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Abstract—Universal outlier hypothesis testing is studied in a
sequential setting. Multiple observation sequences are lected,
a small subset of which are outliers. A sequence is considere
an outlier if the observations in that sequence are generate
by an “outlier” distribution, distinct from a common “typic al”
distribution governing the majority of the sequences. Apat
from being distinct, the outlier and typical distributions can
be arbitrarily close. The goal is to design a universal testd
best discern all the outlier sequences. A universal test wit
the flavor of the repeated significance test is proposed andsit
asymptotic performance is characterized under various uniersal
settings. The proposed test is shown to be universally cossént.
For the model with identical outliers, the test is shown to be
asymptotically optimal universally when the number of outliers is
the largest possible and with the typical distribution beirg known,
and its asymptotic performance otherwise is also charactézed.
An extension of the findings to the model with multiple distinct
outliers is also discussed.In all cases, it is shown that the
asymptotic performance guarantees for the proposed test vén
neither the outlier nor typical distribution is known converge to
those when the typical distribution is known.

I. INTRODUCTION

it is impossible to achieve universally exponential cotesisy

for homogeneity testing or classification without trainidata

[3], [4]. We also showed that the GL test @&symptotically
optimal in the limit of large number of sequence®ur
previous paper[]5] generalized the scope of these previous
findings to the sequential setting, but only covered thenggtt
with at most one outlier. In this paper, we shall focus on the
extension with multiple outliers.

Sequential hypothesis testing has a rich history going back
to the seminal work of Wald_[6]. A majority of the results on
sequential hypothesis testing have been for the case wiere t
conditional distributions of observations under the hijeses
are completely known (see, e.d.] [6]! [7]) [8]) [9]._[10L.1.

For the case where the distribution of observations is not
completely specified, there have been a number of results
for composite hypothesis testing with parametric familds
distributions [12], [13]. As elucidated by Waldl[6], theresa
two general approaches for constructing sequential tests f
such parametric settings, one based on a weighted (or rajxtur
likelihood function for each hypothesis (see, elg.] [12i) the

We consider the following inference problem of outlieother based on a maximum (generalized) likelihood function

hypothesis testing in a sequential setting. Among a fixed-nuifor each hypothesis (see, e.d.. [[13]). There have also been
ber of independent and memoryless observation sequeneeBmited number of papers on non-parametric approaches to
it is assumed that a small subset (possibly empty) of thesequential hypothesis testing where the functional forrhef
sequences are outliers. Specifically, most of the sequereesdistribution is unknown, but it is known, for example, that
assumed to be distributed according to a “typical” distiitm,  the conditional distribution under the various hypothemses
while an outlier sequence is distributed according to arli®eu rigid translations of each other (see, e.@..1[14]). Seqaknt
distribution,” distinct from the typical distribution. Wehall be outlier hypothesis testing is closely related to the soecall
interested in aon-parametricsetting, in which the outlier and slippage problenstudied in the sequential setting (see, e.g.,
typical distributions are not fully known and can be arbitya [15]). In the slippage problemy populations are identically
close. The goal is to design a universal test to identifytedl t distributed except possibly for one. The goal is to decide
outlier sequences using the fewest observations. whether or not one of the populations has “slipped”, if so,
In [I], we studied universal outlier hypothesis testing in which one. However, such prior work on the slippage prob-
fixed sample size setting. The main finding therein was thi@im concerned the situation where the typical and “slipped”
the generalized likelihood (GL) test is far more efficient fodistributions are tightly coupled, for example, when theg a
universal outlier hypothesis testing than for the otheeiiehce mean-shifted versions of each other. In universal seqaienti
problems, such as homogeneity testing and classificatipn [Butlier hypothesis testing, we have no information regaydi
[3], [4]. In particular, the GL test was shown to baiversally the outlier and typical distributions. In particular, theical
exponentially consistemor outlier hypothesis testing, whereasand outlier distributions can be arbitrarily distributattahey
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can be arbitrarily close to each other. In addition, we haassumption of:, 7 having full supports rules out trivial cases
no training data to learn these distributions before theites where it is easier to identify the outlier sequences.
performed. To the best of our knowledge, there has been nat was shown in[[l] that in the fixed sample size setting,
prior work on sequential outlier hypothesis testing in sudis assumption of the outliers being identically disttém

a fully non-parametric setting that we study in this papeg essential for the existence of a test that is universally
A key assumption that we make is that each instantaneasgonentially consistent (under all the non-null hypo#ss
observation takes value in a finite and known set. Under thighen the number of outliers is not completely specified
assumption, we shall construct an efficient universal test t (anything from 0 toK). In the next Sectiof IV, we shall look

will be proven to be universally exponentially consisteanid  at the extension with possibly distinctly distributed @t but
to be sometimes optimal universally or in the limit of largvith their total number being known.

number of sequences. The proposed universal test has th@hen there are some outliers, with the set of all outliers

flavor of the repeated significance testI[16].1[17], whereigenoted by, 0 < |S| < X, the joint distribution ofthe first
the test stops when the generalized likelihood for the mostopservationss given by

likely hypothesis is larger by a time-dependent threshiotoht
those for all the competing hypotheses, if that happensréefo ps(Y") = ps (Y1, Yn)
a certain time. n

In Sectior(Il, we start with definitions of relevant distasce = [I<]]~ (y,(j)) I~ (y,(j)) @
between pairs of distributions, key to our results. Sestibh k=1 | ies igs
[Viconcern the models with identical and distinctly distried
outliers, respectively. Performance of our proposed tests
evaluated on real data relevant to spam detection applicati
in Section[¥. Due to space limitations, proofs of our results n
are omitted. po(y") = mo(y") = []

k=1

Under the null hypothesis with no outlier, the joint distriton
of the observations is given as
7 (1)
1

sequential test for the outlier consists of a stopping

S

i

1. PRELIMINARIES

Throughout the paper, random variables (rvs) are denote(f‘ d a final decisi le. The stoppi le def
by capital letters, and their realizations are denoted &y t € and a final decision rule. inhe stopping rule detines a

corresponding lower-case letters. All rvs are assumedk® ta{?ndl;)m (Mtf_;lrkovz 'ime, d?.?Otef(.j biyd Wh'f:h IS the gumgterth
values infinite sets, and all logarithms are the natural one. of observations faken until a final decision 1S made. €

Our results will be stated in terms of certain distance metrismpp'ng timelV = n, a decision is made based on a decision

. Mn
between a pair of distributions ¢ on ) : the Bhattacharyya rule § : Y™ — S, whereS denotes the set of all subsets of

distanceand therelative entropy,denoted byB (p,q) and t{l’t’M%{ of S|hz_e at most[t{._Tr;e 0\|/erfall goal of S%eqlf[ﬁm'f".il |
D (p|lq), respectively, and defined as (see, elg.l [18]) esting is to achieve a certain level of accuracy for the fina

decision using the fewest number of observations on average
We consider the sequential outlier hypothesis testing prob

B(p,q) = —log Z P(y)%Q(?J)% ) lem in two settings: the setting where ontyis known, and the
yey completely universal setting where neithenor « is known.
and Consequently, a universal test is not allowed to be a functio
() of i, and ofu or 7, in the respective settings.
D(pllg) = Y p(y)log @) The accuracy of a sequential test is gauged using the
yey 9y maximal error probabilityP,,.., which is a function of both
respectively. the test andy, w) and is defined as
Ill. MODEL WITH IDENTICAL OUTLIERS Paax £ max Ps {6 (YN) # S}, 2

ConsiderM > 3 independent sequences, each of Whic\nhere]P’S
consists of independent and identically distributeddi)iob- /
servations. Denote thk-th observation of thé-th sequence

(2) .
by Y7 € Y. We assume that there anep 0 K > 2 hrobability converges to zero for amy «, u # . Further, we
outliers among thel/ sequences witlk’ < -, andthat each g5y it js universally exponentially consisteiftthe exponent
of the outliersare identically distributed (i.i.d.) according 05, the maximal error probability with respect to the exgekt

pu € P(Y), whereas all the other sequences are distributggl,ning time under each hypothesis is strictly positive, i
according to the typical distributiom € P (). Under the yare existsys > 0 such that

hypothesis with no outlier, namely, theull hypothesis, all

sequences are commonly distributed according to the tlypica Es[N] < M (1+0(1)) (3)
distribution. Nothing is known abouj: and = except that as

u # m, and that each of them has a full suppofthe for any u,w, 1 # 7 as Pyax — O.

S € §, denotes the probability distribution for
the hypothesis withs' as the subset of all outliers. We say a
sequence of tests imiversally consisterif the maximal error



We first consider the setting where both the typical arikhownx and~ in (@) with their ML estimategis = Lics i

I
outlier distributions are known. In this non-universal -se LA Xjgsi .
ting, the Multihypothesis Sequential Probability Ratiosfl’eta dfis = 5f57s7 » respectively, as
(MSPRT) was shown to be asymptotically optimal in the
regime with vanishing error probability [10]. For a given p“S”"’( H {H“ ( fj)) Hfrs (yfj))} @)
thresholdT > 0 and with S (y®) £ argmaxpgs (y"), k=1 |ies jds
Ses

S
denoting the instantaneous maximum likelihood (ML) estana

. . A N s
of the hypothesis at time, the stopping timeN* and final When only is known and with5 (Y ) a
decisioné* of the MSPRT are defined as follows. .

argmax p’ (y") = argmin [Z D(wll =5 ) + 52 D(wlﬂ)]
. ses ses |ies jgs
ps (Y") S#D . S#0 . :
> Ty, (4)  denoting the instantaneous estimate of the non-null hygsish
(using the generalized likelihood) at time our proposed

N* = argmin | ————
ngzl max ps (Y")
S#S

e a(wN* universal test can be described by the following stoppind) an
00 =5 (Y ) ' ®)final decision rules
o _ o N* = min(N, Lf(T)J), 8)
Proposition 1: As the thresholdl” in (4) approaches infin-
ity, the MSPRT in [), [(6) satisfie®na, = O (%). In o S(YN ) it N < f(T); ©)
addition, ityields that 0 it N> f(T),
— log Pmax — .
iy (14 o(1)), S| = K; wheref(T) is any function growing at least as fastBog T,
Es[N"]={ mm u|| Z)mf)u((wuu 7(1+0(1), 1<|S|<K; and
B (L o(1), S=0.
D(rllp) N2 argminl min n[ Z ( H Zk‘%s,/ ’Yk) + Z D ('YJ'HTF)
Furthermore, the MSPRT is asymptotically optimal. In n21 zig i€S’ i¢s’
particular, for any sequence of testd’,¢) with vanishing Zk -
maximal error probability, iholds (simultaneously) that - ZD (71 | \%S\’ ) - ZD ('YJ'H”)}
—1lo . i€8 j¢s
D=0 +el) |5 = K
Es[N] > smmpuisrsmmar(+o(1) 1<[S| < K; >log T+ (M +1)|Y|log(n +1)[,  (10)
7—5@”5“ (1+0(1)) S=0.

Similarly, when neitherp nor 7« is known, the test

Now we consider the universal settings when the outliean be written as in [18),[19) but withS (YN> =

distribution is unknown, and when neither the outlier nor Univ _ ( Shes Yk
typical distribution is known. In the fixed sample size sgiti ggrr;&:;p y") = gfglgi?w L%D il ER ) T

it was shown in[[1] that a universally exponentially conesigt > (7'” Dkgs Tk )} and
test cannot exist. Correspondingly, we proposed a testither; 75 T M—]S]
that fulfilled a lesser objective of attaining universallype-

nential consistency under all the non-null hypothesesJeNhl Y [ ( Zk st 'm)
£ argmin D (~; —

satisfyingonly universal consistency under the null hypothesis ng>1 én;i; " 1625, i ’ [S7]
We now describe a universal sequential test fulfilling a kEimi S#0
objective. . + Z (%H—LM S\ls?k)

1) Proposed Universal TesEor eachi = 1,..., M, denote jés
the empirical distribution ofy(® by ~;. When only 7 is _ZD( |Zkes w)
known, we compute the generalized likelihood wf under YIS
each non-null hypothesis corresponding to a non-emptyetubs ie$
S c {1,...,M} by replacing the unknowp in (@) with its - ZD (7,”—’“%”
ML estimatejig £ ZfTS‘” as g8

>logT + (M +1)|Y|log(n+1)|. (11)
77 H{HM ) I m)}. ©
igs 2) Performance of Proposed Test:

Similarly, when neitherr nor i is known, we compute the Theorem 2:When onlyr is known, the test i {8)[{9).{10)
generalized likelihood ofy™ under each non-null hypothesisis universally consistent, and yields for evéfythat P,,., <
corresponding to a non-empty € S by replacing the un- %, whereC' is a constant that depends only dh K, u, 7, but



not onT'. In addition, it satisfies for each non-null hypothesis IV. MODEL WITH DISTINCT OUTLIERS

5 €8,5#0, thatasT — oo, It was shown in[[1] that when the outliers can be arbitrarily
. logT distinctly distributed, the assumption of the number oflietg
Es[N'] < ag (1+0(1) being known is essential for the existence of a universally

,g(gP:;x(l +o(1)), S| = K; e>.<p0n.en_t|ally cpns_|stent test: We nowldescr!be this elqens
< ,IO;LLW (1+0(1), 1<|S|<K with distinctly distributed outliers but with their numbleeing
min(D(ull7),ns (pllr)) oA - > known in the sequential setting.

(12) In particular, for anS c {1,...,M}, |S| = K, denoting
where the set of K outliers, the joint distribution of all observations
, , under the hypothesis with the outlier subset beship
YN / [SNS" | p+|S"\ S|~
os i [ 15751 (o] 2

S'#0

Ps (yn) = Ds (ylv" ayn)

+[S\S'| D(pl|m)

n

ITSTTem () I 7 () ¢ @8
s

+ |S\8|D (]| LEnlerissin) } > 0. k=1 {ies
where each-th outlier,i € S, is distributed as:;, which can
and be arbitrarily distinct from one another as long as eack .
A . SID D _ 13) At the stopping timeN = n, the test for the outliers is done
s (pllm) pglpl(%f) [S1D(klp) (rllp) (13) based on a rulé : YM" — Sk, whereSx will now denote
the set of all subsets dfl,..., M} of sizeexactly K. Notice

_ . ] ) that unlike in the previous sections, the current model does
Theorem 3:When neitheru nor = is known, the universal 4t include the null hypothesis with no outlier. The maximal

test in [8), [9), [(I) is universally consistent, and yields grror probability is defined as previously il (2) but with the

everyT that Pn.x < %, whereC is a constant that dependsyaximum being oveSx instead.

on M, K, u,w, but not onT'. In addition, for each non-null

hypothesisS € S, S # ), asT — oo, A. Proposed Universal Test
. log T When onlyr is known, we can compute the corresponding
Es[N"] < 5—5(1 +o(1)) (14) generalized likelihood of™ under each hypothesis€ Sy by
— log Prax (14 o(1)) 1S = K; replacing the unknowp;, i € S, in (I8) with its ML estimate
< el ' ' Ak £ 4. In particular, withS (Y™) = argmin Y. D(v;||r)
Gl s Gy (L +o(D), 1< [S] < K, S€sk jgs

(15) denoting the instantaneous estimate of the hypothesiagusi
the generalized likelihood) at time, our proposed universal

where test can be described by the following stopping and final
ag 2 gl;é% []Sm SI\D(MH |SOS’\;‘L;-/|‘S’\S|7T) decision rules:
S'#£0 N* = argminl min n[ZD(%Hw) —ZD(’YJ'HF)}
151910 (] (gt s =
[SNS|ut|S"\S| ™
+|5\8]D (| L0l ) S1ogT + (M + 1)|YV|log(n +1)|; (19)
c el p H IS\S/|M+\SCIOS’C|7T ] 7 ) )
+lsns|p (x| R > o = §(vV). (20)

and Similarly, when neither, nor 7 is known, the test can be

7s (ulm) & min D(u|lp) + (M — K — |S|)D(x||p), (16) Wwritten as
peEP(Y)

andns (ul|m) is as in [IB). N* = arg>n11in [ ;n:; n[ Z D (%H—%f‘ST)
B siese Y
R k 1:1t foll f that as\/ Pkes Ve
emar ollows from (18) that asM — oo, _ ZD (%H A;_gfsvl ”
Ms (p,m) — D(ullr), a7 i¢s

i.e., the asymptotic performance guarantee for the teg@)in ( >logT + (M + 1)|Y|log(n + 1)[; (21)
(@), (1) when neither nor 7 (cf. (I8)) are known converges
to that for the test in[{8)[{9)[.(10) whenis known (cf. [12)) 5 & (YN*) 7 22)
asM — oo.



A TABLE |
but with S(Y") = argmin > D(WHZ—M’“%). Note that
SeS  j¢s

since the null hypothesis is not present in this case, therrJ [ || T =398 | r=4 | T =405 | T=41 |
no need to truncate the stopping time by a predefined horizo% 0.0012 | 0.0017| 0.0039 | 0.0069
as in [8).

—log Pinax
B2} [N*] 0.0017 | 0.0025| 0.0057 0.01

B. Performance of the Proposed Tests

Theorem 4:With the number of distinct outlieré&l being

knpwn and when on_Iyr is knoyvn, the test _mECIQ)mO) is ACKNOWLEDGMENT
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