL(dl)/1010Zl/10, (2)

with log-normal shadowing Zl ∼ N(0, σ2
z ) and path loss

PL(dl) = PL(d0) + 10η log10(dl/d0), in which η > 0 is the

path loss exponent and PL(d0) is the line-of-sight path loss

at reference distance d0. Overall, the rate xl over a link l is

limited by the capacity, which depends on rl and hl (as well

as noise power):

0 ≤ xl ≤ φl(rl, hl), (3)

where we limit φl(rl, hl) to be concave and monotonically

increasing in rl. Finally, the set of resources available to each

link are limited by a vector g, modeled through a constraint

of the form Fr � g, which is able to capture per-node

power constraints as well as per-link bandwidth constraints,

for suitable F and g. F has the same size as the incidence

matrix A and its elements are given by Fnl = max{0, Anl}.

III. THE SRRA PROBLEM

Combining the network flow model and communication

model described in the previous two sections, we now for-

mulate the maximum utility version of the SRRA problem,

assuming an objective function that is concave as a function

of the source rate s2 and of the transmitting power rl at all

nodes:

maximize f (s2)− η

L
∑

l=1

rl (4)

subject to Ax = s (5)

0 ≤ xl ≤ φl(rl, hl) (6)

Fr � g, 0 � r, (7)

where the optimization variables are x, s, r. The second term

in the objective function penalizes the expense of unnecessary

power in the network, e.g., along loops, which do not con-

tribute to the primary objective f(·). The constant η is selected

appropriately to balance the importance of the second term in

the utility function. The problem (4) is a convex optimization

problem and can be solved efficiently by, for example, general

interior point methods. Moreover, in the above model, the

matrices A and F are sparse and highly structured, so efficient

algorithms can be developed by exploiting the problem struc-

ture. In this paper, we study the centralized SRRA problem,

where the channel state information hl is obtained either

exactly from beaconing with channel estimation (referred to

as gain based GB-SRRA) or approximately from positioning

system (referred to as location based LB-SRRA). The solution

to SRRA will be denoted by x∗, s∗, r∗.



A. Gain-based SRRA

The gain-based SRRA (GB-SRRA) operates as follows. The

N nodes exchange high-power beaconing signals to estimate

the channels hl. We will assume channel estimation is perfect.

These channel estimates are then collected by the SRRA unit,

which solves the problem (4) and yields to corresponding

maximal rate from source to destination, denoted by s∗GB.

While optimal in our setting, GB-SRRA has a large overhead

during the beaconing phase, as O(N2) channel estimates

may need to be collected, which is prohibitive (in terms

of transmission power and delay) in large networks with

thousands of nodes. This is the main motivation for LB-SRRA.

B. Location-based SRRA

The location-based SRRA (LB-SRRA) avoids O(N2) bea-

coning overhead and extracts channels through position in-

formation. LB-SRRA operates as follows: The N nodes send

their positions to the SRRA unit. We assume position estima-

tion is perfect. The SRRA unit can then infer approximate

channel h̃l = 10−PL(dl)/10, which is generally different

from hl but requires only O(N) overhead. The SRRA unit

solves the problem (4) with the approximate channels (i.e.,

h̃l instead of hl) and yields to corresponding maximal rate

from source to destination, denoted by s∗LB,PL. Note that

generally s∗LB,PL 6= s∗GB, since when σ2
z > 0, hl 6= h̃l for

most links. When the resources are allocated to the nodes and

communication commences, the allocated links are estimated

locally, so that CSI becomes available on a small subset of

links. When h̃l 6= hl, there will be mismatches between x∗

l

and φl(r
∗

l , hl). This implies that some links are in outage (i.e.,

when x∗

l > φl(r
∗

l , hl)) while other links may be underutilized

(i.e., x∗

l < φl(r
∗

l , hl)).
We consider three different approaches to deal with this

mismatch:

1) Remove links in outage: In the first case, links in

outage (those for which x∗

l > φl(r
∗

l , hl)) are discon-

nected. The resulting rate will be denoted by s∗LB,out ≤
min(s∗GB, s

∗

LB,PL), and can be obtained through classi-

cal min-cut/max-flow methods [13].

2) Centralized max-flow: In the second case, for the given

resource allocation (i.e., r∗l ), the maximum flow be-

tween source and destination is computed using the

maxflow/mincut algorithm, i.e., each link carries a traffic

that is smaller or equal than its capacity φl(r
∗

l , hl). The

resulting rate is denoted as s∗LB.

3) Distributed approximate max-flow: In the third case,

nodes operate as follows. Nodes first compute xl =
φl(r

∗

l , hl) for all incident links, based on the actual

channels of the scheduled links. Every node n then

determines I(n), the total incoming flow (i.e., the sum

of the incoming flows xl) and O(n), the total outgoing

flow (i.e., the sum of the incoming flows xl). The

distributed algorithm then proceeds as follows: (i) pick

a random node, say n, for which I(n) 6= O(n) ; (ii) if

I(n) < O(n), reduce all the outgoing flows xl with a

proportion I(n)/O(n); if I(n) > O(n), reduce all the

incoming flows xl with a proportion O(n)/I(n); (iii)

recompute I(n) and O(n) and go back to step (i). Due

to the fact that the flows are lower-bounded by zero and

that we always reduce flows, this algorithm is guaranteed

to converge to a flow that can be satisfied globally. The

resulting rate will be denoted by s∗heuristic.

IV. NUMERICAL RESULTS

A. Simulation Setup

We consider a randomly generated wireless network with 30

nodes uniformly distributed in 1 km by 1 km square, depicted

in Fig. 1. We impose a restriction on the communication

range, whereby two nodes can communicate if their distance

is smaller than 250 meters. This avoids weak channels that

can support only negligible rates and still leads to a strongly

connected network with 94 links (47 links between nodes,

every link is bi-directional). Node 1 is selected as destination,

node 2 as source, and the remaining nodes can act as relays.

The channel is modeled according to (2), with shadowing

variance in the range σ2
z ∈ [0, 4] [12]. The resources r are

considered to be transmit powers over different links, with a

per-node power constraint, so that Fr � g simplifies to
∑

l:anl=−1

rl ≤ Pn,tot, ∀n, (8)

where Pn,tot is the power available to node n, and here

normalized to unity. The receivers at the end of the links

are subject to independent additive white Gaussian noise with

variance σ2
l , modeled to be uniformly distributed in the interval

[0.01, 0.1]. We describe the capacity φl(rl, hl) of link l with

the classical Shannon capacity formula, which satisfies the

conditions in Section II-C:

φl(rl, hl) = log2

(

1 +
rlhl

σ2
l

)

. (9)

Our aim is to maximize the rate, so as source utility function,

we can choose any monotonically increasing function in s2.

We selected f(s2) = log s2 and η = 10−3. Finally, to solve

(4), we used CVX in MATLAB [14] and averaged results over

100 Monte Carlo runs.

B. Discussion

We first consider LB-SRRA and quantify the occurrence

of outages (i.e., x∗

l > φl(r
∗

l , hl) from Section III-B). When

σ2
z = 0 there are no outages, so s∗LB = s∗LB,out = s∗GB. As

soon as σ2
z > 0, approximately 50% of the links will be in

outage, since the constraint (6) is always tight. These outages

will cause a significant reduction in flow, so that s∗LB,out ≪
s∗GB.

Fig. 3–4 show, for a specific set of channel realizations in

the network of Fig. 1 and for σ2
z = 1, how the traffic is routed

from source node 2 to destination node 1. In each of these

figures, the thickness of each link is roughly proportional to

the associated flow variable (note that since the constraint (6)

is always tight, the thickness is also proportional to the power
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Fig. 2. Flow from source node 2 to destination node 1 with GB-SRRA.
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Fig. 3. Flow from source node 2 to destination node 1 with LB-SRRA and
some links in outage.

used for that link). Fig. 3 shows the optimal routing from

source node 2 to sink node 1 when full CSI is collected and

benchmark solution s∗GB is obtained. The effect of outages is

displayed in Fig. 5, which shows routing in correspondence

of the s∗LB,out solution. It can be seen that a large fraction

of the links are in outage and a much lower traffic goes

through the network. Finally, Fig. 4 shows how the traffic is

routed with LB-SRRA in conjunction with the max-flow/min-

cut algorithm. The total flow from the source to the sink

is smaller and the set of active links is different compared

to Fig. 3, although some common paths are still present.

This happens because channel estimation based on location

information through the path loss model does not account for

shadowing.

A quantified view of the impact of these outages, and a

comparison of the different approaches is offered in Fig. 2,
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Fig. 4. Flow from source node 2 to destination node 1 with LB-SRRA and
max-flow/min-cut algorithm.

which shows the total flow from source to destination, as a

function of the shadowing variance. Five cases are consid-

ered: (i) gain-based SRRA (leading to solution s∗GB, which

serves as an upper bound); (ii) location-based SRRA (leading

to solution s∗LB,out); (iii) location-based SRRA and max-

flow/min-cut algorithm (leading to solution s∗LB); (iv) heuristic

algorithm described previously leading to solution s∗heuristic;
and (v) greedy geo-graphic routing (labeled as “geo-routing”

in Fig. 2). Geo-routing will always use the shortest path,

i.e., 2 → 25, 25 → 20, 20 → 15, and 15 → 1, and the

corresponding flow will be limited by the weakest link. Case

(i) leads to a flow of around 5, very slightly increasing with

the amount of shadowing. This may be surprising at first

sight, but has been observed previously [15] as a side-effect

of independent shadowing per link. The location-based SRRA

case (ii) yields high outages for σ2
z > 0, which have a dramatic

impact on the total flow, reducing it to with around 90%.

Even a few links in outage can disrupt parts of the flow,

which significantly reduces overall throughput. The solution

with max-flow/min-cut (s∗LB, case (iii)) degrades much more

gracefully with σ2
z , with only a 20% loss in flow, even in

the severest shadowing condition. The distributed max-flow

approximation s∗heuristic turns out to work quite well, closely

following s∗LB for all values of the shadowing variance. Hence,

the ability for nodes to locally estimate channel gains toward

their neighbors (without reporting this information to the

central planner) and adapt their rate according to the proposed

algorithm, is an attractive low-complexity solution to combine

good performance with low overheads. Finally, geo-routing

has an acceptable performance, that is (on average) not very

sensitive to the amount of shadowing. Note that our network

topology from Fig. 1 favors the geo-routing protocol as

intermediate nodes are deployed at regular distances between

source and destination. In general, geo-routing can suffer from

very low throughputs.
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V. CONCLUSIONS

In this paper, we have investigated to what extent it is possi-

ble to rely on location information (i.e., geographic position of

nodes) when solving the simultaneous optimization of routing

and power allocation. It turns out that frequent link outages

limit the performance. We have proposed an heuristic based

on which nodes can adjust their rate by locally estimating

the CSI only toward their neighbors. Our numerical results

indicate that the proposed heuristic, while significantly reduc-

ing the overhead in the network, can achieve a near-optimal

flow in the network, under different shadowing conditions. A

comparison with greedy geographic routing reveals that our

proposed heuristic can achieve superior performance due to

path diversity.

Future work will consider myopic versions of the simulta-

neous routing and power allocation problem with limited CSI,

which are a more fair comparison to geographic routing. Based

on [4], it can be conjectured that a two-hop view will achieve

good performance with only localized processing.
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